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IL1B polymorphism is associated with
essential tremor in Chinese population
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Abstract

Background: The aim of the study was to investigate the genetic risk factors of essential tremor (ET) in Chinese
Population.

Methods: A total of 225 ET patients (25 ET patients also had restless legs syndrome (RLS) and were excluded from
final analysis) and 229 controls were recruited. The diagnosis of ET was based on the Consensus Statement of the
Movement Disorders Society on tremor. Polymerase chain reaction (PCR) and sequencing were used to detect 12
single nucleotide polymorphisms (SNPs) in seven candidate genes for RLS (HMOX1, HMOX2, VDR, IL17A, IL1B, NOS1
and ADH1B).

Results: We found that one SNP was associated with the risk of ET in Chinese population after adjusting for age
and gender: rs1143633 of IL1B (odds ratio [OR] =2.57, p = 0.003, recessive model), and the statistical result remained
significant after Bonferroni correction. Then, we performed a query in Genotype-tissue Expression (GTEx), Brain eQTL
Almanac (Braineac) databases and Blood expression quantitative trait loci (eQTL) browser. The significant association
was only found between genotype at rs1143633 and IL1B expression level of putamen and white matter in
Braineac database, which was more prominent with homozygous (GG) carriers.

Conclusions: Our study firstly reported the association of IL1B polymorphism with the risk of ET in Chinese
population. However, the association might only suggest a marker of IL1B SNP associated with ET instead of the
casual variant. Further studies are needed to confirm our finding.
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Background
ET is a clinical disorder of unknown cause characterized
by tremor (postural and/or kinetic) predominantly in both
upper limbs and other body parts involved occasionally
[1].It is not uncommon to notice an overlap of ET with
RLS (characterized by dysaesthesias usually in the calves,
associated with an irresistible urge to move these limbs) in
some families. Clinical surveys have shown that more than
half of the ET or RLS patients report at least one first de-
gree relative was affected with either or both of these dis-
eases [2, 3]. Dopamine transporter (DAT) binding in the
striatum was shown to be decreased in some RLS patients
[4] or ET patients [5], suggesting a possible dopamine dys-
regulation in both diseases. Genetic factors play an

important role in the pathogenesis of both ET and RLS
[6–11].Genome wide association study (GWAS) showed
that several single nucleotide polymorphisms (SNPs) were
associated with the risk of RLS, including MEIS1, BTBD9,
PTPRD, MAP2K5, TOX3 and Intergenic region of 2p14
[12–16]. Recently, we tested those SNPs in Chinese ET
and RLS patients and interestingly found a haplotype of
MAP2K5/SKOR1 was both associated with ET and RLS,
suggesting a possible genetic link between RLS and ET
[17, 18].
Several studies have investigated other candidate genes

for RLS, including HMOX1, HMOX2, VDR, IL17A, IL1B,
NOS1, ADH1B and GABRR3. Garcia-Martin et al. found
HMOX1 rs2071746 was associated with the risk of RLS
in the Spanish population [19]. The fact that HMOX2
rs4786504C allele contributes to high-altitude adaption
in Tibetans by leading to a more efficient breakdown of
heme also makes us wonder if HMOX2 could be a risk
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factor for Chinese RLS [20]. In addition, VDR rs731236
SNP has been found associated with RLS [21]. Previous
association of IL1B rs1143643, rs1143634 or rs1143633 and
IL17A rs8193036 has been reported in RLS patients with
HIV infection [22]. Jimenez-Jimenez et al. analyzed the pos-
sible relationship of two common SNPs (rs6413413 and
rs1229984) in ADH1B with the risk for RLS or Parkinson’s
disease and found that rs1229984 SNP was associated with
the risk for not only RLS [23], but also with the risk for Par-
kinson’s disease in women [24]. Furthermore, two SNPs
(rs7977109 and rs693534) in NOS1 have been found associ-
ated with German RLS, and only rs7977109 remained sig-
nificant after correction of multiple testing, while both
SNPs were not related to RLS in Spanish population [25,
26]. A recent report described an association between
GABRR3 and the risk for RLS [27]. Among these possible
candidate genes for RLS, HMOX1 rs2071746 and HMOX2
rs1051308 polymorphisms have been found associated with
ET patients in a Spanish population [28], while lack of asso-
ciation of GABRR3 [29] or ADH2 [30] with ET was de-
scribed in previous studies.
Therefore, in this study, we selected 12 SNPs (HMOX1

rs2071746, HMOX2 rs4786504, HMOX2 rs1051308,
VDR rs731236, IL17A rs8193036, IL1B rs1143643, IL1B
rs1143634, IL1B rs1143633, NOS1 rs693534, NOS1
rs7977109, ADH1B rs6413413 and ADH1B rs1229984)
within seven suspected RLS risk genetic loci (HMOX1,
HMOX2, VDR, IL17A, IL1B, NOS1 and ADH1B), which
had not been tested in Chinese ET patients yet, to fur-
ther investigate the relationship of these genetic risk fac-
tors with ET in Chinese population.

Methods
Study population
Two movement disorder specialists independently exam-
ined the suspected ET cases by using the standardized
tremor examination described by Louis et al. [31, 32]
and a full neurological examination was also performed
to exclude Parkinsonism and other movement disorders.
When there was disagreement between the two move-
ment disorder specialists, a senior movement disorder
specialist would evaluate the individuals and make the
final diagnosis. The clinical diagnosis of ET was in ac-
cordance with the Consensus Statement of the Move-
ment Disorders Society in 1998 [33]. Participants with
parkinsonism, drug induced tremors, cerebellar tremor,
dystonia and tremors with hyperthyroidism were all ex-
cluded from the study. As it is not uncommon for
co-morbidity of RLS with ET, an RLS specialist inter-
viewed all those ET patients, and diagnosis of RLS was
made based on revised International RLS Study Group
diagnostic criteria [34]. Control subjects were recruited
through community population and evaluated by RLS
and movement disorder specialists for exclusion of ET

and RLS. All participants signed consent forms and this
study was approved by the ethic committee of Ruijin
Hospital affiliated to Shanghai Jiao Tong University
School of Medicine.

DNA preparations and genotyping
About 3mL blood samples were collected from ET patients
and controls. DNA was extracted using phenol-chloroform-
isopropyl alcohol method [35]. PCR and extension primers
were designed using Primer5 software. SeqMan software
was used to identify rs4786504, rs6413413 and rs1229984.
Detail of primers and reaction condition of those 3 SNPs
were described (See, Additional file 1: Tables S1-S3).
Genotyping of other 9 variants was performed using
Multiplex SNaPshot. The PCR products were purified by
phosphorylase (FastAP) and exonuclease I (EXO I) and
extended with ABI SNaPshot Multiplex kit. The elongated
product was purified by phosphorylase (FastAP) and loaded
on ABI3730xl. SNP typing was analyzed using GeneMapper
4.0 (Applied Biosystems). Detail of primers and reaction
condition of those 9 SNPs were also described (See
Additional file 1: Tables S4S-6).

Statistical analysis
Statistical analysis was performed using SAS (version 9.4
TS1M2; SAS Institute Inc., Cary, NC) software package.
Student t test was used to compare the differences of
age between ET sufferers and non-ET/RLS controls.
Chi-Square test was used to compare the differences in
the gender proportions and test the Hardy-Weinberg
equilibrium (HWE) in the total cohort. Alleles of all
SNPs distribution between ET patients and controls
were also tested by Chi-square test. Risk analysis was
performed by logistic regression and odds ratio (OR)
was calculated with 95% confidence intervals (CI) for
each SNP according to dominant or recessive models,
after adjusting for age and sex. Dominant and recessive
models were performed based on the assumption of an
autosomal-dominant or autosomal-recessive mode of in-
heritance with incomplete penetrance. Multiplicative
terms between age/sex and each SNP were also included
in the logistic regression model. Haploview software was
used to test linkage disequilibrium (LD) of SNPs in the
same chromosome (Additional file 2). Haplotype analysis
was also tested by haploview. R (version 3.3.1) was used
to correct p values by Bonferroni method. Genetic
power was calculated by Power and Sample Size Calcu-
lations (version 3.1.2). Expression quantitative loci were
examined in three different databases: GTEx [36], Blood
eQTL browser [37] and Braineac databases [38].

Results
Totally, 225 ET patients and 229 normal controls were en-
rolled in this study. Demographic feature of our samples
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showed that there are no significant differences of age and
gender between ET patients and controls. One hundred of
total recruited ET (44.44%) had a positive family history for
ET. 25 ET patients (11.11%) were also diagnosed with RLS
(Additional file 3).
In the first place, we excluded those 25 ET patients also

diagnosed with RLS in order to exclude the effect of RLS
comorbidity on the association study of SNPs with ET. No
significant difference of age and gender was found be-
tween 200 ET patients without RLS and 229 controls
(Table 1). Among 12 SNPs, all were in HWE except for
two SNPs, rs4786504 of HMOX2 and rs6413413 of
ADH1B (all were rs6413413AA genotype). Call rates of
those 10 SNPs were all > 95%. After adjusting for age and
gender, two SNPs of IL1B were shown associated with the
risk of ET in our cohort (rs1143643: OR = 1.86, p = 0.017,
recessive model; rs1143633: OR = 2.57, p = 0.003, recessive
model). However, only rs1143633 of IL1B in a recessive
model remained statistical significant after correcting p
value by Bonferroni method (pcorrected = 0.024) (Table 2).
The effect of age and sex, and their interaction with the
studied SNPs in the logistic regression analysis were
shown in Additional file 4. We only found significant
interactions of sex with NOS1 rs693534 and ADH1B
rs1229984 in the dominant model and interaction be-
tween sex and HMOX2 rs1051308 in the recessive model.
In order to further exclude gender confounders, we per-
formed a subgroup analysis and found that the association
between rs1143633 of IL1B and ET remained significant
(Additional file 5). No significant difference of age be-
tween ET patients and controls were found among female
subgroup and male subgroup (Additional file 6).
Furthermore, we determined whether the statistical sig-

nificance of IL1B still remained when ET patients with
concomitant RLS were included. Among 12 SNPs, only
rs1143633 of IL1B in a recessive model remained statis-
tical significant after Bonferroni correction (OR = 2.63, p
= 0.002), which was consistent with our former result
(Additional file 7). The distribution of rs1143633 geno-
types and allelic variants in ET patients with or without
concomitant RLS and controls are shown in Table 3. The
haplotype analysis showed that no haplotype block in
IL1B and NOS1 was associated with ET patients (Add-
itional file 8). The effect of age and sex, and their inter-
action with each SNP in the logistic regression model
were similar to when ET patients with concomitant RLS

were excluded (Additional file 9). In the further subgroup
analysis (female/male cohort), there was no significant
difference of age between ET patients and controls among
female cohort and male cohort (Additional file 6). The
association between rs1143633 of IL1B and ET was only
shown significant in female cohort (p = 0.016) instead
of male cohort (p = 0.052), after adjustment for age
(Additional file 5).
Last, we performed a query in GTEx, Braineac and

Blood eQTL browser to determine any phenotypic interest
of rs1143633. Brain eQTL data were collected through
GTEx and Braineac databases. No significant association
between genotypes at rs1143633 and brain IL1B expres-
sion level was found in GTEx, while in Braineac database
the G allele increased the expression in putamen (p = 8.70
× 10− 3, with probe set 2,571,522) and white matter (p =
8.50 × 10− 4, with probe set 2,571,524), and a more
prominent increase were seen in homozygous carriers
(Additional file 10). In blood, we did not observe a
cis-eQTr trans-eQTL effect for this SNP on IL1B.

Discussion
This is the first study demonstrating a possible associ-
ation of IL1B rs1143633 with ET in Chinese population,
among 12 SNPs harbored in seven possible RLS genes
loci, including HMOX1, HMOX2, VDR, IL17A, IL1B,
NOS1 and ADH1B. In further subgroup analysis to ex-
clude gender confounders, the significance still remained
in both male and female cohort when only ET patients
without RLS were included.
IL1B gene encodes for the proinflammatory cytokine

interleukin-1β (IL-1β), which belongs to member of IL-1
family and is produced by several cell types including
blood monocytes, tissue macrophages and cells of the
central nervous system [39]. It has been found mediating
chronic inflammation in neurodegenerative conditions,
such as Parkinson’s disease [40, 41], Amyotrophic lateral
sclerosis [42], Alzheimer’s disease [43, 44] and neurode-
generative process in inflammatory disease such as mul-
tiple sclerosis [45].
The possible pathophysiology of IL-1β in ET remains

largely unclear. Two main pathogenetic mechanisms of
ET have been proposed [46, 47]. The traditional olivary
model attributes ET to a pathological pacemaker in the
inferior olivary nucleus that drives tremor. Another
model is cerebellar degenerative model which suggested

Table 1 Demographic Information of Cases (without RLS) and Controls

ET sufferers without RLS (N = 200) Non-ET/RLS controls (N = 229) P value

Gender, female, N (%) 100 (50.00) 136 (59.39) 0.051

Age, mean (SD), years 65.83 (7.92) 64.30 (13.30) 0.156

Familial history, N (%) 100 (50) – –

ET essential tremor. RLS restless legs syndrome
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Table 2 Association of SNPs of candidate genes and odds ratio to ET risk (ET without RLS)

Gene SNP HWE p value MAF (case/control) Allele

Minor allele OR 95%CI p

HMOX1 rs2071746 0.701 0.44/0.46 A 0.90 (0.69, 1.18) 0.452

HMOX2 rs4786504 0.031 – – – – –

rs1051308 0.983 0.37/0.37 G 1.00 (0.75, 1.32) 0.983

VDR rs731236 0.255 0.07/0.05 C 1.47 (0.81, 2.65) 0.203

IL17A rs8193036 0.735 0.30/0.30 T 1.04 (0.77, 1.39) 0.809

IL1B rs1143643 0.591 0.46/0.43 G 1.13 (0.86, 1.48) 0.389

rs1143634 0.431 0.04/0.02 T 1.64 (0.72, 3.75) 0.232

rs1143633 0.272 0.38/0.34 G 1.22 (0.92, 1.61) 0.171

NOS1 rs693534 0.910 0.27/0.27 A 1.03 (0.76, 1.40) 0.858

rs7977109 0.828 0.22/0.23 G 0.96 (0.69, 1.32) 0.781

ADH1B rs6413413 – – – – – –

rs1229984 0.729 0.33/0.32 G 1.07 (0.80, 1.43) 0.644

Gene SNP Dominant Model (adjusted) Recessive Model (adjusted) Genetic Power

OR 95%CI p OR 95%CI p

HMOX1 rs2071746 0.86 (0.56, 1.32) 0.503 0.90 (0.55, 1.47) 0.671 0.084

HMOX2 rs4786504 – – – – – – –

rs1051308 0.93 (0.62, 1.37) 0.701 1.09 (0.61, 1.96) 0.762 0.050

VDR rs731236 1.51 (0.82, 2.80) 0.188 – – – 0.394

IL17A rs8193036 0.98 (0.66, 1.44) 0.909 1.22 (0.64, 2.34) 0.549 0.053

IL1B rs1143643 0.87 (0.57, 1.33) 0.516 1.86 (1.12, 3.11) 0.017 0.095

rs1143634 1.68 (0.71, 3.96) 0.234 – – – 0.629

rs1143633 1.01 (0.68, 1.50) 0.948 2.57 (1.38, 4.81) 0.003 0.127

NOS1 rs693534 0.96 (0.65, 1.41) 0.829 1.33 (0.63, 2.82) 0.455 0.051

rs7977109 0.98 (0.66, 1.46) 0.938 0.74 (0.29, 1.86) 0.519 0.054

ADH1B rs6413413 – – – – – – –

rs1229984 0.99 (0.67, 1.46) 0.946 1.58 (0.76, 3.25) 0.219 0.063

Table 3 ILIB rs1143633 genotypes and allelic variants of ET patients and controls

rs1143633 All ET patients (n = 225) Controls (n = 229) ET patients without concomitant RLS (n = 200)

SNP Call rate 97.3% 99.1% 97.5%

Genotypes

GG 38 (17.4%) 17 (7.5%) 33 (16.9%)

GA 95 (43.4%) 120 (52.9%) 84 (43.1%)

AA 86 (39.2%) 90 (39.6%) 78 (40.0%)

Alleles

G 171 (39.0%) 154 (33.9%) 150 (38.5%)

A 267 (61.0%) 300 (66.1%) 240 (61.5%)

Recessive model

GG 38 (15.1%) 17 (7.5%) 33 (16.9%)

AA+GA 181 (84.9%) 210 (92.5%) 162 (83.1%)

The values in each cell represent: number (percentage)
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that the degeneration of Purkinje neurons and con-
nected neuronal populations played important role in
the pathogenesis of ET. Based on cerebellar degenerative
model, IL-1β might be involved in ET through an
immune-based neurodegenerative pathogenesis. In line
with this hypothesis, IL-1β can also cause an imbalance
between the GABAergic and glutamatergic synaptic
transmission at Purkinje cell synapses in experimental
autoimmune encephalomyelitis (EAE) cerebellum, which
are early events triggering secondary excitotoxicity and
inflammatory neurodegeneration in EAE disease [48,
49]. However, we should be very cautious with this hy-
pothesis as the association of IL-1β with ET in our study
might only suggest a marker of IL1B SNP, and did not
imply any inflammation pathogenesis in ET. Besides, we
only found a significant association of genotype at
rs1143633 with IL1B expression level in putamen and
white matter, not cerebellum.
No significant differences were found either in the fre-

quencies of genotypes or in the frequencies of the allelic
variants of other SNPs harbored in possible RLS genes
loci, including HMOX1, HMOX2, VDR, IL17A, IL1B,
NOS1 and ADH1B. Our study did not replicate the pre-
viously reported association ofHMOX1 rs2071746 and
HMOX2 rs1051308 polymorphisms with ET, which
could be due to different ethnic populations or small
sample of our study.
Some limitations of our study should be noticed.

Firstly, the number of ET patients and controls recruited
in our study is relatively small. Therefore, the power of
our study is low (Table 2 and Additional file 7), which
could lead to inflation of the effect size and potentially
mimic the positive signal. Similar studies with big sam-
ple size or GWAS are warranted in the future to confirm
our findings in Asians or other populations. Secondly,
there could be population sub-stratification that was not
corrected for due to using self-reported ethnicity instead
of genetic ancestry. Furthermore, 9 variants in our study
were genotyped by using Multiplex SNaPshot, which
was less reliable compared to Sanger sequencing. Lastly,
some ET might have a subclinical dopaminergic defi-
ciency which could introduce an enrollment bias of ET
in our cohorts. Although the diagnosis of ET is per-
formed by two experienced movement disorder special-
ists, it would be better to perform a DAT-SCAN to
exclude this possibility. Unfortunately, due to financial
concerns, we did not perform DAT-SCAN in our ET
patients.

Conclusion
We found a significant association of IL1B rs1143633
polymorphism in the recessive model with the risk for ET
in Chinese population. However, the results should be
taken with caution because segregation analysis of familial

ET often suggests an autosomal dominant inheritance and
there was no significant difference in the frequencies of al-
lelic variants in our study. In addition, after a query in
GTEx, Braineac and Blood eQTL browser, significant as-
sociation between genotype at rs1143633 and IL1B ex-
pression level was only found in Braineac database in
putamen and white matter, which was inconsistent with
the main hypothesis of ET as a disorder with cerebellum
involvement. This significant SNP was a marker and more
likely not the casual variant, but in linkage disequilibrium
with the casual variant. Furthermore, it is still too early to
draw the conclusion that ET has relation with RLS from
genetic point of view, since association of IL1B has only
been reported in RLS patients with HIV infection. More
studies are certainly needed in the future to replicate our
finding and investigate the true causal variant.
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