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Abstract

Background: The etiology of pre-eclampsia (PE) is not yet fully understood, though current literature indicates an
upregulation of inflammatory mediators produced by the placenta as a potential causal mechanism. Vitamin D is
known to have anti-inflammatory properties and there is evidence of an inverse relationship between dietary
calcium intake and the incidence of PE. Evidence of the role of vitamin D status and supplementation
in the etiology and prevention of PE is reviewed in this article along with identification of research gaps to inform
future studies.

Methods: We conducted a structured literature search using MEDLINE electronic databases to identify published
studies until February 2015. These sources were retrieved, collected, indexed, and assessed for availability of
pregnancy-related data on PE and vitamin D.

Results: Several case-control studies and cross-sectional studies have shown an association between vitamin D
status and PE, although evidence has been inconsistent. Clinical trials to date have been unable to show an
independent effect of vitamin D supplementation in preventing PE.

Conclusions: The included clinical trials do not show an independent effect of vitamin D supplementation in
preventing PE; however, issues with dose, timing, and duration of supplementation have not been completely
addressed.
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Background
Each day, 830 women die from preventable pregnancy-
related causes; low- and middle-income countries bear the
greatest burden of disease [1]. Hypertensive disorders of
pregnancy, including gestational hypertension, pre-
eclampsia (PE), and eclampsia, are among the major
complications that account for approximately 14% of ma-
ternal mortality [1, 2]. Pregnancy induced hypertension,
defined as blood pressure greater than 140/90 mmHg on
two consecutive occasions ≥6 h apart occurring after
20 weeks of pregnancy, complicates approximately 10% of
all pregnancies worldwide. Pre-eclampsia (PE) is hyperten-
sion and proteinuria (protein in urine ≥0.3 g/24 h (1+
dipstick) on two occasions ≥6 h apart) or edema [3, 4]. It
is a major cause of maternal and perinatal morbidity and

mortality and complicates 2% to 8% of pregnancies [3, 5].
Early onset severe PE (EOSPE) is diagnosed between 20 to
34 weeks gestation and is associated with a 20-fold in-
creased risk for maternal mortality compared to PE after
34 weeks gestation [6] called late onset severe PE
(LOSPE). Pregnant women who show signs of pregnancy
induced hypertension or PE can develop eclampsia, which
is the occurrence of unexplained seizures [7].
The complications of PE include eclampsia, dissemi-

nated intravascular coagulation and the HELLP syn-
drome (hemolytic anemia, elevated liver enzymes, and
low platelets [5]). Risks to the fetus include intrauterine
growth restriction (IUGR) and fetal death [8]. Pathogno-
monic features shared by PE and IUGR include abnor-
mal placental implantation and reduced trophoblastic
invasion [9]. Similarly, EOSPE and LOSPE are associated
with fetal death, perinatal death, and severe neonatal
morbidity. For example, in an analysis of 456,668 single-
ton births in Washington state, EOSPE was associated
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with high risk of fetal death; the adjusted odds ratio
(aOR) was 5.8 (95% Confidence Interval (CI): 4.0–8.3 vs.
1.3 for LOSPE (95% CI: 0.8–2.0). The aOR for perinatal
death/severe neonatal morbidity was 16.4 (95% CI: 14.5–
18.6) in EOSPE and 2.0 (95% CI: 1.8–2.3) in LOSPE
[10]. Women with a history of PE also have a higher risk
of cardiovascular disease later in life [11, 12].
For years, PE has been hypothesized to be a two-stage

disorder [13]. In the first stage, placental perfusion is re-
duced resulting in defective placental implantation. In
the second stage, reduced vascularization at the placen-
tal site activates a maternal inflammatory response. This
leads to generalized endothelial dysfunction and the
release of excessive anti-angiogenic factors into the ma-
ternal bloodstream resulting in hypertension. In PE,
higher amounts of soluble fms-like tyrosine kinase 1
(sFLT-1) are produced in the placenta. sFLT-1 competi-
tively binds to placental growth factor (PIGF) and vascu-
lar endothelial growth factor (VEGF) creating an
angiogenically imbalanced vascular environment that
prevents proper endothelial preservation [14, 15]. More
recently, a modified version of the two-stage hypothesis
has been developed, which proposes that maternal con-
stitutional factors (genetics, obesity, diet, co-morbid dis-
ease) in combination with normal inflammatory changes
in pregnancy can lead directly to endothelial dysfunction
with or without the contribution of reduced placental
perfusion [16, 17].
Hypovitaminosis D has been associated with PE [18].

While the pathogenesis of PE involves a number of
biological processes, there are several hypotheses to sug-
gest how vitamin D levels may affect these processes
(Table 1). These include vitamin D’s role in modulating
pro-inflammatory responses and decreasing oxidative
stress in PE, promoting angiogenesis through VEGF and

gene modulation, and decreasing blood pressure through
the renin-angiotensin system (RAS) [19–25].

Biological plausibility of the role of vitamin D in PE
Vitamin D3, or cholecalciferol, is formed endogenously
when 7-dehydrocholesterol in keratinocytes is converted
to a seco-steroid pro-hormone upon irradiation by
UV-B light. This is followed by two successive hydroxyl-
ations - first at the 25 position to form 25-
hydroxyvitamin D [25(OH)D], which occurs in the liver,
and second to form the active hormonal metabolite
1,25-dihydroxyvitamin D [1,25(OH)2D], also called calci-
triol, which is largely carried out in the kidney. Calcitriol
binds to its cognate nuclear receptor and modulates
gene expression mainly related to calcium absorption in
the intestine. Calcitriol can also modulate immune
function through a rapid action pathway by binding to
receptors on the plasma membrane when the active hor-
mone is synthesized in situ by several extra-renal tissues,
namely macrophages, endothelium, cells in the prostate,
and keratinocytes, as all of them express the vitamin D
receptor [25].
Vitamin D status is determined by the measurement

of its circulating form, 25-hydroxyvitamin D [25(OH)D]
[26]. Vitamin D is considered adequate when 25(OH)D
levels are above 50 nmol/L, as defined by the
Institute of Medicine. A level between 30 and
50 nmol/L is considered insufficient, and less than
30 nmol/L, deficient [27].
In the past decade, maternal vitamin D insufficiency

and deficiency have increasingly been recognized as a
public health concern. Insufficiency has been linked to
adverse maternal and fetal outcomes, including poor
fetal and infant bone mineralization [28, 29], hypocalce-
mia and rickets in neonates [30]. A number of prospect-
ive observational studies have shown a high prevalence
of hypovitaminosis D during pregnancy in developing
and developed countries [31]. Risk factors that affect
vitamin D status include season, time of the day, lati-
tude, clothing and skin color [32]. Vitamin D deficiency
is commonly found among pregnant women in various
ethnic populations [33–37]. African American women of
reproductive age have been found to be at particularly
high risk for vitamin D deficiency in the United States
[18]. Clothing with minimal skin exposure [38, 39],
increased urbanization, skin pigmentation [40], and
vegetarian diets [35] are all believed to have contributed
to a vitamin D deficiency epidemic worldwide.
During the course of pregnancy, evidence from obser-

vational studies shows divergent data on the concentra-
tion of serum 25(OH)D levels in different trimesters of
pregnancy, with either decline [41], increase [42], or
absence of change in vitamin D levels with progres-
sion [43, 44].

Table 1 Summary of Effects of increased vitamin D on the
pathogenesis of pre-eclampsia (PE)

Stage of PE Characteristic of PE ↑ Vitamin D

Stage 1 Inflammation-linked
abnormal placental
implantation

↓ Predisposition to pro-
inflammatory response [20]

↑ Regulation of genes
associated with placental
invasion and normal
implantation [20]

Stage 2 Vascular Endothelial
dysfunction

↑ Vascular structure, elasticity
and intima-media thickness

↓ Blood pressure (regulation
of renin-angiotension
system) [63]

↓Oxidative stress [24]

Proteinuria mediated
by renal vascular
endothelial growth
factor (VEGF)

↑ Vascular smooth muscle
cell proliferation by increasing
VEGF gene transcription [19]
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It is plausible that a deficiency in vitamin D and its
downstream products can play a role in the etiology of
PE. Human decidual cells at the fetal-maternal interface
synthesize active 1,25(OH)2D via 1alpha-hydroxlyase
(CYP72B1) [45–47]. Syncytial trophoblasts responsible
for invading the uterine wall for fetal implantation also
express active CYP27B1, in addition to vitamin D recep-
tor (VDR), vitamin D binding protein (VDBP), 25-
hydroxylase, and 24-hydroxlyase. Metabolic homeostasis
of these proteins has been shown to be significantly al-
tered in placental tissue from pregnancies with PE com-
pared to controls [48, 49]. In a study in which human
extravillous trophoblasts were treated in vitro with
1,25(OH)2D or 25(OH)D, there was a significant in-
crease in EVT invasion into cell cultures when com-
pared with untreated controls (p < 0.01) [47].
Additionally, vitamin D likely plays a key role in the

pathology of pre-eclamptic conditions by affecting blood
pressure through calcium homeostasis and/or modulat-
ing inflammation and immunity, which are examined
further in this review.

Role of vitamin D as an anti-inflammatory agent and
immune modulator
Vitamin D is thought to play a significant role in PE as an
immune modulator [20, 50]. It may help mount an
appropriate maternal immune response to the placenta
preventing the release of anti-angiogenic factors into the
bloodstream and modulating hypertension [50]. For ex-
ample, 1,25(OH)2D suppresses T cell receptor-induced T
cell proliferation, altering the cytokine expression profile
and diminishing the production of γ-interferon and
interleukin-2 [51]. 1,25(OH)2D down regulated pro-
inflammatory cytokines, tumor necrosis factor-α, and
interleukin-6 secretions (p < 0.05) in trophoblastic prepa-
rations from placentas of pre-eclamptic women collected
after delivery and cultured in the presence of calcitriol
compared to pre-eclamptic placentas cultured in the ab-
sence of 1,25(OH)2D [52]. In a study conducted on 100
normotensive and 100 pre-eclamptic women, both plasma
vitamin D deficiency (OR 4.2, 95% CI: 1.4–12.8, p = 0.04)
and interleukin-6 elevation (OR 4.4, 95% CI: 1.8–10.8,
p < 0.01) were independently associated with PE. However
there was no association between plasma vitamin D defi-
ciency and interleukin-6 elevation [53].
1,25(OH)2D is also suspected to be involved in the

regulation of IL-10, which has an inhibitory effect on
pro-inflammatory cytokines expression in the human
placenta. For example, 1,25(OH)2D may undertake the
anti-inflammatory effects of IL-10 by itself to inhibit ex-
pression of placental Th1-cytokines, which are increased
in PE. Barerra et al. showed that calcitriol down-
regulates IL-10 under normal, natural and experimental
inflammatory conditions in cultured human trophoblasts

[54]. Calcitriol has also been shown to decrease TNF-a
and IL-6 expression [52].
In addition to down-regulating the release of anti-

angiogenic factors, vitamin D has been shown to pro-
mote angiogenesis in endothelial progenitor cells, by
possibly increasing VEGF expression and pro-matrix
metalloproteinase (pro-MMP-2) activity [55]. MMPs are
implicated in the pathogenesis of vascular dysfunction
associated with PE [56, 57]. There is evidence that
1,25(OH)2D is synthesized in the vascular endothelial
cells [58] and induces vascular smooth muscle cell
(VSMC) proliferation [19]. Brodowski et al. showed that
supplemented 1,25(OH)2D on endothelial progenitor
cells reversed endothelial dysfunction seen in preeclamp-
sia [59]. Cardus et al. found that the effect of 1,25(OH)2D
on VSMC proliferation is mediated by increased VEGF
expression, while others find no relation between vitamin
D and pro-angiogenic factors [15]. There is currently not
enough data to strongly support the hypothesis that
impaired angiogenesis explains the association between
vitamin D deficiency and PE [60].

Role of vitamin D and blood pressure regulation
An inverse relationship between plasma 1,25(OH)2D and
plasma renin activity has been observed. The RAS plays
an important role in regulation of blood pressure. Dur-
ing normal pregnancy, RAS is stimulated so that there is
an increase in circulating levels of renin, angiotensino-
gen and angiotensin II [61]. In PE, circulating serum
angiotensin I, angiotensin II and aldosterone are lower
compared to normotensive women, while plasma active
renin levels and autoantibodies to the Angiotensin II
type 1 receptor, which stimulate receptor signaling to in-
crease systemic blood pressure, are higher [62–64].
These findings suggest a hemodynamic dysregulation in
PE involving the RAS. Vitamin D metabolites may
suppress renin gene transcription by a vitamin D recep-
tor (VDR) dependent pathway [65] or reduce autoanti-
bodies to the Angiotensin II type I receptor [64]. In one
study, oral vitamin D2 (VD2, 270 IU/day) and vitamin
D3 (VD3, 15 IU/day) lowered mean arterial blood pres-
sure (mm Hg) in pregnant rats infused with autoanti-
bodies to Angiotensin II type I receptor (VD2: 105 +/−2,
VD3: 109 +/− 2) versus rats that were infused with auto-
antibodies to Angiotensin II type I receptor but did not
receive oral VD2 or VD3 (121 +/− 4) [64]. Studies have
shown an inverse relationship between plasma
1,25(OH)2D levels and blood pressure [66], and plasma
1,25(OH)2D levels and essential hypertension [67]. In
vitro and in vivo studies have found receptors for calci-
triol in vascular smooth muscle [68] and heart muscle
[69]. A study of mice found receptors for calcitriol in re-
gions of the spinal cord and brain stem that are associ-
ated with blood pressure regulation [70].
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Role of vitamin D and vitamin D receptor (VDR) in
calcium homeostasis
The effects of calcium supplementation on pregnancy-
induced hypertensive disorders are well characterized. A
Cochrane meta-analysis of 13 randomized trials involving
15,730 women found that at least 1 g daily calcium supple-
mentation lowers the average risk of PE by approximately
half (relative risk [RR]: 0.45, 95% CI: 0.31–0.65) [71]. Low
calcium levels may lead to hypertension by stimulating ei-
ther the parathyroid hormone (PTH) or renin release,
resulting in vasoconstriction due to increased intracellular
calcium in vascular smooth muscle [72, 73]. Further cal-
cium absorption has been found to be positively associated
with serum 1,25(OH)2D concentrations in late pregnancy
[74, 75]. The high concentration of this metabolite inhibits
serum PTH synthesis and secretion, promoting the active
intestinal absorption of calcium.
It is also observed that calcium sufficiency may occur

independently of vitamin D sufficiency. In a study of fe-
male mice with a VDR null mutation and rickets, intes-
tinal absorption of calcium and whole-body mineral
content was significantly reduced compared to wild type
mice before pregnancy (0.381 ± 0.026 vs. 0.529 ± 0.023,
p < 0.001). During pregnancy, 1,25(OH)2D levels dou-
bled in both groups and VDR null mice gained 158% of
bone mineral content from baseline. By day 16.5 of preg-
nancy, intestinal calcium absorption in VDR null mice
was equivalent to non-pregnant wild type mice, but did
not reach levels of pregnant wild type mice [76].
Given the role of vitamin D in modulation of inflam-

mation and immune function, placental implantation,
angiogenesis and adverse birth outcomes such as low
birth weight and SGA, we examined the evidence that
vitamin D may play a role in the etiology and prevention
of PE in this manuscript.

Methods
Search strategy
The review protocol was designed a priori to answer the
question, “What are the effects of vitamin D concentra-
tions and supplementation during pregnancy on pre-
eclampsia in women?” We conducted a literature search
using MEDLINE electronic databases (via PubMed) to
identify published studies until February 2015. Search
terms: (preeclampsia OR pre-eclampsia) AND (vitamin
D OR hypovitaminosis D OR 1,25 dihydroxyvitamin D
OR (vitamin D AND (supplementation OR supplement))
OR dihydroxyvitamin D OR 25 hydroxyvitamin D). The
search was confined to peer-reviewed articles that were
published in English and contained an abstract. Refer-
ence lists of journal articles were also screened for
additional citations fitting our search criteria.
Articles were screened independently by two authors

(JP and PG) for relevance based on the title and abstract.

In the event that the number of RCTs returned by the
search was insufficient to conduct a meta-analysis of
PIH outcomes, authors planned to give a structured re-
view of both experimental and observational studies.
Considering retrospective and observational designs are
more prone to bias than experimental design, results of
clinical trials are presented separately and given more
weight in conclusions and interpretations. An individual
Risk of Bias assessment was not done given structured
review design. Selected journal articles were then re-
trieved, collected, indexed, and assessed for availability
of pregnancy-related data on PE and vitamin D by JP
and PG. The inclusion criteria for this review were avail-
ability of an abstract, clinical data on vitamin D concen-
trations and/or supplementation in association with PIH
outcomes in any global setting, and subjects that in-
cluded pregnant participants aged 18 years and above
without other medical co-morbidities. Studies were ex-
cluded if they were reviews, commentaries, editorials,
letters, non-human studies, didn’t include maternal vita-
min D measured during gestation as a primary or sec-
ondary variable, or did not include PE as a primary or
secondary outcome.

Data extraction
Selected studies were read and desired data were extracted
independently by two authors (JP and PG). A third author,
PD cross-checked data extraction to establish 100% agree-
ment between the two independent reviewers. The follow-
ing elements were extracted for each study: Author; year
of publication; country; study design; objective, methods,
exposure and outcome measures, sample size and key
findings. All authors reviewed the final summary of se-
lected studies and resolved any data discrepancies through
discussion. Principal summary measures included risk of
PIH outcomes and change in means of continuous PIH
indicators such as hypertension.

Results
The structured literature search resulted in 233 articles.
200 studies were excluded (60 reviews, 55 non-human
studies, 85 studies that didn’t meet the inclusion criteria
described above (Fig. 1). A total of 33 studies were ex-
tracted for further review. The reviewed studies included
3 cross-sectional studies, 20 case control studies, 2
retrospective cohort studies, 6 prospective cohort studies
and 2 randomized controlled trials.
A detailed summary of the search strategy and results

is presented in Fig. 1. The PRISMA Checklist for this re-
view can be found in Additional file 1.

Evidence to support the role of vitamin D in PE
Several cohort and case control studies measuring vitamin
D before the development of PE show an association
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between vitamin D and PE (Tables 2 and 3). In a large co-
hort study of 22 057 nulliparous women, no association
was found between vitamin D intake from diet alone and
the incidence of PE. However, when considering total vita-
min D intake (diet + supplement) of 15–20 μg/d com-
pared to less than 5 μg/d, there was an adjusted OR of
0.76 (95% CI 0.60–0.95) for diagnosis with PE [77]. There
was an adjusted OR of 0.72 (95% CI 0.58–0.92) in women
with vitamin D intake of 10–15 μg/d from supplementa-
tion of vitamin D alone when compared with no supple-
mentation. A limitation of this study was that it was
unable to adjust for intake of long chain n-3 fatty acids,
which correlated with vitamin D intake in a Norwegian
diet. Another prospective cohort study of nulliparous
women with singleton pregnancies found no significant
association between vitamin D deficiency in the 1st tri-
mester and risk for PE; however, at 24–26 weeks of gesta-
tion mean maternal 25(OH)D was significantly lower in
women who developed PE compared with those who did

not (p = 0.03) [60]. The adjusted OR was 3.24 for PE (95%
CI:1.37–7.69) in women with 25(OH)D levels less than
50 nmol/l. Strengths of this study were that vitamin D was
measured in both high and low risk women, representing
a realistic clinical scenario. A retrospective cohort study
showed that at entry to care (13.7 ± 5.7 weeks) there was
an increased risk of PE in women with 25(OH)D levels
less than 49.9 nmol/L and high parathyroid hormone (>
62 pg/mL) (aOR 2.86; 95% CI: 1.28–6.41) [78]. However,
there was no association in women with vitamin D insuffi-
ciency who did not also have high PTH.
A case-cohort study of women from 12 different

United States (US) sites whose vitamin D levels were
measured at ≤26 weeks of gestation showed that
25(OH)D levels greater than 50 nmol/L were associated
with a 40% reduction in risk for severe PE (0.65 [95% CI
0.43 to 0.98]), although there was no reduction in abso-
lute and relative risk for the milder clinical subtypes of
PE when 25(OH)D levels were greater than 50 nmol/L

Fig. 1 Search Flow. Detailed summary of the search process and protocol
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Table 2 Characteristics of included reports

Author, Location, Year Design Subjects Time of vitamin D measurement

Cross-Sectional Studies

August et al., USA, 1992 [88] Cross-sectional 11 – women with PE 3rd trimester

9 – chronic HTN

12 – normotensive pregnant
controls

Fernandez- Alonzo et al., Spain, 2012 [97] Cross-sectional 466 – pregnant women
(7 had PE)

1st trimester

Pena HR, et al. Brazil 2015 [83] Cross-sectional 179 – pregnant women recruited
before delivery

Near delivery

Case Control Studies

Abedi et al., Iran, 2014 [84] Case Control 59 – women with PE At delivery

59 – healthy pregnant controls

Achkar et al., Canada, 2015 [81] Case Control 169 – women with PE <20 weeks gestation

1975 – healthy pregnant controls

Anderson et al., USA, 2015 [111] Case control 11 – gestational HTN (10/11
with PE)

At delivery

37 – healthy pregnant controls

Baker et al., 2010 [80] Nested Case Control 51 – developed PE 2nd trimester

204 – healthy pregnant controls

Bodnar et al., USA, 2007 [18] Nested Case Control 55 – developed PE <22 weeks

219 – healthy pregnant controls

Bodnar et al., USA, 2014 [79] Case Control 717 – developed PE <26 weeks gestation

560 mild; 157 severe

2986 – healthy pregnantcontrols

Gidlof S, et al. Sweden, 2015 [112] Nested Case Control 39 – developed preeclampsia 12th week of gestation

120 – healthy pregnant controls

Halhali, Mexico, 2004 [95] Case Control 10 – developed PE, 40 – healthy
pregnant controls

Median 20.7 weeks gestation

Halhali et al., Mexico, 2007 [113] Case Control 26 – women with PE 26 – healthy
pregnant controls

3rd trimester

Lechtermann C, et al. Germany, 2–14 [85] Case Control 20 – women with PE At delivery

43 – healthy pregnant controls

Mohaghegh et al., Iran, 2015 [89] Case Control 41 – women with PE 50 – healthy
pregnant controls

Time of labor

Powe, USA, 2010 [86] Nested Case Control 39 – developed PE 131 – healthy
pregnant controls

1st trimester

Robinson et al., USA, 2010 [25] Case Control 50 – women with EOSPE 29 weeks gestation

100 – healthy pregnant controls

Schneuer et al., Australia, 2014 [114] Nested Case Control 5109 pregnant women (223 with
PE and 29/223 with EOSPE)

10–14 weeks gestation

Singla et al., India, 2015 [87] Case Control 74 – nulliparous women with PE >30 weeks gestation

100 – healthy nulliparous controls

Ullah et al., Bangladesh, 2013 [82] Case Control 33 – women with PE >20 weeks gestation

79 – normal pregnancy controls

Wetta et al., UK, 2013 [96] Case Control 100 -women with PE 15–21 weeks gestation

200 – healthy pregnant controls
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[79]. In a nested case control study of 274 nulliparous
pregnant women conducted previously by the same in-
vestigator, there was an OR of 5.0 for PE in early preg-
nancy (<22 weeks) when maternal 25(OH)D was less
than 37.5 nmol/l after controlling for education in
addition to the common confounders (95% CI: 1.7–
14.1). Interestingly, it was reported that newborns of
pre-eclamptic mothers were more than twice as likely to
have 25(OH)D levels less than 37.5 nmol/L (aOR = 2.2,
95% CI: 1.2–4.1) than newborns of healthy controls [18].
Another nested case control study of 225 women with
singleton pregnancies reported an OR of 5.41 for severe
PE among women with mid-gestation vitamin D defi-
ciency after controlling for multi-parity (95% CI: 2.02–
14.52) compared to women with vitamin D levels of at
least 75 nmol/L [80]. A larger Canadian case control
study reported a more than twice as likely odds for PE
in women with 25(OH)D less than 30 nmol/L compared
to women with at least 50 nmol/L (95% CI: 1.29–3.83).
There was a dose response relationship between mater-
nal 25(OH)D and risk of PE with a threshold of effect at
50 nmol/L [81].
Observational studies which measured vitamin D status

after the onset of PE [53, 82] near delivery [83] or at deliv-
ery [84, 85] suggest an inverse association with PE. A US

case control study reported a trend toward increased risk
of PE with 25(OH)D levels less than 15.0 nmol/L (OR = 2.5
[95% CI: 0.89-6.9]) when compared to the controls
(chosen randomly from among women who remained
normotensive throughout pregnancy, and did not have
gestational diabetes mellitus or gave birth to SGA infants).
However, this trend was not significant after adjusting for
BMI and other covariates. The investigators observed a
trend towards increased risk of PE at very low levels of
25(OH)D, suggesting that there may be an association at
the low extreme [86]. A recent North Indian case control
study of nulliparous women with PE and singleton
pregnancies reported serum vitamin D to be significantly
lower among PE cases vs. controls at the time of delivery
(24.2 +/− 12.4 nmol/L, 36.9 +/− 16.7 nmol/L, respectively;
p = 0.0001). Similar vitamin D levels were found in
women with mild and severe PE [87]. Two cross-sectional
studies report 25(OH)D and 1,25(OH)2D levels to be
lower in women with PE in the third trimester. Although
these studies find an inverse association between vitamin
D levels and PE, this association may be confounded by
the gestational age at serum collection. These studies are
also limited in that odds ratios are not reported [83, 88].
Correlation between low serum vitamin D in women

with established PE was also found in studies in which

Table 2 Characteristics of included reports (Continued)

Woodham et al., USA, 2011 [15] Nested Case Control 41 – women with severe PE 2nd Trimester

121 – uncomplicated birth controls

Xu et al., USA, 2014 [53] Case Control 100 – women with PE ≤ 24 weeks gestation

100 – uncomplicated birth controls

Yu et al., UK, 2012 [115] Case Control 60 –late PE 11–13 weeks gestation

30 –early PE

1000 – healthy controls

Retrospective Cohort Study

Alvarez-Fernandez et al., Spain, 2014 [90] Retrospective Cohort 257 – women attending obstetric
triage with suspicion of PE

1st Trimester and 20 weeks
of gestation

Scholl et al., USA, 2013 [78] Retrospective cohort 1141 – low income and minority
pregnant women

Entry to care (mean 13.7 ±
5.7 weeks)

Prospective Cohort Studies

Burris et al., USA, 2014 [94] Prospective Cohort 1591 – pregnant women 16.4–36.9 weeks gestation

Haugen et al., Norway, 2000 [77] Prospective Cohort 23,423 – pregnant women Vitamin D intake at weeks 15,
22, and 30 gestation

Shand et al., Canada, 2010 [37] Prospective cohort 221 – women at risk for PE 10–20 weeks gestation

Wei et al., Canda 2012 [60] Prospective Cohort 697 – pregnant women receiving
vitamin C and E supplementation
for the prevention of PE

12–18 weeks gestation, 24-26 weeks gestation

Wei, Canada, 2013 [14] Prospective Cohort 697 – pregnant women receiving
vitamin C and E supplementation
for the prevention of PE

24–26 weeks gestation

Zhou, China, 2014 [116] Prospective Cohort 74 – women with PE 16–20 weeks gestation
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Table 3 Association between vitamin D and pre-eclampsia (PE) in observational studies

Author, Location, Year Key Findings Results

August et al., USA, 1992 [88] ↓ 1,25OH2D in women with PE vs chronic HTN
and normal women

1,25 OH2D levels:
PE: 37.8 +/− 15 pg/ml chronic HTN: 75 +/− 15 pg/ml
(p < 0.05); normal women: 65 +/− 10 pg/ml (p < 0.05)

Fernandez- Alonzo et al., Spain,
2012 [97]

↔ PE and 25(OH)D levels 25(OH)D: <49.9 nmol/L: 28.6% (2/7 women); 49.9–
74.9 nmol/L: 42.9% (3/7 women); ≥ 74.9 nmol/L: 28.6%
(2/7 women) (p = 0.91)

Pena HR, et al. Brazil 2015 [83] ↑ frequency of 25(OH)D deficiency <20 ng/mL
in PE compared to healthy non obese controls

PE: 52.1% (25 women)
Non obese controls: 14.9%
(7 women)
(P = 0.0006)

Abedi et al., Iran, 2014 [84] ↑ vitamin D deficiency (<25.0 nmol/L) in PE cases OR = 24.04
95% CI: 2.14–285.4

Achkar et al., Canada, 2015 [81] ↑ PE in women with 25(OH)D < 30 nmol/L vs
women with at least 50 nmol/L

Adjusted OR: 2.23
95% CI: 1.29–3.83

Anderson et al., USA, 2015 [111] ↔ proportion of women with inadequate
<30 ng/mL 25(OH)D levels in HTN group vs
control group

73% (HTN/PE group) vs 69% (control group)
(p = 0.22)

Baker et al., 2010 [80] ↑ Severe PE in women with 25(OH)D < 50 nmol/L
compared to levels of at least 75 nmol/L

Adjusted OR: 5.41
95% CI: 2.02–14.52
(P = 0.001)

Bodnar et al., USA, 2007 [18] ↑ PE in women with 25(OH)D < 37.5 nmol/L
compared to levels of >37.5 nmol/L

Adjusted OR: 5.0
95% CI: 1.7–14.1

Bodnar et al., USA, 2014 [79] ↓ Severe PE in women with 25(OH)D ≥ 50 nmol/L
compared to levels <50 nmol/L

Adjusted RR: 0.65
95% CI: 0.43–0.98

Gidlof S, et al. Sweden,
2015 [112]

↔ 25(OH)D levels in PE and healthy controls; ↔
25(OH)D deficiency < 50 nmol/L in PE and controls

25(OH)D: PE: 52.2 ± 20.5 nmol/L; Controls: 48.6 ±
20.5 nmol/ L (p = 0.3); 25(OH)D deficiency: PE: 38%,
Controls: 51.7% (p = 0.1)

Halhali, Mexico, 2004 [95] ↔ 1,25(OH)2D in women before they developed PE 1,25(OH)2D: median (interquartile range)
PE: 31 pg/mL (26–34)
NT: 29 pg/mL (24–36)
(p = 0.44)

Halhali et al., Mexico, 2007 [113] ↓ 1,25(OH)2D levels in women with PE vs controls 25(OH)D: PE: 486.7 ± 167.2 nmol/L Controls: 731.1 ±
262.1 nmol/L (p < 0.05)

Lechtermann C, et al. Germany,
2–14 [85]

↓ 25(OH)D levels in PE in summer compared to
controls, 1,25(OH)2D ↓ only in winter

25(OH)D: PE:18.2 ± 17.1; Control: 49.2 ± 29.2 ng/mL,
(P < 0.001); 1,25(OH)2D: 291 ± 217 vs 612.3 ±
455 pmol/mL (P < 0.05)

Mohaghegh et al., Iran, 2015 [89] ↓ mean 25(OH)D in PE compared to pregnant
controls without PE

25(OH)D:
PE: 37.9 ± 33.9 nmol/L
Controls: 58.2 ± 38.2 nmol/L
(p = 0.001)

Powe, USA, 2010 [86] ↔ women with PE and controls with 25(OH)D
< 15.0 nmol/L

Adjusted OR: 1.35
95% CI: 0.40 to 4.50

Robinson et al., USA, 2010 [25] ↑ EOSPE in women with maternal 25(OH)D levels
<=19.6 nmol/L compared to levels >19.6 nmol/L

OR: 3.60
95% CI: 1.71–7.58
(p < 0.001)

Schneuer et al., Australia,
2014 [114]

↔ PE or EOSPE and low 25(OH)D (< 25 nmol/L) Adjusted OR- all PE: 0.46
95% CI: 0.19–1.10
Adjusted OR- EOSPE: 1.40
95% CI: 0.20 to 9.89

Singla et al., India, 2015 [87] ↓ mean serum vitamin D in women with PE vs
controls

PE: 24.2 ± 12.4 nmol/L Controls: 36.9 ± 16.7 nmol/L;
(p = 0.0001)

Ullah et al., Bangladesh, 2013 [82] ↑ PE per 25 nmol/L decrease in 25(OH)D level Adjusted OR: 1.66
95% CI: 1.05–3.02

Wetta et al., UK, 2013 [96] ↔ between PE and 25-OH D < 30 ng/mL and
<37.4 nmol/L

<30 ng/mL Adjusted OR: 1.1
95% CI: 0.6–2.0
Adjusted OR: 1.4 (<37.4 nmol/L)
95% CI: 0.7–3.0
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populations had specific risk factors for vitamin D defi-
ciency such as race or seasonal sun exposure. A nested
case control study showed an association between
EOSPE and vitamin D deficiency after the diagnosis of
EOSPE. Serum 25(OH)D was measured at the time of
diagnosis of EOSPE (~ 29 weeks of gestation). Controls
were matched to cases according to gestational age at
diagnosis with EOSPE and race. In patients with EOSPE
(n = 50), 25(OH)D was significantly lower compared to
the controls (n = 100) (44.9 vs. 79.9 nmol/L; p < 0.001).
There was an adjusted odds ratio (aOR) of 3.6 [(95% CI
1.71–7.58), p < 0.001] for EOSPE when maternal
25(OH)D was less than or equal to 19.6 nmol/L. There
was also a 12-fold increase in odds of diagnosis with
EOSPE in African American women, who had the lowest
mean 25(OH)D concentration among groups catego-
rized by race [25]. In an Iranian case control study
conducted in the fall and winter months, 25(OH)D
levels were measured at the time of delivery in 41 pre-
eclamptic women, 50 normal women and from their
umbilical cord samples immediately after birth. This
study found mean 25(OH)D levels to be significantly
lower in pre-eclamptic women versus normal women
(37.9 ± 33.9 nmol/L vs. 58.2 ± 38.2 nmol/L, respectively,
p = 0.001). There was a significant relationship between
vitamin D levels in pre-eclamptic women with levels in
their neonates (r = 0.901, p = 0.0001) [89].

Two studies of vitamin D in PE cases have evaluated the
possible relationship with angiogenic factors. In a small
nested case control study that matched cases of severe PE
by race and ethnicity to healthy controls, 25(OH)D levels
were found to be an independent predictor for severe PE.
In women with a 10 nmol/L increase in maternal
25(OH)D, there was a 38% reduction in the odds of severe
PE (aOR = 0.62, 95% CI: 0.51–0.76). Women with severe
PE had significantly lower levels of PIGF (p = 0.03) and
VEGF (p = 0.0007) and a higher sFLT-1/PlGF ratio
(p = 0.02) compared to controls. However, there were no
independent correlations reported between 25(OH)D
levels and these angiogenic markers. A limitation of this
study was heterogeneity of parity, a potentially confound-
ing variable, in pre-eclamptic cases (44% multiparous)
[15]. A retrospective fully blinded cohort study of 257
pregnant women in an obstetric emergency service in
Spain also found no association between SFlt-1/PIGF and
25(OH)D levels in women with PE. However, this study
found a greater risk of late-onset PE among women with
low 25(OH)D level (<50 nmol/L) (OR 4.6, 95% CI 1.4–15)
and increased risk of both early- and late-onset PE when
sFlt-1/PIGF ratios were above corresponding cut-points
(ORs 58 [95% CI 11–312] and 12 [95% CI 5.0–27], re-
spectively) [90].
There have been a small number of clinical trials

studying associations between maternal vitamin D and

Table 3 Association between vitamin D and pre-eclampsia (PE) in observational studies (Continued)

Woodham et al., USA, 2011 [15] ↓ Severe PE in women with 10 nmol/L increase in
maternal 25(OH)D level

Adjusted OR: 0.62
95% CI: 0.51–0.76

Xu et al., USA, 2014 [53] ↑ PE in women with vitamin D deficiency
(<37.5 nmol/L)

OR: 4.4
95% CI: 1.8–10.8

Yu et al., UK, 2012 [115] ↔ serum vitamin D raw values in PE and controls 25(OH)D levels: Controls: 46.8 nmol/L (27.8–70.0;)
Early PE: 32.2 nmol/L (22.7–50.4); Late PE: 39.2 nmol/L
(22.1–63.0) (P = 0.231)

Alvarez-Fernandez et al., Spain,
2014 [90]

↑ PE in women with 25(OH)D levels <50 nmol/L
compared to levels >50 nmol/L after 20 weeks of
gestation

OR: 4.6
95% CI:1.4–15
(P = 0.010)

Scholl et al., USA, 2013 [78] ↑ PE in women with 25(OH)D < 49.9 nmol/L and
hyperparathyroidism

Adjusted OR: 2.86
95% CI: 1.28–6.41

Burris et al., USA, 2014 [94] ↔ PE and 25(OH)D levels compared at each
25 nmol/L increase in 25 (OH)D

Adjusted OR: 1.14
95% CI: 0.77–1.67

Haugen et al., Norway, 2000 [77] ↓ PE in women taking 10–15 mcg/d as compared
with no supplements

Adjusted OR: 0.73
95% CI: 0.58–0.92

Shand et al., Canada, 2010 [37] ↔ PE and 25(OH)D levels <37.5 nmol/L Adjusted OR: 0.91
95% CI: 0.31–2.62

Wei et al., Canda 2012 [60] ↔ PE and 25(OH)D < 50 nmol/L Adjusted OR: 1.24
95% CI: 0.58–2.67
(p = 0.58)

Wei, Canada, 2013 [14] ↑ PE and women with ↓ PIGF levels and maternal
25(OH)D < 50 nmol/L

Adjusted OR: 2.97
95% CI: 1.23–7.20

Zhou, China, 2014 [116] ↔ PE and 25(OH)D levels 25(OH)D levels
Group A (n = 13): 41.4 ± 6.5 nmol/L; Group B (n = 36):
62.1 ± 7.0 nmol/L; group C (n = 25): 89.6 ± 13.0 nmol/L;
(p = 0.900)
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hypertensive disorders in pregnancy (Table 4). In a 50-
year-old controlled trial of 5644 women, Olsen & Secher
assessed the preventive effect of a multi-vitamin mineral
supplement, which included iron, calcium, iodine, man-
ganese, copper, vitamin B complex, vitamin C, and
260 mg/day of calcium and halibut liver oil containing
2500 IU/g vitamin D per day. Among women who were
given supplementation from week 20 of gestation on-
wards, there was a 31.5% reduction in the odds of PE
(p < 0.005). No significant effect was observed in the
odds of developing gestational hypertension [91]. Of
note, omega-3 fatty acids found along with vitamin D in
cod liver oil are likely to play an independent role in pre-
venting PE [92, 93].

Evidence that suggests no association between maternal
vitamin D deficiency and PE
While the preceding studies support a link between vita-
min D deficiency during pregnancy and risk of PE, some
studies present conflicting evidence (Tables 2 and 3). Most
of these studies were observational, and measured mater-
nal vitamin D concentration before the diagnosis of PE as
opposed to measuring at the time of diagnosis or delivery.
A 2010 prospective cohort study did not find an asso-

ciation between low serum 25(OH)D levels (<37.5 nmol/
L) in the first half of pregnancy and the development of
PE (aOR = 0.91 CI: 0.31–2.62) or gestational hyperten-
sion (aOR = 1.55 CI: 0.58–4.17) in women who were at
high-risk for PE after controlling for smoking and parity.
This study used high-risk women, both nulliparous and
multiparous, who did not develop PE as controls [37].
Another cohort study in 2014 found no association be-
tween low plasma 25(OH)D concentration (<25 nmol/L)
and PE in women at 16.4–36.9 weeks of gestation
(aOR = 0.60 95% CI:0.14–2.56). Rather, investigators
found for every 25 nmol/L increase in 25(OH)D, the
aOR for PE was 1.14 (95% CI, 0.77–1.67) [94].
In 2012, Wei et al. retrospectively analyzed vitamin D

status and the risk of PE in 697 nulliparous women with
singleton pregnancies in a randomized, placebo-
controlled trial of Vitamin C and E supplementation for
the prevention of PE. After controlling for smoking, the
study showed that in the first trimester (mean 11 weeks),
vitamin D deficiency was not significantly associated

with an increased risk of PE (aOR = 1.24 95% CI: 0.58–
2.67; p = 0.58) [60]. In a 2013 follow-up study of women
from the same cohort, Wei et al. found that PIGF level
was inversely associated with PE (p < 0.05) [13]. In a
multivariate logistic model to control for PIGF there was
an aOR of 2.97 (95% CI: 1.23–7.20) for PE among
women with 25(OH)D levels less than 50 nmol/l. This
was only an 8.3% reduction in the risk for PE compared
to when PIGF levels were not considered. There was no
statistical evidence of interaction between PIGF and vita-
min D (p = 0.54) [14].
In 2004, a longitudinal case control study did not find

altered circulating 1,25(OH)2D during mid-pregnancy in
those who developed PE compared to healthy, normo-
tensive women [95]. In 2010, Powe et al. suggested that
earlier studies have measured total 25(OH)D as a vita-
min D/Vitamin D Binding Protein (VDP) complex, and
not the free vitamin. Therefore, Powe et al. conducted a
study measuring levels of both total and free 25(OH)D
in the first trimester of PE and normotensive pregnan-
cies. They found total and free 25(OH)D levels were
similar in cases and controls (68.4 ± 4.7 nmol/L versus
71.9 ± 2.0 nmol/L, p = 0.435). There was no association
between 25(OH)D levels <15.0 nmol/L and risk of PE
(aOR = 1.35 95% CI: 0.40 to 4.50) [86]. In a nested case
control study of women with singleton pregnancies, 100
pregnant women with PE were matched to 200 healthy
controls who delivered at 39–40 weeks. 25(OH)D levels
were assessed from stored blood samples drawn between
15 and 21 weeks gestation for multiple marker screen-
ing. After adjusting for covariates, vitamin D insuffi-
ciency and deficiency were not significantly associated
with PE (aOR = 1.1 95% CI: 0.6–2.0; aOR = 1.4 95% CI:
0.7–3.0, respectively) [96].
In a cross-sectional study of 466 pregnant women at-

tending an outpatient clinic in Spain, serum 25(OH)D
was measured between 11 and 14 weeks of pregnancy.
No associations were found between maternal 25(OH)D
less than 49.9 nmol/L or 25(OH)D between 49.9 and
74.9 nmol/L in cases of PE and gestational hypertension
identified during follow-up [97].
In 2000, a double-blind, randomized, placebo-

controlled trial evaluated the effects of 2.7 g fish oil sup-
plementation given prophylactically from 20 weeks until

Table 4 Association of vitamin D supplementation and pregnancy-induced hypertension (PIH) outcomes in clinical trials

Author, Location,
Year

Study Design Subjects Intervention Key Findings Results

Olsen and Secher,
Denmark, 1990 [91]

Randomized controlled
clinical trial

5644 pregnant
women

2500 IU vitamin D supplement
versus no supplement at week
20 of pregnancy

↓ PE 31.5% reduction in the
odds (p < 0.005)

Olsen et al., Europe,
2000 [98]

Randomized placebo
controlled clinical trial

386 women who
previously experienced
PIH

2.7 g n-3 fatty acids/day given from
33 weeks until delivery vs olive oil
placebo

↔ PIH
recurrence risk

OR = 0.98
95% CI: 0.63–1.53
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delivery in women who had previously experienced Preg-
nancy Induced Hypertension (PIH) (n = 386). Supplemen-
tation with fish oil did not affect the recurrence risk for
PIH in the prophylactic trial (OR = 0.98 CI: 0.63–1.53).
Vitamin D concentrations were not reported [98].

Discussion
Observational studies evaluating the association between
vitamin D and PE have shown inconsistent results and
must be interpreted cautiously. This may be a result of
issues with study design and methodology, including
lack of adjustment of key confounding variables and
methods of measuring vitamin D levels.
Study findings must be interpreted in the context of

study design. Most previous studies were based on
cohort studies that collected clinical data and stored blood
in repositories at regular intervals. Many researchers uti-
lized a case-control study design within these cohorts, or
performed cross-sectional studies. Residual confounding
and differences between groups may explain the associ-
ation between vitamin D deficiency and PE.
Most studies controlled for maternal age, body mass

index, season, and gestational trimester at sample collec-
tion. In addition, some studies also controlled for smoking
[14, 37]. Smoking has consistently been shown to reduce
the risk of PE and gestational hypertension [99, 100]. This
could be due to an association between smoking and
lower circulating concentrations of anti-angiogenic pro-
teins and higher concentration of pro-angiogenic proteins
[101]. Smoking has also been linked to lower vitamin D
concentrations [37]. Smoking may be an important con-
founder and should be considered in studies linking vita-
min D to PE. The pathophysiology of PE may also vary by
parity [102]. Wetta et al., [96], Shand et al., [37] and Bod-
nar et al., [18] have controlled for parity in their studies.
Individuals receive the majority of their vitamin D from

sunlight, linking seasonality to the development of PE.
Seasonality is also considered a confounder, particularly in
studies related to causal effects of vitamin D on PE. Sea-
sonal and latitudinal variation has an effect on vitamin D3

production in the skin [103]. According to a study by
Magnus and Eskild [104], in Norway, mothers of children
born in August had the lowest risk of PE. Risk in this
study was highest in the winter months (for December,
aOR: 1.26, 95% CI: 1.20–1.31) [104]. Similarly, Bodnar et
al. [18] found that the incidence PE among white women
in the United States was highest in the winter, when pro-
duction of cutaneous vitamin D3 is limited in temperate
zones and serum 25(OH)D are at their lowest levels. How-
ever, despite this known association, not all studies look-
ing at PE as an outcome report information on seasonal,
latitudinal variation, sun exposure and lifestyle difference-
s—all of which may differentially expose individuals to
sunlight in the sample population.

Maternal dietary intake of vitamin D from foods or
supplements may also vary. Oily fish and cod liver oil
(n-3 fatty acids) are a rich source of vitamin D. In the
Norwegian diet, intake of vitamin D is correlated with
intake of long chain n-3 fatty acids [77]. The use of cod
liver oil as a food supplement in some diets presents a
challenge in determining an isolated effect of vitamin D
supplementation. This was noted by Haugen et al. [77],
who were unable to control for the intake of fatty acids
in their analysis. In their secondary analysis with intake
of long chain n-3 fatty acids and vitamin D, a weaker as-
sociation with the incidence of PE was observed [77].
Although randomized clinical trials (RCTs) offer the op-

portunity to design studies with power to provide defini-
tive evidence, few have been performed in this field. RCTs
reviewed in this article were not able to study vitamin D
supplementation independently of calcium and/or other
multivitamin/micronutrient supplementation. In a
Cochrane review of Vitamin D supplementation for
women during pregnancy, women who received vitamin
D and calcium supplementation had a lower risk of pre-
eclampsia than those not receiving any intervention (RR
0.51; 95% CI 0.32 to 0.80; three trials, 1114 women, mod-
erate quality), yet an increased risk for preterm birth
(RR = 1.57; 95% CI: 1.02–2.43; three studies, 798 women,
moderate quality). In trials with an intervention of vitamin
D without calcium, women who received vitamin D sup-
plements had a statistically nonsignificant lower risk of
pre-eclampsia than those receiving no intervention or pla-
cebo (8.9% versus 15.5%; risk ratio (RR) 0.52; 95% CI 0.25
to 1.05; low quality) with no adverse outcomes [105]. The
role of fish oils in PE remains uncertain and similarly
poses a challenge in determining an isolated effect of vita-
min D supplementation, unless studies are designed such
that they consider this. In the RCTs reviewed, no conclu-
sions can be made regarding the independent effects of
vitamin D in preventing or treating PE.
Studies must also be interpreted according to how vita-

min D exposure is defined and measured. “The free hor-
mone hypothesis” postulates that hormones that are free
from their binding proteins may enter cells to perform
biological functions [106]. During pregnancy, VDBP in-
creases by 2-fold [86]. Future investigations should con-
sider concurrently measuring VDBP levels and calculated
free vitamin D levels when considering the role of vitamin
D in PE [18]. Additionally, investigators should attempt to
assess preconception and early pregnancy dietary intake,
sun exposure or baseline vitamin D status.
Studies that find a role early in pregnancy, before the

clinical onset of PE, suggest that vitamin D may play a
role in the modulation of a pro-inflammatory response
or regulation of angiogenic factors. It is possible that
biomarkers for PE, such as angiogenic factors VEGF and
PIGF, may serve as mediators in the pathway linking
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vitamin D metabolites to PE. Despite evidence that low
vitamin D levels increase risk for PE early in pregnancy,
very few studies have tried to relate this effect with the
regulation of angiogenic or anti-angiogenic factors. Al-
though current evidence supports an association be-
tween angiogenic factors and PE, these studies have not
found an association between vitamin D levels and an-
giogenic factors [14, 15]. Studies with longitudinal study
design carefully controlling for temporal sequences of
changes in vitamin D levels in women with PE are
needed to identify the role of vitamin D and any poten-
tial mediators in the pathway linking vitamin D to PE.
There are important clinical considerations that necessi-

tate the need for further research on this topic. There is
limited data on the most efficacious dose of vitamin D to
prevent pre-eclampsia while avoiding toxicity. The doses
of vitamin D supplements in the studies reviewed ranged
from 400 to 2500 IU daily [91]. These studies reported no
major adverse effects of supplementation at these doses
[107–109]. Recently, participants in the Vitamin D for
Antenatal Asthma (VDAART) randomized double-blind
placebo controlled trial took a daily dose of 4000 IU vita-
min D supplementation plus a multivitamin with 400 IU
vitamin D or placebo (placebo pill plus a multi-vitamin
with 400 IU vitamin D daily) to assess the effect of vitamin
D supplementation on the frequency of PE among preg-
nant women with a high risk for atopic disease [110].
The investigation by Haugen et al. suggests a potential

for a role for the frequency and timing of vitamin D sup-
plementation and risk for PE, given that the total intake
greater than 800 IU/day did not reduce risk. However,
Haugen et al. found that women who took supplements
at all three points of pregnancy (before pregnancy, early
pregnancy and in late pregnancy) were at a lower risk
for PE compared with women who took supplements in
only early or late pregnancy or did not take any supple-
ments [77]. In the VDAART, frequency of PE among
pregnant women with a high risk for atopic disease was
not lower when a supplementation of 4400 IU vitamin D
daily was given in early pregnancy (10–18 weeks). How-
ever, women with a serum vitamin D status of
≥75 nmol/L that was maintained from enrollment
through late pregnancy had a significantly lower risk of
PE versus women who had <75 nmol/L (P = 0.04). But
this vitamin D level was maintained in only 74% of preg-
nancies in the supplementation group by weeks 32 to 38
of gestation, suggesting that supplementation at even
earlier time-points or before pregnancy may be neces-
sary to maintain sufficient vitamin D levels that are pro-
tective against PE. This was further supported by
peripheral blood gene expression patterns relating to im-
mune and inflammatory processes identified as early as
the 10th week of pregnancy that were unique in women
who went on to develop PE [110].

Additionally, early-onset and late-onset PE have unique
clinical features, biomarkers and prognoses that may guide
clinical dose recommendations. Studies reported varying
degrees of risk for clinical subtypes of PE among women
with low vitamin D levels [79, 90]. In order to guide the
clinical recommendations, investigators must use a stand-
ard set of definitions for the disease and clinical subtypes
in future research. In the current literature, the definition
of PE was not consistent across studies, limiting our ability
to draw generalizations. For example, clinical cutoffs for
proteinuria varied slightly among studies [86, 87]. Replica-
tion of findings using a uniform set of definitions for PE
and clinical subtypes can inform the use of vitamin D sup-
plementation for the prevention of PE.
Robinson et al. [25] suggest that vitamin D deficiency

may be a factor in the disproportionate incidence of ad-
verse pregnancy outcomes in African American women
since this group had the lowest vitamin D levels among
the populations they studied. While some studies have
been able to capture an adequate representation of Afri-
can American women [96], there is a need for further re-
search on populations with very low vitamin D levels to
understand this observation and identify factors that pre-
dispose high-risk groups to PE and its more threatening
clinical subtypes.
Despite the clear association of serum deficiency with

PE, a better understanding of the variable impact of sup-
plementation is needed to identify potential of genetic
and environmental interactions, as well as pre-
conception data to identify the critical time window for
therapeutic potential of vitamin D, if any.

Conclusion
There is consistent evidence of an association between
low vitamin D concentrations and adverse PIH out-
comes. Results from vitamin D supplementation during
pregnancy did not show a statistically significant inde-
pendent effect of vitamin D on the risk of PE and PIH.
At this time, our understanding of an ideal supple-

mentation dose of vitamin D to reduce PIH remains in-
complete. Future studies should include follow up from
the pre-conception period until delivery to elucidate the
mechanisms and interactions which drive vitamin D sta-
tus, response, and onset of PE to inform population-
specific dose recommendations.
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