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Abstract

Background: Pathogenic variants in the FKRP gene cause impaired glycosylation of α-dystroglycan in muscle,
producing a limb-girdle muscular dystrophy with cardiomyopathy. Despite advances in understanding the
pathophysiology of FKRP-associated myopathies, clinical research in the limb-girdle muscular dystrophies has been
limited by the lack of normative biomarker data to gauge disease progression.

Methods: Participants in a phase 2 clinical trial were evaluated over a 4-month, untreated lead-in period to
evaluate repeatability and to obtain normative data for timed function tests, strength tests, pulmonary function, and
body composition using DEXA and whole-body MRI. Novel deep learning algorithms were used to analyze MRI
scans and quantify muscle, fat, and intramuscular fat infiltration in the thighs. T-tests and signed rank tests were
used to assess changes in these outcome measures.

Results: Nineteen participants were observed during the lead-in period for this trial. No significant changes were
noted in the strength, pulmonary function, or body composition outcome measures over the 4-month observation
period. One timed function measure, the 4-stair climb, showed a statistically significant difference over the
observation period. Quantitative estimates of muscle, fat, and intramuscular fat infiltration from whole-body MRI
corresponded significantly with DEXA estimates of body composition, strength, and timed function measures.

Conclusions: We describe normative data and repeatability performance for multiple physical function measures in
an adult FKRP muscular dystrophy population. Our analysis indicates that deep learning algorithms can be used to
quantify healthy and dystrophic muscle seen on whole-body imaging.

Trial registration: This study was retrospectively registered in clinicaltrials.gov (NCT02841267) on July 22, 2016 and
data supporting this study has been submitted to this registry.

Keywords: FKRP, Whole-body MRI, Limb-girdle muscular dystrophy, Biomarkers, Deep learning, Convolutional
neural network, Tissue signatures
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Background
The limb-girdle muscular dystrophies are a class of
genetic muscle diseases that are characterized by pro-
gressive muscle weakness. Several limb-girdle muscu-
lar dystrophies are caused by pathogenic variants in
genes that regulate glycosylation of α-dystroglycan in
the sarcolemma. Fukutin-related protein (FKRP) is a
glycosyltransferase that is necessary for linkage of
membrane-bound proteins to the basal lamina [1].
Pathogenic variants in FKRP cause an autosomal recessive
muscular dystrophy that is most commonly known as
limb-girdle muscular dystrophy 2I (LGMD2I), although
emerging classification schemes also refer to this disease
as LGMD R9 [2]. LGMD2I is a rare disease; however, it is
one of the more common forms of muscular dystrophy in
Northern Europe owing to a prevalent founder variant
(NM_024301.5(FKRP): c.826C >A (p.Leu276Ile)) [3, 4].
There is currently no curative medical treatment for
LGMD2I, and the management is primarily supportive.
There is wide variability in the clinical severity of

LGMD2I, and it is uncertain whether the functional out-
come measures that have been used in trials for other
neuromuscular diseases can be applied to trials of
LGMD2I. To characterize these outcome measures in
the LGMD2I population, we observed a group of adults
with LGMD2I during an untreated 4-month lead-in
period to a phase 1b/2a clinical trial. This lead-in period
was incorporated into the trial protocol to allow investi-
gators to evaluate the repeatability of several commonly
used neuromuscular outcome measures and to deter-
mine if changes could be detected in these outcome
measures over a brief period of observation.
To evaluate an exploratory outcome measure, trial

participants were also studied using a whole-body mag-
netic resonance imaging (WBMRI) protocol which in-
cluded chemical shift (Dixon) sequences [5]. The images
from these sequences were analyzed using a multipara-
metric deep learning (MPDL) algorithm designed to
identify unique tissue signatures for various organ types
[6–8]. Deep learning algorithms are increasingly being
used for segmentation and classification of radiological
images [9, 10]. Using the MPDL algorithm, we were able
to derive estimates of muscle, fat, and intramuscular fat
infiltration. We examined the associations between these
MRI measurements and clinical outcome measures.

Methods
Study design and setting
This observational cohort study was a part of a clinical
trial protocol (NCT02841267) that was approved by the
Institutional Review Board at the Johns Hopkins University
School of Medicine. Data collection took place at the
Kennedy Krieger Institute in Baltimore, Maryland (an affili-
ate of the Johns Hopkins Medical Institutions). All

participants were screened and enrolled in the study be-
tween July 15, 2016 and April 13, 2017. Adults ages 18 and
older with LGMD2I confirmed by genetic testing were in-
vited to participate. Because participants were expected to
proceed from the lead-in period into a treatment period
with a non-FDA approved drug, the eligibility criteria ex-
cluded people who were unable to walk 10m or rise from a
chair independently, had hepatic or renal impairment, were
pregnant or nursing, had cognitive or psychiatric limitations
that prevented informed consent or compliance with study
procedures, had received corticosteroids or other investiga-
tional therapies, had a left ventricular ejection fraction <
50% by echocardiogram, had a history of coagulation dis-
order or other contraindication to muscle biopsy, or had
contraindications to MRI scanning.

Demographic data and clinical measurements
At the time of enrollment, age, sex, race/ethnicity, age of
symptom onset, height, weight, genotype, and creatine
kinase (CK) level were recorded. A licensed physical
therapist performed the following physical function tests:
manual muscle testing (MMT) using the Medical Re-
search Council (MRC) muscle scoring system, quantitative
muscle testing (QMT) using a handheld dynamometer
(Microfet), two-minute walk distance (2MWD), ten meter
walk/run (10MWR), timed up-and-go (TUG), four stair
climb (4SC), and the Performance of Upper Limb (PUL)
assessment [11]. A two-minute walk distance was selected
over a six-minute walk test because it was anticipated that
a number of eligible participants would be unable to walk
continuously for 6 minutes. Prior studies have indicated
that performance on the two-minute walk test strongly
correlates with the six-minute walk distance [12, 13].
Twenty-two muscle groups were tested using the MMT
(neck flexors, neck extensors, and bilateral shoulder ab-
ductors, elbow flexors, elbow extensors, hip flexors, hip
extensors, hip abductors, knee extensors, knee flexors,
ankle dorsiflexors, ankle plantar flexors), and each muscle
group was assigned a score of 1 through 12 based on an
adapted form of the MRC scoring system [14, 15]. The
scores from all 22 muscle groups were added to arrive at a
total MMT score (with a maximum possible score of 264).
Quantitative muscle testing was performed to determine
strength in the following muscle groups: shoulder abduc-
tors, elbow flexors, elbow extensors, hip abductors, and
knee extensors; these values were not combined for ana-
lysis. Pulmonary function testing using a bedside spirom-
eter was performed by the clinical evaluator and forced
vital capacity (FVC), forced expiratory volume (FEV1),
maximal inspiratory pressure (MIP), and maximal expira-
tory pressure (MEP) measurements were obtained. Three
trials of pulmonary function testing were performed at
each visit, and the best of the three trials was used for ana-
lysis. A dual energy x-ray absorptiometry (DEXA) scan
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was performed to obtain lean body mass and body fat
measurements over the whole body.
The clinical measurements were obtained at baseline and

repeated at a follow-up visit 4months later. Each follow-up
visit took place over two consecutive days, and the 2MWD,
10MWR, TUG, 4SC, and PUL were performed on both
days to allow for repeatability analysis [16–19].

Magnetic resonance imaging acquisition
Whole-body MRI scans were acquired using a 3 Tesla
Prisma scanner (Siemens, Erlangen, Germany) with con-
tinuous table movement (CTM) capabilities [20]. Partici-
pants were scanned head first and in the supine position.
Three radiofrequency coils were used: a peripheral angi-
ography matrix coil that was placed over the legs and
two body matrix coils that were placed over the chest
and abdomen/pelvis. Images of the chest and abdomen
were acquired over a series of 16-s breath holds to
minimize motion artifact from the chest wall and dia-
phragm. Dixon images were acquired as part of a longer
protocol that included T1-weighted, short-tau inversion
recovery (STIR), and diffusion-weighted sequences that
were not quantitatively analyzed. Images were acquired
using CTM sequences that scanned a total length of 1170
mm starting from the shoulder. Dixon scan parameters
were: TR/TE = 200/3.69ms and 4.92ms for opposed- and
in-phases, flip angle = 70°, FOV = 500x500mm, slice thick-
ness = 5mm.

Deep learning and image post-processing
Multiparametric deep learning tissue signatures
The MPDL network builds a composite feature repre-
sentation using the muscular dystrophy tissue signatures
defined by a tissue signature vector (TS) as gray level in-
tensity values corresponding to each voxel position
within the images and defined by the equation below:

MPDL Tissue Signature ¼ TSðτÞ

¼ ½In phaseðτÞn ;Out of phaseðτÞn ;WaterðτÞn ; FatðτÞn �T

Here, (ι) is the tissue type, n is the number of the im-
ages in the sequence, and T = transpose.
The TS vector models the inter-parametric relation-

ships and the intensity values of each of the tissue types
in the MR images. These TS are used to segment differ-
ent tissue types such as bone, muscle, fat, and fat infil-
trated muscle. The MPDL network was trained on both
normal and muscular dystrophy tissue signatures derived
from MR images that were not collected as part of the
study (Fig. 1) [21–23]. The TS are used as inputs into
the deep learning algorithm to define each tissue type
and enable the deep learning model to define tissue
signatures of subcutaneous fat and fat infiltrated muscle.

Convolutional neural network
The patch-based convolutional neural network (CNN)
was implemented and trained on the TS image patches
of size 5 × 5xN corresponding to each N dimensional tis-
sue signature of different tissues in the thigh. The 5 × 5
image patch of a tissue signature corresponds to the im-
mediate 5 × 5 neighborhood of that voxel position. The
2D-CNN consisted of four layers with 128, 64, 32 and
16 filters respectively, followed by a fully connected layer
and a softmax layer [24]. Inputs to the convolutional
layers were zero padded so that the output has the same
size as the input. Each convolutional layer had a kernel
size of 3 × 3 and was followed by a batch normalization
and a ReLU layer. Additionally, max pooling layers with
a kernel size of 2 × 2 and a stride of 2 × 2 were applied
following the first two convolutional layers. The cross-
entropy loss function was used for the error rate ana-
lysis. The 2D-CNN was trained for thirty epochs using
the adam optimizer with a learning rate of 0.001, mo-
mentum = 0.9, β1 = 0.9, β2 = 0.999, ε = 10− 8, and mini-
batch size of 1024 [25].

Muscular dystrophy tissue evaluation
We focused our analysis on the subset of images from
the WBMRI scans that corresponded to the muscle
groups in the thighs, which are the most frequently
scanned anatomic regions in imaging studies of skeletal
muscle. Using the TS model, tissue signatures for
healthy muscle, subcutaneous fat, and fat-infiltrated
muscle were defined based on the gray level intensity
values of the multiple co-registered images (in phase,
out of phase, fat, and water) obtained using the Dixon
imaging protocol. Based on the segmentations of the dif-
ferent tissue types, we were able to derive tissue frac-
tions for each of the major tissue types of muscle, fat,
fat-infiltrated muscle, and bone. Verification of appropri-
ate tissue segmentation was performed by a board-
certified musculoskeletal radiologist (SA) who compared
automated segmentation images to co-registered ana-
tomic images via visual inspection. The intramuscular
fat and muscle fractions that were used in the longitu-
dinal analysis were calculated by dividing the total num-
ber of voxels corresponding to fat infiltrated or healthy
muscle by the total number of muscle voxels (both
healthy and fat infiltrated). The voxels corresponding to
bone and subcutaneous fat were excluded from this cal-
culation. Had they been included, subjects with more
subcutaneous fat would appear to have reduced intra-
muscular fat and muscle fractions compared to subjects
with less subcutaneous fat even though the degree of
intramuscular fat infiltration could be similar. As the
body mass index ranged from 15.0 to 30.3 in this study,
the amount of subcutaneous fat was felt to be a signifi-
cant potential confounder.
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Statistical methods
A target sample size of 20 enrollees was established
based on the feasibility of recruitment and appropriate-
ness for a phase 1b/2a safety trial.
Outcome measure data were explored using histo-

grams and scatter plots. Shapiro-Wilk testing was per-
formed to determine if variables met the assumption of
normality. Bland-Altman plots were constructed for
variables for which repeatability data were available to
assess for uniform variance across the data ranges.
Spearman correlation coefficients were calculated for the
outcomes that underwent repeatability testing. To assess
changes in outcome measures over the 4-month lead-in
period, paired t-tests were performed when variables
met the assumption of normality, and Wilcoxon signed
rank tests for matched pairs were performed for vari-
ables that did not. Thigh fat fractions were plotted
against MMT sum scores, all timed function tests, and
pulmonary function tests. The numbers of voxels

associated with total body fat and total body muscle
were compared to body composition measurements
obtained through DEXA scanning. Correlation coeffi-
cients were calculated when the associations between
outcomes were reasonably linear. Statistical signifi-
cance was set at p < 0.05 with Bonferroni adjustment
for multiple comparisons.

Results
Participants
Twenty participants were recruited for the study and
completed the first visit. One subject withdrew from the
study shortly after enrollment and did not complete any
subsequent visits and was therefore not included in the
longitudinal analysis. Demographic information for the
remaining 19 participants is reported in Table 1. All par-
ticipants identified as Caucasian. Three participants did
not complete the physical function evaluation on both
days of the follow-up visit and therefore did not

Fig. 1 Demonstration of the MPDL tissue signature model and CNN segmentation mapping in participants with (a) severe fat infiltration and (b)
moderate fat infiltration at the level of the mid-thigh. An image of a healthy volunteer (c) is provided for comparison. The color scale is coded as
follows: healthy muscle is blue, bone is yellow, fat is orange, and fat infiltrated muscle is red. The number of voxels and the fraction of total
voxels corresponding to each tissue type are shown in the table
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contribute to the repeatability analysis of the 2MWD,
10MWR, TUG, 4SC, and PUL. One participant did not
complete the WBMRI scan at the initial visit, and one
participant did not complete the WBMRI scan at the
follow-up visit.

Analysis of clinical outcomes
Repeatability analysis: 2MWD, 10MWR, TUG, 4SC, PUL
tests were performed on each of two consecutive days
during the follow-up visit to allow for repeatability test-
ing (Table 2). Spearman correlation coefficients for all
five outcome measures were > .90 with p-values < 0.0001,
suggesting a strong linear association between tests per-
formed on consecutive days. However, Bland-Altman
graphs of the TUG, 4SC, and 10MWR also show outly-
ing values at the more severe end of the disease
spectrum (Fig. 2).

Follow-up
Shapiro-Wilk testing showed that the normality assump-
tion was not met for the 2MWD, 10MWR, TUG, 4SC,
PUL, and therefore non-parametric tests were used to
compare baseline to follow-up measurements. Because
four participants did not complete the second day of re-
peatability testing, only values for the first day of repeat-
ability testing were used in this analysis. Wilcoxon signed
rank testing did not identify a statistically significant
change in the 2MWD, 10MWR, TUG, or PUL. With the
4SC, there was an increase of 0.75 s between the baseline
and 4-month visits with a p-value of 0.016 (Table 2).
Additionally, we compared baseline measurements of

the MMT sum score, QMT (for each muscle group),
FVC, FEV1, MIP, MEP, lean body mass, and total body
fat from DEXA to the measurements at the 4-month
follow-up visit. No statistically significant differences
were detected in any of these outcomes over the follow-
up period (Table 2). Performance on timed function
testing did not vary significantly based on age, gender,
body mass index, CK, or disease duration. With respect
to genotype, the majority of participants were homozy-
gous for the most common pathogenic variant of FKRP
(NM_024301.5(FKRP): c.826C > A (p.Leu276Ile)). While
LGMD2I patients who do not have this common variant
reportedly have more severe phenotypes, there were too
few subjects who were not homozygous for this patho-
genic variant to assess phenotypic differences between
different genotypes [3].

Analysis of MRI outcomes
Shapiro-Wilk testing showed that the normality assump-
tion was met for MRI muscle and fat fractions. Student’s
t-tests did not show a statistically significant change in
the muscle or fat fractions over the 4-month observation
period. As the intramuscular fat fractions did not vary

significantly over time, associations between the change
in fat fraction and differences in clinical outcome mea-
sures could not be evaluated.
Estimates of lean body mass and body fat were ob-

tained using DEXA scanning, and these values were
compared to the number of voxels assigned to muscle or
total body fat derived from MRI scanning. (Fig. 3).
We explored the associations between baseline fat

fractions with the clinical outcome measures collected at
the same visit through correlation analyses (Table 3).
There were statistically significant linear associations be-
tween the MRI fat fractions with the 2MWT, PUL, and
FVC. In the case of the 10MWR and 4SC, there ap-
peared to be a linear association between the imaging
and timed function measures for most of the data points.
As data was sparse at the more severe disease range, it is
unclear if the extreme values were true outliers or if per-
formance times rise exponentially as the fat fraction ap-
proaches 100% (Fig. 4). The TUG was only weakly
correlated to the thigh fat fraction in this study.
A sensitivity analysis was performed excluding the

most extreme outlying data point. The exclusion of this
data point increased the linear correlation between the
fat fraction and several timed function tests; the r value
increased from 0.605 to 0.803 for the 4SC and from
0.631 to 0.853 for the 10MWR. The exclusion of outliers
did not greatly improve the linear correlation of the
TUG (r = 0.559 vs. 0.561).

Discussion
In this study, we examined various clinical outcomes mea-
sures that are commonly used in muscular dystrophy tri-
als. The findings of this study are largely consistent with
prior studies in LGMD2I, which did not detect significant
changes in muscle strength and function over a 12-month
period but did find gradual progression of weakness over
years [26, 27]. These studies in LGMD2I were able to
demonstrate measurable changes in fat infiltration within
individual muscles over 12months. In our study, we did
not detect significant changes in thigh fat fractions. This is
likely due to the short period of follow-up, although it is
also possible that small but measurable changes within in-
dividual muscles would not significantly impact the total
muscle and fat volumes.
The results of our study differ from previous studies

with respect to a single measure, the 4SC, in which a
statistically significant difference was observed over 4
months. There are several possible reasons for this
contradictory finding. The small sample size of this trial
allows extreme values in a few participants to have a
large statistical impact, and the statistical significance of
the observed difference was largely driven by two out-
liers whose 4SC times worsened by 3.4 and 4 s between
the baseline and follow-up visits. While this could
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represent a more rapid progression of disease in the
more severely affected participants, the performance of
these participants also varied more widely on repeatabil-
ity testing than the rest of the study sample (Fig. 2).
Similar variability in the 10MWR and the TUG may

indicate that the shorter timed function tests that re-
quire a brief burst of physical exertion may be more sus-
ceptible to confounding by day-to-day variations in
effort and fatigue among the more severely affected par-
ticipants. Exclusion of the outliers in our sensitivity

Fig. 3 Body composition measures on MRI and DEXA scanning. The number of voxels identified as muscle strongly correlate with estimates of
lean body mass on DEXA (3A). The number of voxels corresponding to body fat on MRI strongly correlate to DEXA estimates of total body fat
(3B). Estimates of the intramuscular fat fraction are strongly correlated when comparing baseline to follow-up measurements

Fig. 2 Bland-Altman plots of five timed function tests that underwent repeatability testing on two consecutive days. Blue dashed lines represent
the mean of the difference between consecutive tests. Red lines show the 95% limits of agreement for the differences between consecutive tests
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analysis strengthened the linear correlations between the
MRI fat fraction and function tests like the 4SC and
10MWR, but also weakened the significance of the
change in the 4SC. In designing clinical trials in this dis-
ease population, investigators may need to use analysis
strategies that can compensate for unequal variances.
This may include stratifying enrollment based on disease
severity, adjusting for baseline performance when per-
forming statistical analyses, or limiting enrollment to a
specific disease subgroup or a specific range of perform-
ance on timed function tests.
Conversely, it is important to note the outcomes that

show more consistent variability across all levels of

disease severity. In our repeatability analysis, the 2MWD
and PUL showed relatively uniform variability across the
full cohort, suggesting that they may be robust measures
in terms of day-to-day variability across a wider range of
disease severity in LGMD2I. Among the outcome mea-
sures that were not tested for repeatability, the MMT
sum score, pulmonary function tests, and DEXA mea-
surements showed consistent variability when comparing
baseline and follow-up measurements.
The methodology used to perform the MRI analysis of-

fers several important advantages in studying the muscu-
lar dystrophy population. Although radiologists inspected
the segmented images for processing and segmentation

Table 3 Correlation between outcome measures taken at baseline

Outcome DEXA –
body fat

DEXA –
LBM

MEP MIP FEV1 FVC MMT PUL TUG 4SC 10MWR 2MWD

MRI muscle fat
fraction (MFF), %

−0.027 −0.718 −0.535 − 0.448 − 0.572 −
0.605

− 0.759 −
0.267

0.565 0.700 0.733 − 0.794

0.9149 0.0008 0.0268 0.0711 0.0164 0.01 0.0003* 0.2834 0.0227 0.0026 0.0013 0.0001*

Two minute walk
distance (2MWD),
meters

0.071 0.765 0.587 0.481 0.514 0.608 0.838 0.316 −0.555 −0.671 −0.846 NA

0.7721 0.0001* 0.0105 0.0434 0.0290 0.0074 <
0.00001*

0.1873 0.0258 0.0044 0.0001*

Ten meter walk/run
(10MWR), seconds

−0.373 −0.855 − 0.641 − 0.465 −0.582 −
0.666

−0.783 −
0.103

0.549 0.805 NA

0.1546 <
0.00001*

0.0074 0.0693 0.0180 0.0048 0.0003* 0.7031 0.0276 0.0002*

Four-stair climb (4SC),
seconds

−0.138 −0.655 −0.356 −0.077 − 0.409 −0.402 − 0.560 −0.100 0.680 NA

0.6091 0.0059 0.1758 0.7780 0.1156 0.1229 0.0242 0.7129 0.0038

Timed up-and-go
(TUG), seconds

0.248 −0.493 −0.145 −0.287 −0.536 −
0.469

−0.549 −
0.342

NA

0.3544 0.0526 0.5915 0.2813 0.0323 0.0671 0.0276 0.1950

Performance of upper
limb (PUL)

−0.296 −0.082 0.054 0.134 0.327 0.303 0.388 NA

0.2186 0.7391 0.8302 0.5959 0.1854 0.2219 0.1003

Manual muscle sum
score (MMT)

0.205 0.792 0.816 0.757 0.665 0.721 NA

0.3997 0.0001* <
0.00001*

0.0003* 0.0026 0.0007

Forced vital capacity
(FVC), liters

0.017 0.667 0.625 0.696 0.956 NA

0.946 0.0025 0.0073 0.0019 <
0.00001*

Forced expiratory
volume (FEV1), liters

−0.035 0.579 0.645 0.767 NA

0.8917 0.0119 0.0052 0.0003*

Mean inspiratory
pressure (MIP),
cmH2O

0.162 0.642 0.928 NA

0.5210 0.0041 <
0.00001*

Mean expiratory
pressure (MEP),
cmH2O

0.289 0.748 NA

0.2456 0.0004*

DEXA - lean body
mass (LBM), kg

0.374 NA

0.1143

DEXA - body fat, kg NA

Pearson correlation coefficients (top) and p-values (bottom) are shown for the 2MWD, MMT, PFT, DEXA, and MRI data. Spearman correlation coefficients are shown
for the FSC, TUG, and 10MWR due to non-normal distribution. Asterisks note statistically significant p-values under a Bonferroni adjustment
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errors, the segmentation of tissues was entirely automated.
By doing so, there is a reduced risk of ascertainment bias
compared to protocols in which interpreters score each
muscle or define the muscle borders manually. Another
important advancement in this technique is the ability to
include all slices acquired in the thigh (50–60 slices per
subject). Prior studies that have employed manual seg-
mentation of tissues have found the process to be prohibi-
tively time-consuming, and many of them limit the
analysis to a few slices. While this may be appropriate for
some studies, not using all of the acquired data represents
a significant compromise to what is one of the major ad-
vantages of scanning, which is the ability to examine large
regions of the body in diseases that affect the whole body.
A third significant advancement is the ability to distin-
guish intramuscular fat replacement from extramuscular
subcutaneous fat through unique radiographic tissue
signatures.
Our analysis did not show a statistically significant

change in thigh fat fractions over the 4-month observa-
tion period. This is a relatively short period of follow-up,
and it is therefore possible that no significant change in
whole-body fat fraction has occurred (although small

changes within individual muscles may not be detected
using this method). Under this assumption, the test-
retest reliability of the fat fractions over the follow-up
period appears to be excellent, with similar variability
across the spectrum of disease severity. Our preliminary
analysis also suggests that the segmentation method can
reliably quantify body fat and muscle (compared to
DEXA measures of body composition) and that MRI fat
fractions show a strong linear correlation to the 2MWD
and the MMT sum score across all levels of disease
severity.
There are several limitations to this study, the most

significant of which is the sample size. The sample size
is comparable to other phase 1b/2a trials in neuromus-
cular diseases but is likely to be underpowered to detect
small changes in the outcome measures that were col-
lected. The small size of the study also makes it more
vulnerable to the influence of outliers, which are found
in our sample. Our decision to include the extreme out-
liers in our analysis limits the confidence with which we
can ascribe changes in outcomes to true disease progres-
sion, such as with the 4SC. However, the exclusion of
properly obtained data would risk underestimating the

Fig. 4 Timed function testing (2MWD, 10MWR, 4SC, TUG), manual muscle testing, and forced vital capacity as a function of the intramuscular fat
fraction derived from MRI
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variability in the study population and overestimating
the power to detect change in our outcome measures.
The duration of follow-up was also fairly short and likely
did not allow sufficient time for measurable pathologic
changes to occur in the outcomes studied. We therefore
cannot comment on the performance of these bio-
markers with respect to sensitivity to change. Additional
limitations relate to the tissue segmentation technique.
While the deep learning models can automatically seg-
ment tissue types, they are currently unable to resolve
individual muscles or muscle groups. Therefore, differ-
ent rates of disease progression between muscles and
patterns of preferential muscle involvement or sparing
cannot be assessed. We have also observed that while
tissue signatures of extensively fat infiltrated muscle are
distinguishable from subcutaneous fat, large confluent
regions of completely fat infiltrated muscle can have a
tissue signatures that are difficult to distinguish from
subcutaneous fat. Therefore, there is a greater chance of
misclassifying the tissue signatures among subjects with
almost complete fat replacement in extensive regions of
muscle. We believe that this risk is mitigated by our eli-
gibility criteria, which requires that participants inde-
pendently stand and walk (which generally requires
some intact muscle in the regions being analyzed). How-
ever, future studies may need to account for this limita-
tion in the eligibility or analysis phases.

Conclusions
The clinical trial lead-in data examined in this analysis
offer valuable insight into the strengths and limitations
of commonly used outcome measures in neuromuscular
diseases. We also introduce a novel method that uses
deep learning techniques to produce a fully automated
analysis of whole-body MRI scans. These techniques
allow for the calculation of intramuscular fat and muscle
fractions that show strong repeatability in a diverse
study sample. Future studies of this technique will estab-
lish the ability of these novel techniques to detect
changes in the volume of intramuscular fat and muscle.
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