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Abstract 

Background  As disease-modifying therapies (DMTs) for Alzheimer’s disease (AD) are becoming a reality, there 
is an urgent need to select cost-effective tools that can accurately identify patients in the earliest stages of the dis-
ease. Subjective Cognitive Decline (SCD) is a condition in which individuals complain of cognitive decline with normal 
performances on neuropsychological evaluation. Many studies demonstrated a higher prevalence of Alzheimer’s 
pathology in patients diagnosed with SCD as compared to the general population. Consequently, SCD was suggested 
as an early symptomatic phase of AD. We will describe the study protocol of a prospective cohort study (PREVIEW) 
that aim to identify features derived from easily accessible, cost-effective and non-invasive assessment to accurately 
detect SCD patients who will progress to AD dementia.

Methods  We will include patients who self-referred to our memory clinic and are diagnosed with SCD. Participants 
will undergo: clinical, neurologic and neuropsychological examination, estimation of cognitive reserve and depres-
sion, evaluation of personality traits, APOE and BDNF genotyping, electroencephalography and event-related potential 
recording, lumbar puncture for measurement of Aβ42, t-tau, and p-tau concentration and Aβ42/Aβ40 ratio. Recruited 
patients will have follow-up neuropsychological examinations every two years. Collected data will be used to train 
a machine learning algorithm to define the risk of being carriers of AD and progress to dementia in patients with SCD.

Discussion  This is the first study to investigate the application of machine learning to predict AD in patients 
with SCD. Since all the features we will consider can be derived from non-invasive and easily accessible assessments, 
our expected results may provide evidence for defining cost-effective and globally scalable tools to estimate the risk 
of AD and address the needs of patients with memory complaints. In the era of DMTs, this will have crucial implica-
tions for the early identification of patients suitable for treatment in the initial stages of AD.

Trial registration number (TRN)  NCT05569083.
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Background
Research and clinical practice on Alzheimer’s disease 
(AD) are at a turning point. The AD drug development 
pipeline is leading to new therapies [1], with aducanumab 
and lecanemab being the first disease-modifying thera-
pies (DMTs) approved for AD [2, 3]. It is widely accepted 
that DMTs should be administered in the early stages of 
the disease to halt the pathological process before neu-
rodegeneration begins [4]. Consequently, international 
research is now focusing on the prodromal and preclini-
cal phases of AD. Subjective cognitive decline (SCD) 
refers to a self-experienced persistent decline in cognitive 
capacity compared to the previously normal state. Dur-
ing this decline, individuals exhibit normal age-, sex-, and 
education-adjusted performance on standardized cogni-
tive tests [5].

SCD has been associated with neuroradiological 
features suggestive of AD, amyloid deposition [6, 7], 
and a higher risk of progression to Mild Cognitive 
Impairment (MCI) or dementia compared to individ-
uals without SCD [8]. Recognizing these associations, 
the National Institute of Aging-Alzheimer’s Associa-
tion (NIA-AA) has included SCD as the first manifes-
tation of symptomatic AD stages, preceding MCI [9]. 
Consequently, individuals with SCD may represent 
a target population for DMT to preserve cognitive 
function and psychological well-being [10].

However, SCD encompasses a heterogeneous group 
with various possible trajectories [11] and numerous 
potential underlying causes, including normal ageing, 
personality traits, psychiatric, neurological or medical 
disorders, substance use disorder, and medications [12]. 
Therefore, it is crucial to identify features and tools that 
accurately detect prodromal AD among patients with 
SCD.

In recent years, the Regional Reference Centre for Alz-
heimer’s Disease and Cognitive Disorders of Careggi 
Hospital in Florence, Italy, has analysed a large dataset 
of neuropsychological, personality, and lifestyle data col-
lected over approximately 25  years from patients with 
SCD. This analysis identified demographic [13, 14], cog-
nitive [15, 16], personality [15], and genetic [15] and 
genetic [13, 17–23] features that increase the risk of pro-
gression from SCD to MCI or AD.

This paper describes the protocol of the PREVIEW 
(PRedicting the EVolution of SubjectIvE Cognitive 
Decline to Alzheimer’s Disease With machine learn-
ing) study, which will prospectively investigate baseline 
predictors and biomarkers of Alzheimer’s pathology 
and progression to MCI and dementia in a large cohort 
of patients with SCD. In this study, we will integrate 
our previous findings with data from non-invasive 

techniques, such as electroencephalography (EEG) and 
event-related potentials (ERP) recording. These tech-
niques reliably measure neural circuits associated with 
cognitive processes and may provide sensitive metrics 
for early diagnosis of cognitive impairment [24]. Addi-
tionally, we will employ machine learning approaches, 
an emerging and promising tool that has demonstrated 
great potential in diagnosing and classifying neurodegen-
erative diseases and other medical conditions [25–27].

Specifically, our aims are as follows:

i)	 Integrate a multimodal set of data from SCD patients, 
including clinical data, neuropsychological assess-
ments, personality traits, cognitive reserve, genetic 
factors, and features from EEG and ERP recordings.

ii)	 Train and test a machine learning model based on 
these features to predict biological AD pathology 
(defined according to CSF biomarkers) and conver-
sion from SCD to MCI and AD dementia through 
machine learning tools.

iii)	Define a management protocol for SCD to be applied 
in memory clinic settings.

The PREVIEW study was registered on ClinicalTrials.
gov (registration number: NCT05569083).

Methods and analysis
Study design and participants
This is a longitudinal observational cohort study. We 
will include consecutive patients who self-referred to the 
Centre for AD and Adult Cognitive Disorders of Careggi 
Hospital in Florence and are classified as SCD based on 
SCD-I criteria [5].

We will recruit patients who meet the following 
criteria:

	 I	 age between 45 and 90 years;
	 II	 complaining of cognitive decline with a duration 

of ≥ 6 months;
	III	 Mini Mental State Examination (MMSE) score 

greater than 24, corrected for age and education;
	IV	 normal functioning on the Activities of Daily Liv-

ing (ADL) and the Instrumental Activities of Daily 
Living (IADL) scales [28];

	 V	 unsatisfied criteria for MCI [29] and dementia [30];

Exclusion criteria are history of head injury, current 
neurological and/or systemic disease, symptoms of psy-
chosis, major depression, or substance use disorder (as 
defined by the Diagnostic and Statistical Manual of Men-
tal Disorders, Fifth Edition [DSM-5] [30]).
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The evaluation of exclusion criteria will be conducted 
through a thorough neurological examination of the 
patients. The presence of exclusion criteria will be 
assessed by two independent neurologists. In the event 
of a disagreement, a third neurologist will be consulted 
to reach a consensus.

All recruited patients will undergo the following 
assessments at baseline (T0):

	 I	 comprehensive evaluation of familial and clinical 
history;

	 II	 extensive neuropsychological assessment, includ-
ing estimation of premorbid intelligence, evalu-
ation of depression, personality assessment, and 
assessment of leisure activities;

	III	 blood collection for measurement of vitamin B12, 
folic acid, thyroid hormones, as well as APOE and 
BDNF genotype analysis;

	IV	 EEG and ERP recording.

Patients who provide additional informed consent for 
lumbar puncture will undergo CSF collection to measure 
Aβ42, Aβ42/Aβ40 ratio, total tau (t-tau), and phosphoryl-
ated tau (p-tau).

Patients will undergo neuropsychological evaluations 
every two years until progression to AD or other demen-
tias. Based on the results of previous meta-analysis [8], 
we estimate that a period of six years will be required to 
reach the desired sample size (see Sect. 2.2). Progression 
to MCI and AD dementia will be determined based on 
the criteria established by the NIA-AA [29, 31]. Patients 
who progress to dementia will be referred to our centre 
for diagnostic and therapeutic assessments.

A summary of the study design is shown in Fig. 1.
For the purpose of cross-sectional comparison with 

the SCD group at baseline, two samples consisting of 

Fig. 1  Flowchart summarizing the design of the study. Abbreviations: CSF = cerebrospinal fluid; EEG = electroencephalogram; ERP = event-related 
potentials; AD = Alzheimer’s disease; BDNF = brain-derived neurotrophic factor; APOE = apolipoprotein
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age-matched healthy controls (without cognitive concerns) 
and MCI patients will undergo EEG and ERP recording.

Sample size calculation
We estimated the sample size needed for this study using 
the statistical power of a hypothesis test using the Python 
module statsmodels [32]. We considered the following 
parameters:

•	 Level of significance (α) = 0.05
•	 Statistical power (1-β) = 0.8
•	 Effect size (Cohen’s d) = 0.6

The required number of patients was 45 per group. 
Therefore, considering that we aim to compare patients 
who will show a progression to objective cognitive 
decline and patients who will not, the total estimated 
sample size should be 90 individuals.

With an expected conservative drop-out rate of 10%, 
the number of participants to be included was estimated 
to be 99 patients.

Neuropsychological evaluation, assessment of depression 
and estimation of premorbid intelligence
Extensive neuropsychological examination includes: 
global measurements (MMSE) [33], tasks exploring 

verbal and spatial short-term and long-term mem-
ory (Digit and Visuo-spatial Span forward and back-
ward [34], Rey Auditory Verbal Learning Test [35], 
Short Story Immediate and Delayed Recall [36], Rey-
Osterrieth complex figure recall [37]), attention (Trail 
Making Test A [38], attentional matrices [39], Mul-
tiple Features Targets Cancellation [40]), language 
(Category Fluency Task [41], Phonemic Fluency Task 
[35] and Italian language battery: Screening for Apha-
sia NeuroDegeneration [42]), constructional praxis 
(Copying drawings [35], Rey-Osterrieth complex fig-
ure copy [37], Clock test [43]) and executive function 
(Trail Making Test B [38], Stroop Test [44], Frontal 
Assessment Battery [45]). The subjective perception 
of memory impairment will be investigated using the 
Memory Assessment Clinics-Questionnaire (MAC-Q) 
[46]. Premorbid intelligence will be estimated using 
the Short intelligence test (TIB) [47], that has been 
constructed as the Italian equivalent of the National 
Adult Reading Test [48]. The presence and severity 
of depressive symptoms will be evaluated by means 
of the 22-item Hamilton Depression Rating Scale 
(HDRS) [49]. Katz Index of Independence in Activi-
ties of Daily Living (ADL) [50] scale will be used to 
assess functional capacities at baseline and at follow-
up (Table 1).

Table 1  Explored cognitive domains and respective neuropsychological tests

Cognitive domains Neuropsychological tests References

Global cognition MiniMental-State Examination (MMSE) (Magni et al. 1996) [33]

Verbal short-term memory Digit span forward and backward (Monaco et al. 2013) [34]

Verbal long-term memory Rey Auditory Verbal Learning Test (RAVLT) (Carlesimo, Caltagirone, e Gainotti 1996) [35]

Short story recall (De Renzi, Faglioni, e Ruggerini 1977) [36]

Spatial short-term memory Visuo-spatial span forward and backward (Monaco et al. 2013) [34]

Spatial long-term memory Rey-Osterrieth complex figure recall (P. Caffarra et al. 2002) [37]

Attention Attentional matrices (Della Sala et al. 1992) [39]

Trail Making Test part A (Giovagnoli et al. 1996) [38]

Multiple Features Targets Cancellation (Marra et al. 2013) [40]

Language Category fluency task (Novelli et al. 1970) [41]

Phonemic fluency task (Carlesimo, Caltagirone, e Gainotti 1996) [35]

Screening for Aphasia in NeuroDegeneration (SAND) (Catricalà et al. 2017) [42]

Constructional praxis Copying drawings (Carlesimo, Caltagirone, e Gainotti 1996) [35]

Rey-Osterrieth complex figure copy (P. Caffarra et al. 2002) [37]

Clock test (Shulman et al. 1993) [43]

Executive function Trail Making Test part B (Giovagnoli et al. 1996) [38]

Stroop Test (Paolo Caffarra et al. 2002) [37, 44]

Frontal Assessment Battery (Appollonio et al. 2005) [45]

Perception of memory impairment Memory Assessment Clinics-Questionnaire (MAC-Q) (Crook, Feher, e Larrabee 1992) [46]

Premorbid intelligence Short intelligence test (TIB) (Colombo et al. 2000) [47]

Depression Hamilton Depression Rating Scale (Hamilton 1960) [49]

Functional capacities Katz Index of Independence in Activities of Daily Living (Katz et al. 1963) [50]
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Personality traits and leisure activities
We will use the Big Five Factors Questionnaire (BFFQ) 
[51] to assess personality traits. Participants will be 
asked to fill out a questionnaire that measures the five 
factors of: 1) emotional stability, 2) energy, 3) conscien-
tiousness, 4) agreeableness, and 5) openness to culture 
and experience. The inventory follows a widely accepted 
five-traits personality model [51, 52]. For the 24 items of 
each factor, subjects will rate their level of agreement on 
a five-point scale ranging from strongly agree to strongly 
disagree. Item scores will be computed for each factor to 
yield a summary measure of the trait with higher values 
representing a greater degree of the explored dimension.

At baseline, subjects will be interviewed regarding 
participation, when they were 30–40  years old, in nine 
Intellectual Activities, seven Social Activities and seven 
Physical Activities (modified from Yarnold PR et al. [53]). 
The frequency of participation will be reported for each 
activity on a Likert scale ranging from 0 to 5, where 0 
refers to never, 1 to occasionally, 2 to monthly, 3 to once a 
week, 4 to several days per week and 5 to daily.

EEG and ERP recording
Resting-state EEG data will be collected at the Neuro-
physiological Laboratory of IRCCS Don Gnocchi (Flor-
ence, Italy) using the 64-channel Galileo-NT system 
(E.B. Neuro S.p.A.). The EEG will be recorded continu-
ously from 64 electrodes using an EEG Prewired Head-
caps. Electrodes were positioned according to the 10–10 
international system (AF7, AF3, Fp1, Fp2, Af4, Af8, F7, 
F5, F3, F1, F2, F4, F6, F8, FT7, FC5, FC3, FC1,FC2, FC4, 
FC6, FT8, T3, C5, C3, C1, C2, C4, C6, T4 TP7, CP5, CP3, 
CP1, CP2, CP4, CP6, TP8, T5, P5, P3, P1, P2, P4, P6, T6, 
Fpz, PO7, PO3, O1, O2, PO4, PO8, Oz, AFz, Fz, FCz, Cz, 
CPz, Pz, and POz). The ground electrode will be placed 
in front of Fz. Horizontal eye movements will be detected 
by electrooculogram (EOG). Data will be digitized at 
a sampling rate of 512  Hz and analogue–digital preci-
sion will be 16 bits. The recording will be referenced to 
the common average of all electrodes, excluding Fp1 and 
Fp2. Re-referencing will be done prior to the EEG artifact 
detection and analysis. Electrode–skin impedance will 
be set below 5 kΩs. Subjects will be seated in a reclined 
chair in a comfortable position. Resting EEG recording 
begins with a 10-min eyes-closed registration followed by 
an alternance of 3 min eyes-open and 3 min eyes closed, 
repeated twice. Only the eyes-closed portions of the sig-
nal will be used for subsequent analyses.

ERP acquisition will be performed with the same EEG 
system used for EEG data acquisition. The participants 
will be administered an ERP test battery with concur-
rently recorded EEG consisting of a 3-choice vigilance 
task (3CVT) and standard image recognition task (SIR).

In order to remove electrophysiological and non-elec-
trophysiological artifacts from the raw signals, we will 
apply a custom preprocessing pipeline written in MAT-
LAB with the use of the EEGLAB toolbox functions [54]. 
The pipeline consists of two main steps: the PREP pipe-
line [55], followed by independent component analysis 
(ICA) to remove artefactual components [56]. Moreover, 
to generate the ERP epochs, time windows from -300 ms 
to + 1000  ms will be created for each EEG recording 
channel, with the stimulus presentation centred at 0 ms 
and the average of the trials from each epoch will be 
calculated.

Blood sample collection and analysis of APOE and BDNF 
genes
Blood samples will be collected by venipuncture into 
standard polypropylene EDTA test tubes (Sarstedt, 
Nümbrecht, Germany) at the Neurology Unit of Careggi 
University Hospital. They will be centrifuged within two 
hours at 1300 rcf at room temperature for 10  min, and 
plasma will be isolated and stored at -80  °C until tested 
at the Laboratory of Neurogenetics at Careggi University 
Hospital.
APOE genotypes will be investigated by HRMA. The 

samples with known APOE genotypes, which had been 
validated by DNA sequencing, will be used as standard 
references.

Analysis of BDNF rs6265 polymorphism will be per-
formed using HRMA and the genotypes will be identified 
through Sanger sequencing (SeqStudio Genetic Analyzer, 
ThermoFisher).

CSF collection and AD biomarker measurement
CSF samples will be collected at 8:00 a.m. by lumbar 
puncture at the Neurology Unit of Careggi University 
Hospital. Samples will be immediately centrifuged and 
stored at -80 °C until performing the analysis at the Lab-
oratory of Neurogenetics of Careggi University Hospi-
tal. Aβ42, Aβ40, t-tau, and p-tau will be measured using 
a chemiluminescent enzyme immunoassay (CLEIA) 
analyser LUMIPULSE G600 (Fujirebio, Tokyo, Japan). 
Cut-off values for CSF biomarkers will be determined 
following Fujirebio guidelines (diagnostic sensitivity and 
specificity using clinical diagnosis and the follow-up 
golden standard as of November 19th, 2018).

Data collection and management
Data collection will be carried out anonymously on RED-
Cap, an online-based software for the design of data-
bases. Data will be collected in a pseudo-anonymized 
way, attributing a record ID to each patient on the elec-
tronic database and saving the correspondence between 
names and identification codes on a separate document.



Page 6 of 13Mazzeo et al. BMC Neurology          (2023) 23:300 

EEG pre‑processing
The EEG preprocessing will be conducted following the 
methodology outlined in Lassi et  al., 2023 [57]. Firstly, 
the PREP pipeline will be applied, which involves high-
pass filtering the signals at 1  Hz, removing line noise 
using the CleanLine routine, and identifying noisy 
channels through a combination of methods. Follow-
ing the interpolation of noisy channels, the data will be 
re-referenced to the median. Subsequently, Independent 
Component Analysis (ICA) [58] will be performed on the 
re-referenced signals to eliminate artifacts while preserv-
ing neural components. To classify the components as 
neural or artefactual, a semi-automated process will be 
employed, utilizing both the ICLabel [59] toolbox and 
visual inspection. After completing these two processing 
steps, a final visual inspection will be conducted to iden-
tify and remove any remaining artifacts, if present.

EEG Statistical analysis
Firstly, we will calculate the power spectral density (PSD) 
of the signal recorded in each channel using the Welch’s 
method. The PSD will be computed on continuous win-
dows of EEG signals, applying Hanning windows with no 
overlap. The spectrum will be divided into four canoni-
cal frequency bands: delta (1–4  Hz), theta (4–8  Hz), 
alpha (8–13  Hz), and beta (13–30  Hz). The scalp will 
be divided into six regions of interest (ROIs): frontal 
right (Fp2, AF4, AF8, F2, F4, F6, F8), frontal left (Fp1, 
AF3, AF7, F1, F3, F5, F7), central right (FC2, FC4, FC6, 
FT8, C2, C4, C6, T4, CP2, CP4, CP6), central left (FC1, 
FC3, FC5, FT7, C1, C3, C5, T3, CP1, CP3, CP5), occipi-
tal right (P2, P4, P6, T6, PO8, PO4, O2), and occipital 
left (P1, P3, P5, T5, PO7, PO3, O1). ROI power will be 
computed as the average relative power from channels 
belonging to each ROI.

Next, we will analyse the connectivity between pairs of 
ROIs using LORETA source-reconstructed signals and 
extract several network metrics from the weighted undi-
rected adjacency matrices. These metrics will include the 
average strength of connectivity among pairs of ROIs 
(mean weight of non-zero connections), the weighted 
clustering coefficient (C) and the weighted characteristic 
path length (L) [60]. Finally, we will compute the small-
world coefficient [57]:

where L and C are the previously computed weighted 
clustering coefficient and weighted characteristic path 
length, whereas Lr is the weighted characteristic path 
length of an equivalent random network and Cl is the 
weighted clustering coefficient of an equivalent lattice 
network.

� =

Lr

L
−

C

Cl

The final statistical analysis will involve extracting 
microstate maps [61] for each subject individually. Ini-
tially, a set of common microstates will be extracted from 
all subjects, regardless of conditions, using the modi-
fied k-means algorithm [62]. Then, individual microstate 
maps will be generated, and the template maps will be 
matched with the previously obtained grand-averages. 
The EEG signals of each subject will be reconstructed 
as a sequence of microstates by assigning each topogra-
phy to the most similar microstate average map. From 
the reconstructed microstate sequence, various metrics 
such as duration, transition probability, and complexity 
of the sequence will be used as features. Spectral features, 
network metrics, and microstate features will be com-
pared across conditions, providing the foundation for the 
machine learning analysis.

Regarding the ERP data, both spectral features (like the 
EEG processing) and voltage-level signals (amplitude, 
latency, integral of the signal) from different phases of the 
ERP will be used as input features.

Descriptive statistical analysis
Descriptive statistical analyses will be conducted using 
IBM SPSS Statistics Software Version 25 (SPSS Inc., 
Chicago, USA) and the computing environment R4.2.3 
(R Foundation for Statistical Computing, Vienna, 2013). 
The distributions of variables will be assessed using the 
Shapiro–Wilk test. Patient groups will be character-
ized using means and standard deviations, medians and 
interquartile ranges (IQR), frequencies or percentages, 
and 95% confidence intervals (95% C.I.) for variables 
with continuous distribution, continuous non-normally 
distributed variables, and categorical variables, respec-
tively. Depending on the distribution of the data, we 
will employ ANOVA or non-parametric Kruskal–Wallis 
tests for between-group comparisons, and Pearson’s or 
Spearman’s correlation coefficient to assess correlations 
between numeric measures of the groups. Chi-square 
tests will be used to compare categorical data. Effect sizes 
will be computed using Cohen’s d for normally distrib-
uted numeric measures, η2 for the Mann–Whitney-U 
Test, and Cramer’s V for categorical data.

Machine learning classification of patient conditions
Demographic, clinical, cognitive, neurophysiological, 
and genetic data will be used as candidate input features 
without any further processing for training a machine 
learning model. During the training process, a feature 
selection algorithm will be applied to select the most 
informative features based on their performance on the 
validation set.

The machine learning problem will initially be treated 
as a multi-class classification task. The model will classify 
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patients who are SCD at the time of the measurements 
into one of the following three classes: stable SCD, pro-
gressed to MCI, or progressed to AD dementia. For the 
subgroup of patients undergoing CSF biomarker analysis, 
a classification will be performed based on the results of 
the analysis. Specifically, patients will be classified as car-
riers or non-carriers of AD pathology, according to the 
NIA-AA framework [9].

For feature selection, we will test the efficacy of sev-
eral algorithms including the ANOVA F-test statistic, 
ReliefF, mutual information, and minimum redundancy 
maximum relevance (MRMR). The number of retained 
features for each algorithm will be optimized in the vali-
dation loop.

Regarding the classifier models, a set of different 
machine learning models will be tested, including sup-
port vector machine (SVM) with linear, quadratic, cubic, 
and radial basis function kernels; random forest (RF); 
gradient boosted trees (xgboost); linear and quadratic 
discriminant analysis (LDA and QDA); and an artificial 
neural network (ANN). The hyperparameters of each 
algorithm will be optimized to determine the model with 
the best performance in the classification task.

In the SVM, the parameters C (misclassification pen-
alty) and gamma (influence of single training points) 
will be optimized. For the RF, the number of trees (esti-
mators), maximum depth of each tree, and minimum 
number of data points allowed in a leaf node will be 
optimized. The same hyperparameters will be tuned for 
xgboost, along with the learning rate of the algorithm. 
In LDA and QDA, the type of solver used by the algo-
rithm and the shrinkage term will be adjusted. For the 
ANN, the number of layers and neurons per layer will 
be optimized. We have chosen to compare feature selec-
tion methods from classical statistics (such as ANOVA 
F-test) with data-driven methods (ReliefF and MI) that 
do not assume the distribution of the data. Additionally, 
the MRMR algorithm will be tested to consider possible 
redundancies among features.

In the machine learning models, both linear (linear 
SVM and LDA) and non-linear (polynomial and radial 
basis function [RBF]-SVM and QDA) algorithms that 
define separating hyperplanes will be tested, along with 
tree-based methods like RF and xgboost. The ANN will 
serve as a non-linear, black-box model to assess the dis-
crimination performance and potential overfitting of 
more complex models. Furthermore, standard dimen-
sionality reduction techniques will be applied to extract 
the most salient features. The procedure described above 
will be repeated to evaluate whether similar results 
can be achieved with a subset of the features. Once 
the cross-sectional classification is performed, longi-
tudinal data will be utilized to develop an algorithm 

capable of predicting the future progression of cognitive 
impairment.

Out of the entire dataset, 30% of the data will be 
reserved as a testing set, while the remaining 70% will 
be used for training and validation of the model. A five-
fold cross-validation approach will be employed to train 
and optimize the hyperparameters of the models. The 
best performing model, determined by the prediction 
F1-score and the set of optimized hyperparameters, will 
be tested on the testing set to obtain an unbiased esti-
mate of the model’s performance.

A visual summary of the data collection and analysis 
process is shown in Fig. 2.

Discussion
On June 7, 2021, the FDA provisionally approved adu-
canumab, the first anti-amyloid monoclonal antibody 
for treating patients with MCI due to AD and mild AD 
dementia [63]. This approval marks a significant mile-
stone as it is the first disease-modifying therapy for AD. 
Furthermore, additional AD treatments may become 
available in the near future [1]. As a consequence, clini-
cians, researchers, and health services will face increas-
ing demands for diagnostic assessments of patients with 
cognitive disorders. However, these treatments are not 
without risks, and the most common adverse effect is 
amyloid-related imaging abnormality (ARIA) [64].

In this context, there is an urgent need to select cost-
effective and easily accessible tools for identifying 
patients in the early stages of the disease, while mini-
mizing the inclusion of patients who will not progress 
to AD dementia. The currently recognized AD biomark-
ers, such as PET neuroimaging [65–67] or CSF biomark-
ers [68, 69], are expensive, invasive, and not suitable for 
large-scale application. Our study aims to address these 
limitations by considering features that can be collected 
through clinical and neuropsychological examinations, 
as well as non-invasive assessments like EEG and blood 
collection.

Moreover, it is crucial to consider the target popula-
tion for screening purposes. Conducting a general popu-
lation screening may lead to an unacceptable number of 
false positive results and subsequent costs. Therefore, we 
focus our attention on patients SCD, who are individuals 
referred to memory clinics. There is increasing evidence 
that patients with SCD have a higher risk of carrying Alz-
heimer’s pathology and progressing to dementia [6–8], 
compared to individuals without SCD [8]. Thus, patients 
with SCD represent an optimal population for screening 
prodromal AD.

The PREVIEW study will collect demographic, per-
sonality, cognitive, genetic, EEG, and ERP data to train 
a machine learning algorithm. Previous studies have 
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successfully employed this approach to predict dementia 
in non-demented populations [70, 71], as well as positive 
AD biomarkers in patients with MCI [72, 73], indicat-
ing the great potential of this approach. However, only a 
few studies have focused on predicting the progression 
of cognitive decline [74–77], and to our knowledge, no 
studies have applied machine learning to predict progres-
sion from SCD to dementia.

This approach offers several advantages over classical 
statistics. Firstly, it allows us to consider all the collected 
variables simultaneously. Secondly, the machine learning 
procedure helps identify the most informative features 
for screening, enabling the development of a protocol 
that reduces the burden on patients and healthcare costs 
associated with cognitive assessments.

Furthermore, this approach will provide additional 
evidence to clarify the role of certain variables that still 
have controversial associations with SCD. For example, 
numerous studies have shown that individuals with SCD 
have lower scores on neuropsychological tests compared 
to those without SCD [78–80]. However, only a few lon-
gitudinal studies have assessed the prognostic value of 
baseline neuropsychological assessments, often yielding 
conflicting results [81–84].

Several studies have focused on the relationship 
between SCD and cognitive reserve [85–89]. Engaging 
in intellectual activities during earlier decades and hav-
ing higher premorbid intelligence have been identified as 
protective factors, reducing the risk of progression from 
SCD to MCI [15, 16]. However, cognitive reserve seems 

Fig. 2  Visual summary of data collection and analysis. A Data collection and feature extraction. Multi-modal data is collected from the recruited 
patients: clinical-neuropsychological evaluations, genetic and biological data, EEG at rest and during memory and attention tasks (ERP). From 
the EEG signals, features are extracted by using several analyses, such as connectivity (top left), microstates (top right), spectral and ERP time course 
analyses. B The extracted features, candidate biomarkers of progression to AD, are submitted to the cross-validated machine learning framework. 
First, only informative features are selected (green squares), while the non-informative ones are discarded. The selected features are used as inputs 
to train a set of machine learning classifiers (e.g., an ANN is displayed) to determine whether: i) the subject is carrier of biological AD pathology; ii) 
will remain SCD or will progress towards MCI or AD dementia. Abbreviations: CSF = cerebrospinal fluid; EEG = electroencephalogram; ERP = event 
related potentials; 3 CVT = 3-choice vigilance task; SIR = standard image recognition task; SCD = subjective cognitive decline; MCI = mild cognitive 
impairment; AD = Alzheimer’s disease; BDNF = brain-derived neurotrophic factor; APOE = apolipoprotein E
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to have a dual effect, as individuals with higher cognitive 
reserve exhibit faster disease progression once it begins 
[16, 90]. The interaction between SCD and mood dis-
orders is also controversial. Recent community-based 
studies on large populations have shown that depres-
sive symptoms increase the risk of progression to objec-
tive cognitive decline and dementia in SCD patients [91, 
92]. However, a meta-analysis by Huang et al. found that 
depression was significantly higher in individuals with 
SCD compared to normal individuals, but there was no 
difference between SCD and MCI, or between SCD con-
verters and non-converters [93]. Studies on personal-
ity traits have yielded conflicting results regarding their 
association with SCD. Most studies agree that high con-
scientiousness and low neuroticism are associated with a 
reduced risk of incident AD [94, 95]. However, a previ-
ous study found that emotional stability was significantly 
higher in SCD patients who progressed to MCI or AD 
dementia [96].

In the past decades, EEG has been extensively evaluated 
as a diagnostic tool for dementia [97–99]. However, pre-
vious studies have mostly focused on identifying quanti-
tative EEG markers of AD compared to healthy controls. 
These markers can be classified into four main categories: 
i) spectral markers, ii) connectivity and network met-
rics, iii) complexity measures, and iv) microstates [100]. 
Regarding spectral markers, AD and MCI groups have 
shown slowing in oscillations of EEG activity, charac-
terized by a decrease in higher frequency activity or an 
increase in low-frequency power, compared to healthy 
controls [101–103]. Other studies have demonstrated a 
reduction in the complexity of the EEG signal through-
out the development of dementia [104–106]. Connec-
tivity studies have investigated covariation patterns in 
EEG sensor or source signals, revealing a decrease in 
connectivity between brain areas, particularly in higher 
frequency bands, as cognitive impairment progresses 
[107–110]. More recently, event-related potentials (ERPs) 
have been suggested as potential sensitive and robust 
biomarkers for tracking disease progression and evalu-
ating response to therapy [111, 112]. To the best of our 
knowledge, only a few studies have described quantita-
tive EEG changes in patients with SCD [113–115], and 
ERP has not been investigated in this population thus far.

Our project has some limitations: i) CSF will not be 
available for all the patients; ii) neuroimaging tech-
niques will be used only for basal assessment of patients 
and will not be considered for machine learning analy-
sis; iii) healthy controls will undergo only EEG and ERP 
recording.

The PREVIEW study also has several strengths that 
deserve emphasis. As mentioned earlier, the use of 
machine learning is a significant strength and the primary 

innovative outcome of our project. Another strength 
is the collection of AD CSF biomarkers, which serves 
two main purposes: i) given that previous studies have 
reported an average ten-year period for SCD patients to 
develop dementia [8, 96], a long follow-up will be neces-
sary to obtain an adequate sample size of patients who 
progress to AD. By using CSF biomarkers, we can iden-
tify patients at a higher risk of AD dementia (according to 
the ATN system [9]) and classify them as prodromal AD. 
This classification can be considered as a surrogate target 
for preliminary cross-sectional analyses; ii) as mentioned 
earlier, SCD can also be the first clinical manifestation of 
medical conditions other than AD. CSF biomarkers will 
enable us to differentiate SCD with Alzheimer’s pathol-
ogy from SCD due to other causes. It should be noted 
that our study includes patients who self-refer to our 
memory clinic, as recommended by previous studies, to 
reduce sample heterogeneity and increase the chances 
of identifying subjects with preclinical AD compared to 
community-based studies [116]. Finally, we would like to 
emphasize that all the features considered as potential 
predictors will be derived from non-invasive, relatively 
inexpensive, and easily accessible techniques.

Conclusions
The advent of DMTs will bring about a significant shift 
in the management of patients with cognitive decline 
caused by AD. Since the efficacy of these drugs is closely 
tied to the disease stage, it is crucial for clinicians to be 
able to identify individuals at risk of AD before neuro-
degeneration sets in. A suitable target population for 
this purpose is individuals who present with cognitive 
complaints but lack objective evidence of impairment. 
The PREVIEW study aims to extensively characterize 
patients with SCD through clinical, neuropsychological, 
neurophysiological, and genetic assessments. Utilizing a 
machine learning approach, we aim to assess potential 
biomarkers and develop a robust predictive model to 
evaluate the risk of progression to AD. This approach will 
provide relevant evidence regarding the most significant 
features to be assessed as the initial step in the diagnos-
tic pathway for patients with SCD, before confirming the 
presence of AD pathology through more invasive and 
expensive tests.
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