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Abstract 

Background:  Lipids are crucial for fetal growth and development. Maternal lipid concentrations are associated with 
fetal growth in the second and third trimester of pregnancy and with birth outcomes. However, it is unknown if this 
association starts early in pregnancy or arises later during fetal development. The aim of this study was to investigate 
the association between the maternal lipid profile in early pregnancy and embryonic size.

Methods:  We included 1474 women from the Generation R Study, a population based prospective birth cohort. 
Both embryonic size and the maternal lipid profile were measured between 10 weeks + 1 day and 13 weeks + 6 days 
gestational age. The maternal lipid profile was defined as total cholesterol, triglycerides (TG), high-density lipoprotein 
cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), remnant cholesterol, non-high-density (non-HDL-c) 
lipoprotein cholesterol concentrations and the triglycerides/high-density lipoprotein (TG/HDL-c) ratio. Additionally, 
maternal glucose concentrations were assessed. Embryonic size was assessed using crown-rump length (CRL) meas-
urements. Associations were studied with linear regression models, adjusted for confounding factors: maternal age, 
pre-pregnancy body mass index (BMI), parity, educational level, ethnicity, smoking and folic acid supplement use.

Results:  Triglycerides and remnant cholesterol concentrations are positively associated with embryonic size (fully 
adjusted models, 0.17 SDS CRL: 95% CI 0.03; 0.30, and 0.17 SDS: 95% CI 0.04; 0.31 per 1 MoM increase, respectively). 
These associations were not present in women with normal weight (triglycerides and remnant cholesterol: fully 
adjusted model, 0.44 SDS: 95% CI 0.15; 0.72). Associations between maternal lipid concentrations and embryonic size 
were not attenuated after adjustment for glucose concentrations. Total cholesterol, HDL-c, LDL-c, non-HDL-c concen-
trations and the TG/HDL-c ratio were not associated with embryonic size.

Conclusions:  Higher triglycerides and remnant cholesterol concentrations in early pregnancy are associated with 
increased embryonic size, most notably in overweight women.

Trial registration:  The study protocol has been approved by the Medical Ethics Committee of the Erasmus Uni-
versity Medical Centre (Erasmus MC), Rotterdam (MEC-2007-413). Written informed consent was obtained from all 
participants.

Keywords:  Pregnancy, Cholesterol, Low-density lipoprotein (LDL-c), High-density lipoprotein (HDL-c), Triglycerides, 
Intrauterine development, Fetal growth, Early pregnancy
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Background
In pregnancy, lipids are crucial for the developing fetus 
and to maintain placental function [1]. Lipids are fatty 
substances that are either absorbed from food or synthe-
sized by the liver, and comprise of cholesterol, triglycer-
ides and lipoproteins. Cholesterol is crucial to provide 
structural integrity to the cell membrane [2, 3].

Triglycerides are nonpolar lipid molecules associated 
with various lipoproteins that primarily store energy 
in adipocytes and muscle cells. Lipoproteins are struc-
tures that possess surface proteins that are cofactors and 
ligands for lipid-processing enzymes. They are classified 
by their size and density as either low-density lipopro-
tein cholesterol (LDL-c) and high-density lipoprotein 
cholesterol (HDL-c) [4]. Low-density lipoproteins 
transport cholesterol, the main substrate for progester-
one synthesis, and thereby support the maintenance of 
a pregnancy [5, 6]. By receptor-mediated endocytosis, 
maternal LDL can be taken up into the syncytiotropho-
blast [7]. After uptake, LDL-derived triglycerides and 
cholesterol are hydrolyzed by placental lipases and con-
tribute to the intracellular fatty acid pool. HDL binds to 
receptors on the syncytiotrophoblast surface and is sub-
sequently hydrolyzed by extracellular placental lipases 
[1, 8]. To facilitate the requirements of the developing 
fetus, the concentrations of maternal lipids such as tri-
glycerides and total cholesterol rise over the course of 
pregnancy [9, 10].

Pregnant women with low cholesterol concentrations 
have a higher risk for fetal growth restriction (FGR), 
preterm birth, and small-for-gestational age neonates 
[11–14]. Women affected by the Smith-Lemli-Opitz 
syndrome (SLOS), an inherited metabolic disease that 
results in a decreased cholesterol production, are at a 
higher risk of giving birth to small-for-gestational age 
neonates [2, 12]. Low LDL-c has even been proposed 
as a clinical marker for FGR risk assessment [15]. In 
contrast, a growing body of evidence from animal and 
human studies also suggests adverse consequences 
of increased lipid concentrations in pregnancy. High 
maternal total cholesterol and triglyceride concentra-
tions are associated with an increased risk of hyperten-
sive disorders of pregnancy, (induced) preterm birth 
and large for gestational age (LGA) neonates [16–18]. 
Additionally, triglycerides and remnant cholesterol are 
associated with higher birth weight and infant weight, 
as well as with the risk of LGA-related complications 
[18–20]. This is in line with the fetal over-nutrition 
hypothesis, which suggests that apart from maternal 
glucose concentrations, other maternal nutrients also 
contribute to (excess) fetal growth [21]. Additionally, it 
is proposed that in case of maternal obesity, there is an 

increased availability of these nutrients and thereby an 
increased risk for this over-nutrition [21].

Due to the increase in a sedentary lifestyle and a 
higher intake of calories, a growing number of women 
of reproductive age are obese and have abnormally 
elevated lipid levels [22, 23]. As a consequence of these 
abnormally elevated lipid levels, more women are at 
risk for an adverse course and outcome of pregnancy 
[16, 17]. These adverse outcomes do not only affect 
health of the offspring in the short term, but also have 
far reaching effects on the health of the offspring in 
adulthood [24–26]. Therefore, it is important to iden-
tify and mitigate factors that have an adverse effect on 
embryonic and fetal growth and birth outcomes, both 
for the long- and short-term health of the offspring.

Until recently, most studies focused on the asso-
ciation between the maternal lipid profile and fetal 
development in the second and third trimester of preg-
nancy and birthweight. However, we hypothesize that 
an effect of maternal lipids on embryonic size in early 
pregnancy may already be present. This is substanti-
ated by the fact that embryonic size early in pregnancy 
is strongly associated with fetal size throughout preg-
nancy, and birth outcomes [27, 28]. Our aim was there-
fore to investigate the association between the maternal 
lipid profile in early pregnancy and embryonic size.

Methods
Design and study population
This study was embedded in the Generation R Study, a 
large multi-ethnic population-based prospective cohort 
study in the city of Rotterdam, the Netherlands [29, 
30]. All methods were carried out in accordance with 
the Declaration of Helsinki. The study protocol has 
been approved by the Medical Ethics Committee of 
the Erasmus University Medical Centre (Erasmus MC), 
Rotterdam (MEC-2007-413). Written informed con-
sent was obtained from all participants. We excluded 
women that were not pregnant when included in the 
Generation R study (n = 925). Next we excluded twin 
pregnancies, abortions, fetal deaths and women lost to 
follow-up (n = 343). From the 8633 pregnancies result-
ing in a live singleton birth, we excluded pregnancies 
without information on lipid concentrations (n = 2416), 
pregnancies without information on CRL (n  = 4719), 
pregnancies complicated by (gestational) diabetes [18] 
and pregnancies in which cholesterol regulating medi-
cation was used [6]. The study population comprised 
1474 women with a live born singleton and of whom 
information was available on lipid measurements and 
ultrasonic assessment of embryonic size (Figs. 1 and 2).
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Maternal lipid and glucose concentrations in early 
pregnancy
Non-fasting blood was sampled early in preg-
nancy (median 12 + 3 weeks of gestation, 90% range 

[10 + 1–13 + 6 weeks]) by trained research nurses. Details 
of the processing procedures have been described earlier 
[30]. After thawing, the total cholesterol (mmol/L) and 
HDL-c (mmol/L) concentrations were determined using 

Fig. 1  Flowchart of the study population



Page 4 of 13Gootjes et al. BMC Pregnancy and Childbirth          (2022) 22:333 

standard laboratory methods. Concentrations of LDL-c 
were calculated using the Friedewald equation [31]. This 
calculation is not valid when the triglyceride level is 
≥5 mmol/L. In this study population, there are no women 
with triglycerides above 5 mmol/L. Remnant cholesterol 
was calculated as the total cholesterol minus LDL-c and 
minus HDL-c ([total cholesterol – LDL-c] – HDL-c). 
Non-HDL-c was calculated by subtracting HDL-c from 
total cholesterol (total-cholesterol – HDL-c). The TG/
HDL-ratio was calculated by TG divided by the HDL-c 
concentration (TG/ HDL-c) (Additional Table  1). Both 
cholesterol, TG and glucose (mmol/l) were measured 
with the c702 module on a Cobas 8000 analyzer (Roche, 
Almere, The Netherlands). Results on maternal lipid lev-
els in this cohort have previously been published [18].

Embryonic size and birth weight
Embryonic size was assessed by ultrasound examina-
tions using an Aloka model SSD-1700 (Tokyo, Japan) or 
the ATL-Philips Model HDI 5000 (Seattle, WA, USA). 
Ultrasound examinations for this study were performed 
by dedicated ultrasonographers at each prenatal visit to 
the designated research centers [29]. The crown-rump 
length (CRL) was measured in a true mid-sagittal plane 
with the genital tubercle and the spine longitudinally 
in view, according to standard procedures [27, 32, 33]. 
Intra-class correlation coefficients for intra-observer and 
inter-observer reproducibility of crown to rump length 
measurements were 0.998 and 0.995 [32]. Gestational age 
(GA) adjusted standard deviation scores (SDS) were con-
structed for the CRL measurements. Gestational age of 
the embryo’s was expressed in weeks of gestational age. 

These scores were based on reference growth curves from 
the whole study population and represent the equiva-
lent of Z-scores [34]. We obtained information on birth 
weight from midwifery and obstetric medical records. 
Gestational-age-adjusted SDS for birth weight were con-
structed using North European growth standards as the 
reference growth curve and represent the equivalent of 
z-scores [34, 35].

Pregnancy dating
The gestational age is the most important determinant 
of embryonic and fetal growth. In clinical practice, preg-
nancy dating is based on the CRL. However, for the pur-
pose of analyses with CRL as the outcome, gestational 
age should be based on the LMP [36]. In this study, preg-
nancy dating was thus based on the last known menstrual 
period in women with a regular menstrual cycle (28 days, 
range 24–32 days) [27]. The first day of the last menstrual 
period was derived from the referral letter of the com-
munity midwife or hospital [27]. At the ultrasound visit, 
we checked this date with the mother and obtained addi-
tional information on the regularity and duration of the 
menstrual cycle.

Covariates
In a consensus meeting (DG, AP, ES, JRvL), we identi-
fied confounders for the association between maternal 
lipid concentrations and embryonic size. This resulted 
in a Directed Acyclic Graph (DAG) (Supplementary 
Fig.  1) [37]. The identified confounders were: mater-
nal age (continuous), pre-pregnancy BMI (continuous), 
parity (nulliparous, multiparous), educational level (no 

Fig. 2  Associations of the maternal lipid profile in early pregnancy with embryonic growth. Abbreviations: CI, confidence interval; LDL-c, 
low-density lipoprotein cholesterol; HDL-c, high-density lipoprotein cholesterol. Values are linear regression coefficients (95% confidence interval). 
Adjusted for: maternal age, pre-pregnancy BMI, parity, educational level, ethnicity, smoking, folic acid supplement use and glucose concentrations
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education finished, lower education, middle education, 
higher education), ethnicity (Dutch and Western, Turkish 
and Moroccan, African, Asian), smoking (never smoked 
during pregnancy, smoked until pregnancy was known, 
continued smoking in pregnancy), folic acid supplement 
use (started preconceptionally, started in first 10 weeks of 
pregnancy, no folic acid supplement intake) and glucose 
concentrations (continuous). Maternal questionnaires at 
study enrolment provided information on maternal age, 
pre-pregnancy body mass index, parity, educational level, 
ethnicity, smoking habits and folic acid supplement use.

Maternal anthropometrics
We collected information about pre-pregnancy weight by 
questionnaire, and measured height and weight at enroll-
ment. Questionnaire based weight and measured height 
were then used to calculate body mass index (BMI)(kg/
m2). The correlation of pre-pregnancy weight obtained 
by questionnaire and weight measured at enrollment was 
high (β = 0.97, P < 0.01) [38]. Normal weight was defined 
as a BMI < 25.0 kg/m2 and overweight was defined as a 
BMI ≥ 25.00 kg/m2.

Statistical analysis
First, baseline characteristics and the distribution of the 
covariates were determined. We examined potential dif-
ferences in baseline characteristics between women 
included and excluded from the analysis. Differences in 
continuous variables with a normal distribution (mean, 
SD) were analyzed with Students t-test, and variables 
with a skewed distribution (median, 90% range) with the 
Mann-Whitney U test. Categorical variables were ana-
lyzed with chi-square tests (Additional Table 2).

Second, multivariate linear regression analyses were 
performed to study the association between differences 
in embryonic size for the lower and upper tertiles of the 
maternal lipid concentrations, compared to the middle 
tertile. We carried out tests for trends based on multiple 
linear regression models with the maternal lipid concen-
trations as a continuous variable. To allow mutual com-
parison of the lipid measures, we constructed Multiple 
of the Median (MoM) scores of all lipid measures. This 
MoM score indicates of how far the individual measure 
deviates from the median in the study population. The 
crude model was the univariate analysis of maternal 
lipid concentrations and embryonic size. In the adjusted 
model, we additionally corrected for the previously deter-
mined confounding factors.

Since lipid changes may not only be the consequence 
of higher glucoses, but may also cause disturbances of 
glucose metabolism, there is an interactive effect of the 
maternal lipid status and maternal glucose status [39]. 
This changes the direction in the DAG graph, indicating 

that there may be a confounding or mediating effect of 
maternal glucose level. We examined whether mater-
nal glucose concentrations mediated the association of 
maternal lipid concentrations with size growth by adding 
it to our models (fully adjusted model).

We aimed to investigate the effect of the switch in 
nutritional source of the embryo, from uterine glands 
and yolk sac to the placenta, which occurs at around 
week 12 of gestation. Therefore, sensitivity analyses 
were performed. Associations between the maternal 
lipid status and embryonic size were separately inves-
tigated in the period of 10 to 12 weeks GA versus 12 
to 14 weeks GA, with gestational-age adjusted MoM’s 
(Additional Table  3). With other sensitivity analyses, 
we tested the effect of the lowest lipid concentrations 
by assessing the cases with the lowest 5% of the lipid 
concentrations (Additional Table  4). Results of all lin-
ear regression analyses are presented as SDS with a 95% 
confidence interval (CI).

The following confounders had missing values: pre-
pregnancy BMI (14.3%), parity (0.4%), educational level 
(4.3%), ethnicity (2.1%), smoking (8.8%), folic acid sup-
plement use (19.3%) and glucose (2.7%). To prevent bias 
associated with missing data, we used multiple imputa-
tions for covariates with missing values. We imputed 
missing data on the basis of the correlation of missing 
variables with other participant characteristics, accord-
ing to the Markov Chain Monte Carlo method [40]. Ten 
datasets were created and analyzed together. A sensi-
tivity analysis was performed to observe differences in 
observed and expected values of confounders before 
and after imputation (Additional Table  5). Lastly, com-
plete case analyses were conducted, in which datasets 
were used without the imputed missing values (data not 
shown).

We used IBM Statistical Package of Social Sciences ver-
sion 25.0 for Windows (SPSS Incl., Chicago, IL, USA) for 
all statistical analyses. A p-value < 0.05 was considered 
statistically significant.

Results
Maternal baseline characteristics and first trimester ref-
erence ranges (41) for lipid concentrations are presented 
in Additional Table  6. In the study we included 1474 
women. Women were on average 30.8 (±4.6) years of age, 
1060 (71.9%) women had a Dutch and Western ethnic-
ity and the median pre-pregnancy BMI was 22.6 kg/m2 
(90% range 18.9; 29.6) (Table 1). Additional Table 2 shows 
baseline characteristics of women included and excluded 
from the analyses. Excluded women were on average 
younger, less often of Dutch and Western ethnicity, more 
often lower educated and they more often consumed 
alcohol in pregnancy.
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The associations between maternal lipid concentra-
tions and CRL are shown in Table 2. In the crude anal-
yses, a larger CRL was observed in women with higher 
triglyceride concentrations; a significant linear trend was 
observed (crude model, 0.16 SDS CRL; 95% CI, 0.05; 0.38, 
per 1 MoM increase).

In the multivariable analyses, the association remained 
significant (adjusted model, 0.15 SDS; 95% CI, 0.01; 0.28), 
also after additionally adjusting for glucose concentra-
tions (fully adjusted model, 0.17 SDS CRL; 95% CI, 0.03; 
0.30, per 1 MoM increase). When analyses were per-
formed according to BMI (i.e. normal weight or over-
weight), the associations only remained in the overweight 
group (crude model, 0.29 SDS CRL; 95% CI, 0.04; 0.53, 
per 1 MoM increase. Adjusted model, 0.35 SDS CRL; 
95% CI, 0.10; 0.61, per 1 MoM increase and fully adjusted 
model, 0.44 SDS CRL; 95% CI, 0.15; 0.72, per 1 MoM 
increase).

The crude analyses between remnant cholesterol and 
CRL showed significant positive associations (crude 
model, 0.17 SDS CRL; 95% CI, 0.05; 0.29, per 1 MoM 
increase). After adjustment for confounders in the 
multivariable analysis, and the fully adjusted analysis, 
the significant associations remained (adjusted model, 
0.15 SDS CRL; 95% CI, 0.02–0.29, per 1 MoM increase 
and fully adjusted model, 0.17 SDS CRL; 95% CI, 

0.04–0.31,, per 1 MoM increase, respectively). Again, 
the associations only remained in the overweight group 
(crude model, 0.29 SDS CRL; 95% CI, 0.05; 0.53, per 1 
MoM increase. Adjusted model, 0.35 SDS CRL; 95% 
CI, 0.09; 0.61, per 1 MoM increase and fully adjusted 
model, 0.44 SDS CRL; 95% CI, 0.15; 0.72, per 1 MoM 
increase) (Table  2). Total-cholesterol, HDL-c, LDL-c, 
non-HDL-c concentrations and the TG/HDL-c ratio 
in early pregnancy were not associated with CRL. We 
tested for multicollinearity using the tolerance statistic. 
As tolerance was > 0.20 for all variables in our models, 
multicollinearity was unlikely.

Sensitivity analysis demonstrated that the associa-
tions between triglycerides and remnant cholesterol 
and embryonic size attenuated and were no longer sig-
nificant when the analyses were split for gestational age 
10–12 weeks and 12–14 weeks (Additional Table  3). 
Complete case analysis showed similar results to those 
presented in Table  2 (data not shown). Also, sensitiv-
ity analyses were performed in which we examined the 
effect of the lowest lipid concentrations within the study 
population. When investigating the association between 
the lowest 5% lipid concentrations and embryonic size, 
no significant associations were observed (fully adjusted 
model triglycerides, − 0.16 SDS CRL; 95% CI, − 0.38; 
0.13, per 1 MoM increase and fully adjusted model 

Table 1  Baseline characteristics of the study population

Abbreviations: HDL-c high-density lipoprotein cholesterol, LDL-c low-density lipoprotein cholesterol, TG triglycerides, BMI body mass index. Values are means (SD) 
for continuous variables with a normal distribution, or medians (90% range) for continuous variables with a skewed distribution. Confounders were imputed. Non-
imputed values represent valid percentages

Maternal characteristics N = 1474 Reference 
ranges lipid 
concentrations (41)

Age at intake, years 30.8 (4.6)

Pre-pregnancy BMI, kg/m2 22.6 (18.9; 29.9)

Overweight women, n (%) 347 (25.4)

Parity (nulliparous) 877 (59.5)

Educational level (high) 785 (53.3)

Ethnicity (Dutch and Western) 1060 (71.9)

Smoking (continued smoking in pregnancy) 232 (15.7)

Alcohol (continued alcohol consumption in pregnancy) 650 (44.1)

Folic acid supplement use (start preconceptional) 756 (51.3)

Embryonic sex (male) 723 (49.1)

Glucose, mmol/L 4.41 (0.83)

Total cholesterol, mmol/L 4.69 (0.81) 3.65–5.44

Triglycerides, mmol/L 1.19 (0.70; 2.24) 0.50–1.80

HDL-c, mmol/L 1.77 (0.34) 1.04–2.02

LDL-c, mmol/L 2.34 (0.67) 1.55–3.96

Remnant cholesterol, mmol/L 0.54 (0.32; 1.01) –

Non-HDL-c, mmol/L 2.93 (0.77) –

TG/HDL-c ratio 0.67 (0.34; 1.63) –
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remnant cholesterol, − 0.13 SDS CRL; 95% CI, − 0.29; 
0.20, per 1 MoM increase, respectively) (Additional 
Table 4).

Discussion
Principal findings
We showed that both maternal triglycerides and remnant 
cholesterol in early pregnancy are positively associated 
with embryonic size, especially in overweight women and 
even after adjustment for glucose concentrations [41].

Lipids such as triglycerides and cholesterol reach the 
developing embryo or fetus through different mecha-
nisms, which change over the course of pregnancy. In 
the first 12 weeks of pregnancy, the placenta is develop-
ing and not fully functional [42]. In this period, the devel-
oping embryo is dependent on the yolk sac and uterine 
glands for the storage and transport of nutrition [43, 44]. 
The yolk sac transports maternal lipids into the vitelline 
vessels that are connected with the circulation of the 
embryo [45]. Animal studies showed that as the maternal 
serum lipid concentrations increased, so did the concen-
trations in the yolk sac, and consequently the secretion by 
the yolk sac into the embryo [46]. This indicates that the 
lipid transport to the embryo is dependent on maternal 
serum lipid concentrations. For triglycerides to pass the 
yolk sac membrane, they have to be hydrolyzed into free 
fatty acids by placental lipases [47]. From animal stud-
ies it is known that during embryonic growth, approxi-
mately 90% of the total energy requirement is derived 
from yolk lipid fatty acid oxidation [48]. This indicates 
triglycerides have an important role as energy source in 
the development of an embryo, supporting our positive 
association between triglycerides and embryonic growth. 
In the performed sensitivity analyses, we were not able 
to verify the increased dependency of the embryo on 
the maternal lipid concentrations in the first 12 weeks of 
pregnancy (analyses split for gestational age 10–12 weeks 
and 12–14 weeks). Neither did we find stronger associa-
tions when we investigated the group of women with the 
lowest 5% lipid concentrations compared to the higher 
lipid levels in relation to embryonic size. This could be 
explained by the fact that by stratifying, the groups are 
smaller, which lowers the statistical power to detect sta-
tistically significant differences. However, the observed 
effect estimates in these sensitivity analyses are very simi-
lar from the main analyses.

Since triglycerides and remnant cholesterol only 
make up a small part of the total cholesterol content, it 
could explain why we did not find a positive association 
between total cholesterol concentrations with embryonic 
growth. Moreover, based on previous studies, it is postu-
lated that only very low maternal total cholesterol levels 

are related to fetal and newborn size [13, 49]. In a study 
demonstrating a negative association between total cho-
lesterol levels and newborn birth weight [13], the mean 
level of total cholesterol was 3.6 mmol/L. By contrast, 
the mean level in this study population was 4.8 mmol/L. 
This possibly explains the absence of an association in 
this study population. Additionally, we did not find an 
association between HDL-c levels and embryonic size. 
This is in line with earlier studies examining the asso-
ciation between HDL-c levels and postnatal measures 
of fetal growth (i.e. LGA), which also did not observe a 
significant association [50, 51]. Lastly, we did not find 
an association between LDL-c and embryonic size. Pre-
vious epidemiological studies observed reduced serum 
LDL-c levels in pregnancies complicated by fetal growth 
restriction [52]. A suggested underlying mechanism for 
the association between LDL-c levels and impaired fetal 
growth is an increased lipid oxidation of LDL-c. These 
modified LDLs are not recognized nor taken up by the 
LDL receptor, after which the modified LDL accumulates 
outside the receptor and initiates plaque formation in 
the maternal spiral arteries of the placenta. This contrib-
utes to artery occlusion, a disturbed perfusion of the pla-
centa and has fetal growth restriction as a result [53, 54]. 
Because the spiral arteries and placenta are not formed 
yet in the first trimester of pregnancy, we propose (oxi-
dized) LDL-c does not have the same negative effect on 
embryonic size.

Strikingly, the demonstrated associations between 
maternal serum lipid concentrations and embryonic size 
were most prominent in overweight women. Adiposity is 
associated with metabolic and endocrinologic changes, 
and they differ depending on different BMI [55]. The 
findings of a previous study investigating maternal lipid 
levels and fetal birthweight, suggest that the metabolic 
lipid pathways affecting fetal growth may be substantially 
different in overweight women, compared to the nor-
mal weight women [56]. We also find associations with 
embryonic size in this group of overweight women to 
be more profound, which may be explained by the pos-
sible positive association between maternal BMI and 
embryonic size [57]. Second, this could be explained by 
the strong association between both obesity and insulin 
resistance, and insulin resistance and remnant choles-
terol [58–60]. Therefore, the effect of higher lipid levels 
may be stronger if the woman is insulin resistant. How-
ever, since the gold standard for the assessment of insu-
lin resistance is the hyperinsulinemic-euglycemic clamp, 
and this was not utilized, we were not able to verify this 
in this study, [61]. Though, the analyses were addition-
ally adjusted for maternal glucose levels, which is an 
indirect measure of insulin resistance. Apart from small 
changes in effect estimates, we could not substantiate 
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an insulin dependent effect in overweight women. How-
ever, again, we did not make use of the gold standard for 
insulin resistance. The yolk sac is important for nutrient 
transport to the embryo. Hypothetically, hyperglycemia 
in early pregnancy injures the development of the yolk 
sac, which impairs embryonic growth and development. 
Next, there appears to be a decrease in glucose transport 
in embryos exposed to a hyperglycemic environment, 
which may lead to programmed cell death, and therefore 
impaired growth and development [62]. However, the 
analyses in which we additionally adjust for maternal glu-
cose concentrations did not reveal a glucose dependent 
effect on embryonic size. This is in line with both in vivo 
and in  vitro studies, that could not verify this negative 
association of maternal glucose levels on early embry-
onic growth [63, 64]. In this study population, there was 
a relatively small number of women with high levels of 
glucose or hyperglycemia, which might have decreased 
the possible interactive effect on the association between 
the maternal lipids and embryonic size. Therefore, the 
observed associations may be stronger among higher-risk 
populations.

Clinical implications
Our findings demonstrate that the previously established 
associations between maternal lipids, fetal growth and 
adverse birth outcomes may already be present during the 
first trimester of pregnancy [17, 18, 28, 49, 65, 66]. [20].

It is also in line with the Developmental Origins of 
Health and Disease (DOHaD) theory, which states that 
adverse influences in early pregnancy have the potential 
to affect the change of adverse birth outcomes [24]. The 
finding that specifically both triglycerides and remnant 
cholesterol are associated with embryonic size are not 
surprising, as plasma triglycerides and remnant choles-
terol are highly correlated [67]. Remnant cholesterol is 
the cholesterol content of triglyceride-rich lipoproteins. 
In a clinical setting, triglycerides are even proposed 
as a surrogate marker of remnant cholesterol [68, 69]. 
Additionally, our results emphasize the potential of tri-
glycerides and remnant cholesterol as markers for first 
trimester size.

Research implications
To unravel the mechanisms of nutrient transport from 
mother to embryo, and especially lipid transport, more 
fundamental research is needed. Also changes in nutri-
ent transport due to the switch from yolk sac and uter-
ine glands to the placenta as main nutrient transporter 
is interesting. Second, due to the small measures of the 
CRL, the measurement ranges are also small. Lastly, 
research with repeated CRL measurements would make 
it possible to investigate embryonic growth patterns.

Strengths & limitations
To our knowledge, this is the first study which investi-
gates the association between the maternal lipid profile 
and embryonic size in early pregnancy. One limitation is 
that maternal blood samples were obtained in a non-fast-
ing state and not on a specific time of the day, while the 
levels are sensitive towards intake. This could have led 
to an underestimation of the observed associations, due 
to non-differential misclassification of high or low lipid 
levels. Moreover, multiple studies have demonstrated 
that plasma lipids only change a little in response to 
food intake [70–77]. Therefore, non-fasting lipids levels 
can used to evaluate the serum lipid status of pregnant 
women instead of fasting lipids. As an exception, only 
fasting blood samples should be considered if non-fasting 
plasma triglycerides are above 5 mmol/L. [75] However, 
in our study population, there were no women with non-
fasting triglycerides that exceeded 5 mmol/L.

A second limitation, is that embryonic size was meas-
ured only once. Therefore, no patterns of embryonic 
growth could be assessed. Also no information on 
(changes in) pre-pregnancy lipid concentrations was 
available. We therefore cannot investigate the effect of 
preconceptional lipid concentrations on embryonic size. 
Next, the use of MoM’s in the analyses makes it harder 
to clinically interpret the associations. However, these 
MoM’s enable to compare the different lipid concen-
trations to each other. The effect sizes for the associa-
tion between triglycerides and remnant cholesterol and 
embryonic size are comparable.

Moreover, there might be the issue of response bias or 
self-selection, which is known to happen in cohort stud-
ies. Indeed, the median BMI of 22.6 within our study 
population is within the healthy range and the majority of 
women did not smoke during pregnancy (73.9%) (Addi-
tional Table  1). Indeed, most of the measured maternal 
lipid concentrations are within the recommended ranges 
for the first trimester of pregnancy [78]. The selection of 
a relatively healthy study population did thus not allow 
to investigate the associations of extreme dyslipidemia. 
This might imply that effects in the general population 
with more and severe dyslipidemia may be even larger, 
and thus has affected the generalizability of our results. 
Finally, the observational nature of this study does not 
allow for inference of causality.

Conclusions
The positive association between maternal lipids and 
embryonic size in pregnancy, especially in overweight 
women, emphasizes the importance of healthy mater-
nal nutrition and a healthy weight. we propose maternal 
serum lipids concentrations, especially triglycerides and 
remnant cholesterol, may be a marker for early embryonic 
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and fetal growth. Additionally, they are potentially new 
targets for an early intervention in overweight pregnant 
women to prevent excess embryonic and fetal growth.
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