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Abstract

Background: Fibromyalgia syndrome (FMS) is a chronic pain syndrome. A plausible pathogenesis of the disease is
uncertain and the pursuit of measurable biomarkers for objective identification of affected individuals is a continuing
endeavour in FMS research. Our objective was to perform an explorative metabolomics study (1) to elucidate the
global urinary metabolite profile of patients suffering from FMS, and (2) to explore the potential of this metabolite
information to augment existing medical practice in diagnosing the disease.

Methods: We selected patients with a medical history of persistent FMS (n = 18), who described their recent state of
the disease through the Fibromyalgia Impact Questionnaire (FIQR) and an in-house clinical questionnaire (IHCQ). Three
control groups were used: first-generation family members of the patients (n = 11), age-related individuals without any
indications of FMS or related conditions (n = 10), and healthy young (18-22 years) individuals (n = 20). All
subjects were female and the biofluid under investigation was urine. Correlation analysis of the FIQR showed
the FMS patients represented a well-defined disease group for this metabolomics study. Spectral analyses of
urine were conducted using a 500 MHz "H nuclear magnetic resonance (NMR) spectrometer; data processing
and analyses were performed using Matlab, R, SPSS and SAS software.

Results and discussion: Unsupervised and supervised multivariate analyses distinguished all three control groups and
the FMS patients, and significant increases in metabolites related to the gut microbiome (hippuric, succinic and lactic
acids) were observed. We have developed an algorithm for the diagnosis of FMS consisting of three metabolites —
succinic acid, taurine and creatine — that have a good level of diagnostic accuracy (Receiver Operating Characteristic
(ROQ) analysis — area under the curve 90%) and on the pain and fatigue symptoms for the selected FMS patient group.

Conclusion: Our data and comparative analyses indicated an altered metabolic profile of patients with FMS, analytically
detectable within their urine. Validation studies may substantiate urinary metabolites to supplement information from
medical assessment, tender-point measurements and FIQR questionnaires for an improved objective diagnosis of FMS.
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Background

Fibromyalgia syndrome (FMS) is a common chronic
pain syndrome characterized by widespread musculo-
skeletal pain and associated with multiple other symp-
toms such as cognitive impairment, disrupted sleep and
chronic fatigue. The American College of Rheumtology
(ACR) first published criteria for FMS in 1990 [1] which
emphasized chronic widespread musculo-skeletal pain
(including pain in the axial skeleton) in the presence of
pain on at least 11 of 18 specified tender point sites with
digital palpation of 4 kg/cm?2.

The 2010 ACR updated criteria for FMS [2] are
applied in a 2-part, self-administered questionnaire and
do not require a tender point assessment. The first part
assesses the presence of pain at 19 sites on a body
diagram (widespread pain index) and part 2 measures
the symptom severity score (0-3) of 3 core symptoms
(insomnia, fatigue and cognitive impairment) and an
average score (0-3) for additional somatic symptoms.
EMS is the most common cause of widespread or gener-
alized musculo-skeletal pain and affects 2-8% of the
adult population with the highest prevalence in women
between 30 and 55 years. [3, 4].

EMS is currently viewed as a central sensitivity
syndrome associated with abnormal pain processing. It
is regarded as a “pain amplification syndrome” associ-
ated with increased sensitivity of the nervous system and
decreased anti-nociception which results in the clinical
phenomena of hyperalgesia and allodynia. Dysfunction
in central mono-aminergic neurotransmission which
involves serotonin, norepinephrine, nerve growth factor,
substance P and others have been implicated in the
patho-physiology of FMS. [5-8] FMS patients often have
associated comorbidities such as irritable bowel syn-
drome, interstitial cystitis and mood disorders [9, 10].

In the absence of an objective biomarker, the diagnosis
of FMS is based on a comprehensive clinical assessment.
Before 2010, the diagnosis was principally based on the
1990 ACR criteria of widespread pain (including in the
axial skeleton) > 3 months and at least 11 painful
“tender points” with digital palpation. Although the 2010
ACR criteria do not include a “tender point” count, a
musculo-skeletal clinical examination remains mandatory,
to exclude other couses of widespread pain and also to
identify peripheral pain generators e.g. myofascial trigger
points. Selective use of laboratory testing is used to
exclude other causes of widespread pain such as polymyal-
gia rheumatica and hypothyroidism.

The pursuit of specific and measurable biomarkers
that may assist in objectively identifying susceptible indi-
viduals, confirming disease diagnosis and facilitating
treatment, is a continuing endeavour in FMS research.
The development of high-throughput metabolic profiling
and the study of the metabolome have proven to be
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particularly applicable in neurological research where
small molecules are key in neurochemical metabolism
and in performing a role as neurotransmitters, signal-
ling modulators and osmolytes. It is now generally
anticipated that metabolomics profiling methods,
linked to systems biology approaches, will emerge
with well-defined metabolic phenotypes, enhancing
the understanding of brain metabolism in health and
disease. Recently, a few metabolomics studies have
been reported on fibromyalgia, potentially disclosing
novel insights into metabolic perturbations in the
brain that go brain metabolic homeostasis beyond
alterations of neurotransmission variations associated
with neurological disorders [11].

In a pilot study, presented only as a poster at an Annual
Meeting of the Rheumatologic Society of the UK [12],
Richards and co-workers (2001) reported that muscle
metabolites detected in the urine of fibromyalgia patients
may suggest a prevailing muscle damage. Although not by
definition a metabolomics study, their targeted metabolite
analysis of urine by nuclear magnetic resonance (NMR)
spectroscopy revealed significant levels of creatine in FMS
patients and elevated (t-test p < 0.05) urinary excretion of
choline, taurine, citrate and trimethylamine N-oxide
(TMAO) relative to matched controls.

The first metabolomics study on FMS, reported in
2013 [13], used 50 pl blood samples collected on blood
spot cards (Whatman 903 Protein Saver Snap Apart
Card, GE Healthcare, Westborough, MA, USA) from
patients diagnosed with FMS (n = 14), osteoarthritis
(OA; n = 15) and rheumatoid arthritis (RA; n = 12).
Samples were dried and then transported to the labora-
tory for mid-infrared micro-spectroscopy (IRMS) and
other analyses. The RA and OA groups appeared to be
metabolically similar, but different from the metabolite
profile of FMS. The IRMS approach did not conclusively
identify the metabolites responsible for the diagnostic
spectral differentiation, although changes in tryptophan
catabolism seemed to be involved.

Another metabolomics approach to FMS involved
liquid chromatography/quadrupole—time-of-flight/mass
spectrometry (LC/Q-TOF/MS) with multivariate statis-
tical analysis aimed at discriminating FMS patients
(m = 22) and controls (# = 21) from blood plasma
analysis [14]. Lysophosphocholine (lysoPCs), phos-
phocholine and ceramide lipids dominated the
metabolite profile. The metabolites that discriminated
the most between FMS patients and controls were
identified as 1-tetradecanoyl-sn-glycero-3-phospho-
choline [PC(14:0/0:0)] and 1-hexadecanoyl-sn-glycero-
3-phosphocholine [PC(16:0/0:0)] — suggesting that
lysoPCs may be potential biomarkers for FMS.

In addition to these metabolomics findings, a recent
review on biomarkers of FMS included contributions
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from genetic and proteomic studies [15]. Although
genetic factors have been shown to influence predispos-
ition to FMS, no specific genes have been confirmed as
being involved in this disease [16]. The review also listed
several proteins of the immune response, cytoskeleton
remodelling and the inflammatory process in FMS. Their
role in FMS, however, is still controversial.

Thus the availability of biomarkers for unequivocal
and objective diagnosis of FMS remains elusive in clin-
ical practice. Yet, metabolites identified as being
involved in the aetiology and pathogenesis of FMS could
meanwhile contribute to insights into various presenta-
tions of FMS and provide ancillary diagnostic testing
criteria to complement general diagnostic procedures.
We thus present here the outcomes of a 'H NMR meta-
bolomics study on FMS. All experimental subjects were
females and provided urine samples for the study. The
investigation was designed as an untargeted approach
and revealed metabolite information with predictive
potential to discriminate between FMS patients and
healthy young controls. The outcomes thus underscore
the versatility of metabolomics to provide insights into
disease pathophysiology, furthering potential novel
approaches to supplement existing protocols proposed
for the practising clinician to assess FMS and monitor
its treatment [17].

Methods

Experimental subjects, physical characteristics, symptoms
and clinical profiles

All the patients that were included in this study were
previously diagnosed with FMS by the same specialist
pain clinician from his chronic pain practice in Pretoria.
This practice manages the full spectrum of chronic pain
disorders, with a special interest in FMS and related pain
disorders. The diagnosis was based on a comprehensive
clinical assessment using the 1990 criteria. All patients
in the study were confirmed with FMS before 2010 and
all were on a comprehensive evidence-based manage-
ment programme according to international guidelines.
They were only included if they continued to complain
of widespread musculo-skeletal pain (including in the
axial skeleton) in the presence of >11 painful tender
points with musculo-skeletal assessment.

Informed consent was obtained from all the partici-
pants in this study by means of a voluntarily completed
consent form; ethical approval for the study was
obtained as specified under Declarations. All participants
in the study were female and the sample material inves-
tigated was urine. The experimental subjects consisted
of one FMS patient group (Group 1) and three control
groups (Groups 2 to 4). Clinical description and serum
and urine sample collection on all experimental groups
commenced from 2009 to 2011. Case definition and
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selection for the eventual study was done by clinical and
scientific group of co-workers in 2010. Following scru-
tinizing of the records of patients with a medical history
of FMS, a group of 18 FMS patients eventually selected
based on the above selection criteria as well as after
excluding outliers based on statistical analysis [(S5 in the
Additional file 1: Supplementary Information (SI)].

The socio-demographic, tender point and myofascial
pain experience, awareness of gastro-intestinal symp-
toms, pain-specific medication and levels of emotional
experience associated with FMS for the 18 patients was
obtained through the FIQR [17] and the IHCQ. The
questionnaires are presented in Table S1 and the
response to the IHCQ are summarised in Table S2 of
the SI. The IHCQ included 18 items that could be
extended to a total of 30 sub-items. The questionnaire
provided socio-demographic information on the patients
(3 items), personal clinical experience of pain and their
EMS condition (5 items) and use of medication against
pain (2 questions), emotional experience (7 questions)
and digestive functioning (1 item). The urine samples
were provided by the patients prior to application of
pressure to the tender-points (TPs). For a total of 16 of
these FMS patients a complete set of data was available
for the comparative analysis of the FIQR and metabolo-
mics data, as some information on some patients had to
be excluded because the data were incomplete. Some
degree of comorbidity of conditions that overlap with
EMS (e.g. chronic fatigue syndrome) could not be
excluded, as the mean level of energy in the FIQR was
rated at 7,0 and according to responses to the IHCQ,
94% of the patients experienced sleep disturbances and
did not awoke refreshed. The responses to an experience
of mood disturbances (58% answered “Yes”) and anxiety
(52% answered “Yes”) for the FMS patients as a group
were moderate. Responses on depression was inconsist-
ent (mean FIQR-score = 5.1 with 84% “Yes” answers on
the THCQ) but 88% indicated discomforts with their
gastrointestinal functions (Indicated as Irritable Bowel
Syndrome (IBS) in the IHCQ). These scores were
accepted as indications of the mental and physical
profile of the FMS patient group and were not further
clinically verified.

Three control groups were used: (1) a group of 11
subjects that were first-degree relatives of the
patients, meaning that they were a mother, sister or
daughter relation (Group 2: CF); (2) a group of 10
unrelated subjects, selected by physicians and defined
as unrelated and age matched controls to the patients
(Group 3: CO); (3) a control group of young and
healthy individuals, comprising 20 randomly selected
students (aged 18-22 years) of North-West University
(NWU) (Group 4: CN). All individuals in the control
groups showed no indications of FMS or related
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conditions and was not required to complete the
FIQR or THCQ.

This investigation used availability sampling on the
clinically selected FMS patients and controls (CO, CF
and CN). However, statistical analyses indicated that the
sample sizes provided sufficient power to detect large
effects at a univariate levelin the FMS and CN
comparison.

Sample preparation and "H NMR analysis

Spectral analyses were conducted according to the
protocol at the NMR facility of the Translational Meta-
bolic Laboratory at Radboud University Medical Centre
in Nijmegen, the Netherlands [18, 19]. The urine sam-
ples were collected in South Africa, stored at —80 °C and
transported to the Netherlands before being thawed at
room temperature for analysis. A 1 ml volume of each
sample was centrifuged at 3000 rpm for 10 min to
remove any sediments or debris. A 70 ul volume of a
deuterated solution containing 20.2 mM of trimethyl-
2,2,3,3-tetradeuteropropionic acid (TSP, sodium salt;
Sigma Aldrich) was added to 700 pl of the supernatant
and vortexed. This internal standard (IS) solution served
to lock the signal during analysis and to provide a chem-
ical shift reference of & = 0.00. The sample was then
acidified to pH 2.5 + 0.05, with 37% concentrated hydro-
chloric acid (HCI). A 650 ul aliquot of the acidified sam-
ple was then transferred to a 5 mm NMR tube (Wilmad
Royal Imperial; Wilmad LabGlass, USA) and analysed
on a 500 MHz Bruker Avance spectrometer (Bruker
Analytische Messtechnik, Karlsruhe, Germany) (pulse
angle 90° delay time 4 s, number of scans 256,
temperature 298 K). Water suppression was achieved by
using gated irradiation focused on the water frequency.
All samples were automatically shimmed prior to acqui-
sition of data, using topshim from Bruker BioSpin. The
resultant raw spectral data, in the form of free induction
decay, were Fourier transformed. These transformed
spectra were then manually corrected for phase and
baseline. All the samples were normalized with reference
to the creatinine CH3 peak at 3.13 ppm. We opted for
two methods of spectral analysis. The first method
entailed equidistant binning [20] using a bin width of
0.02 ppm applied to the selected region of 0.5-10 ppm,
which gave a total of 461 integrated units per NMR
spectrum, excluding the water region, for each individual
of the four experimental groups. The second method
entailed variable-sized binning. The equal-binning pro-
cedure masks subtle chemical shift differences, hides
potentially significant changes of low-intensity peaks and
incurs the risk of splitting peaks or spectral features
between bins [21]. To avoid these problems we also used
variable bin sizes in areas of peaks above the noise level,
preventing peak division between multiple bins. This

Page 4 of 15

approach was specifically applied for the identification
and quantification of discernible and important known
metabolites, generating data for univariate analysis.

Data and statistical analysis
The original normalized spectral data (presented in
Additional file 1 as Table S4 in S1 — Supplementary
information (SI) or Additional file 2 — Raw data matrix)
were pre-processed by performing log transformation and
auto-scaling. Outliers were detected through Hotelling’s
T? and PCA scores (using a 90% confidence region) ana-
lysis and resulted in the exclusion of 4 outliers from
further analysis. Univariate statistical analyses, specifically
the Mann—Whitney test p-values (MW) and associated
effect sizes (ES), were generated for each feature. Multi-
variate analyses were performed using cluster analysis
(Euclidean distance and Ward linkage) principal compo-
nents analysis (PCA) and partial least squares discrimin-
ant analysis (PLS-DA), using a 90% confidence interval
(CI). Data processing and analyses were performed using
Matlab (MATLAB with Statistics and PLS Toolbox Re-
lease 2012b, The MathWorks, Inc., Natick, MA, USA); R
(R version 3.2.3 downloaded from https://www.R-projec-
torg with the corrplot package downloaded from
https://cran.r-project.org/web/packages/corrplot);  the
SPSS software package (SPSS Inc. (2015). IBM SPSS
Statistics Version 22, Release 22.0.0, © IBM Corpor-
ation and its licensors - http://www-01.ibm.com/soft-
ware/analytics/spss/) and SAS (SAS Institute Inc. 2016
The SAS System for Windows Release 9.4 TS Level 1 M3,
SAS Institute Inc., Cary, NC, USA). A table containing all
discriminant information, i.e. the power and VIP values as
generated from the PCA and PLS-DA analyses, respect-
ively, as well as the ES and MW p-values, was constructed.
We did not test for a normal distribution of the data,
given the small number of cases and used Pearson’s r
and Spearman’s rho to assess correlations, analysed
through SPSS version 12.0 (SPSS, Inc., Chicago, IL). All
tests were one-tailed, given the positive fold changes
(FC) observed for all metabolites.

Results

Characteristics of the FMS patient group

The age profile of the patients concurs with the general
agreement of FMS being uncommon in young subjects
(<25-30 years), increasing with age towards the preva-
lence peak in middle-aged individuals, and then declines
[3, 4]. According to the feedback, 88% of our patients
had stable relationships with a male partner, 89% had
one form or another of day-filling or employment activ-
ities, and their emotional experience was not severely
affected by their disease. The pain experience and medi-
cation used resembled that generally prescribed for
EMS. The mean scores and ranges of the 21 FIQR
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questions obtained for our patient group and those (desig-
nated as the reference group) used for the standardization
of the questionnaire [17] are compared in Table S3.

To characterize further the relationship between ques-
tions or variables making up the FIQR questionnaire, we
calculated Kendall’s tau correlation coefficients for the
EMS patient group (Fig. 1). The correlation coefficients
along with their associated significance levels are indi-
cated in Table S3. The highest correlation (r = 0.817)
was indicated for the relationship between pain and the
symptoms for FMS. The function domain contains 9
physical functioning items related to the ability to
perform relatively demanding but regular daily muscle
tasks. Apart from the low score for ‘brushing hair; all
remaining items showed high correlation coefficients
among each other, ranging from 0.399 to 0.778. These
high values collectively substantiate the major signs and
symptoms experienced by the FMS patients. The ‘overall
impact’ domain contained 2 items that asked about the
number of days individuals felt well (could reach their
goals) and the corresponding number they were unable
to work because of FMS symptoms. These again showed
high correlation coefficients, ranging from 0.421 to
0.686, with the 8 items in the functional domain indicat-
ing the underlying negative impact of the FMS symp-
toms on the daily routine of the FMS patients. The
symptoms domain contained 9 items on which patients
had to rate work and physiological, psychological and
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correlations, ranging from 0.076 to 0.499 (mean = 0.25),
were found between the 8 functional items and sleep
patterns, memory, anxiety and depression, indicating
little overlap within the patient group with other FMS-
related conditions. Taking everything into account, we
conclude the FMS patients represent a well-defined
group for this explorative metabolomics study.

Data generation and case selection

Representative scaled NMR spectra from an FMS
patient and from the young control group (CN) is
shown in Fig. 2 to illustrate some of the discernible
qualitative NMR differences observed in these selected
examples. Close inspection of the spectra indicates that
there were no immediately discernible qualitative differ-
ences between the two representative examples, suggesting
that FMS is not associated with distinctive metabolic
aberrations, as otherwise observed in monogenetic disor-
ders such as inborn errors of metabolism. Using the equal-
bins spectral data, case reduction was first applied to all
four experimental groups (Additional file 1: Figure S2).
Four outliers were identified using a 95% confidence
region in a Hotelling’s T test in conjunction with the
respective PCA score plots with 90% confidence regions.
Cases that were identified as outliers by either method
were removed. The outliers were: group 1 (FMS patients)
— one outlier; group 2 (CF; family controls) — two outliers;
group 3 (CO; matched controls) — no outliers; group 4

environmental difficulties related to FMS. Lower (CN;young controls) — one outlier.
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Fig. 2 Representative spectra from one FMS patient (b, black) and one young control subject (a, blue), both scaled according to the creatinine
CH3 peak at 3.13 ppm. Expanded regions (c-e), framed in red in the spectra, are the regions where variables important in projection (VIP) through
the supervised PLS-DA are located. The labelled metabolites with their chemical shift (in ppm) and multiplicity, respectively, indicated in brackets
are given numerically as follows: 1, 3-hydroxyisovaleric acid (1.33 s); 2, threonine (1.33 d); 3, lactic acid (141 d); 4, alanine (1.50 d); 5, creatine (3.05 s); 6,
taurine (3.25 t, 342 s — broad line); 7, timethylamineN-oxide (TMAQ) (3.54 s); 8, histidine (8.68 d); 9, 2-hydroxyisobutyric acid (144 s); 10, N-acetyl-X (2.03 s);
11, succinic acid (2.67 s); 12, citric acid (291 AB); 13, NN-dimethylglycine (293 s); 14, carnitine (3.22 s); 15, hippuric acid (4.18 d, 7.55 1, 7.64 t, 7.83 d); 16,

Group characteristics
Supposed changes in metabolite profiles from the
EMS patients and the three control groups (excluding
outliers) were established through three multivariate ap-
proaches: unsupervised Euclidian and Ward hierarchical
cluster analyses presented as dendrograms, unsupervised
PCA, and supervised PLS-DA models, applied to the
original 461 "H NMR profiled bins for the four experi-
mental groups.

Figure 3 shows the group separations based on the
unsupervised cluster analysis, indicating the perceived
closeness of spectral data encapsulated in the NMR bins.

The main clusters formed between the CF family
members group (Fig. 3a) and the CO age-matched group
(Fig. 3b) relative to the FMS patients are heterogeneous
in terms of case distribution. In contrast, two well-
defined clusters were formed between the FMS patients
and CN young controls (Fig. 3c), suggesting distinct
differences in the spectral fingerprints between these
two groups.

Next, group separations based on unsupervised
PCA and supervised PLS-DA were performed. The
data were log transformed and auto-scaled. The PCA
between the CF family members (Fig. 3d), CO
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Fig. 3 Group separation between experimental groups through cluster and multivariate analysis based on equidistant binning data. (a-c):
Dendrograms from cluster analysis are shown for the CF (@), CO (b) and CN (c) groups relative to FMS patients. Cases from the FMS patients are shown
as pink dots, CF as black, CO as red and CF controls as blue. (d—f): PCA indicating the group separation between the FMS patients and CF (d), CO (e),
and CN (f) groups respectively, with areas using the same colour code as the dots in the dendrograms. (g—i): PLS-DA indicating the separation between
the FMS patients and CF (g), CO (h), and CN (i) groups respectively, with areas using the same colour code as in the PCA

matched controls (Fig. 3e) and FMS patients complemen-
ted results from the cluster analyses. A complete separ-
ation was obtained between all three control groups and
the FMS patients (Fig. 3f-i) through supervised PLS-DA.
Evaluation of the PLS-DA model shown in Fig. 3i (FMS vs
CN) was performed by calculating the goodness-of-fit (R?)
and predictive ability (Q?) parameters. These metrics con-
firmed the complete separation between the FMS and CN
young control groups, with good model fit (R* = 0. 96),
however this model may not generalize well (Q* = 0.29).
From the equal binning analysis it is evident that there
are bins or combinations of bins that can discriminate
between our patient and control groups. However, since

it is not clinically practical to measure bins, we did not
investigate this data further. Instead, the metabolites
potentially responsible for the separation of the FMS pa-
tients and the CN young controls were subsequently
identified by analyzing variable bins from the NMR
spectra and converting these measures to concentration
values of the identified metabolites.

Metabolite profile of the FMS patient group

Twenty-one metabolites could be identified and quanti-
fied from the NMR spectra. From this list we selected
twenty endogenous metabolites (listed in Table 1), and
also included 2-hydroxyisobutyric acid of exogenous
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Table 1 Univariate, multivariate and descriptive statistics for the 20 bins, comparing FMS and CN
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Variable CS and M[Ps] VIP Mann-Whitney Fold Mean StDev

3LV p-value Effect size Change CN FMS CN FMS
2-Hydroxyisobutyric acid 144 s [CH3] 6.26 0.0001 0.72 —-1.56 0.01 0.02 0.0 0.00
Succinic acid 2.66 s [(CH2)2] 0.25 0.0001 0.61 -1.63 0.02 0.03 0.01 0.01
Taurine 325t [CH2] 5.21 0.0007 0.52 -2.29 0.20 045 0.05 0.57
Tyrosine 6.89 dd [(CH)2] 037 0.0029 045 -1.70 0.03 0.06 0.03 0.06
Lactic acid 141 d [CH3] 2.83 0.0044 042 —1.81 0.06 0.11 0.03 0.07
Creatine 3.05 s [CH3] 440 0.0053 041 -2.08 0.05 0.09 0.04 0.08
TMAO 3.54 s [(CH3)3] 2.21 0.0062 041 =210 0.06 0.14 0.06 0.23
Dimethylglycine 293 s [(CH3)2] 0.00 0.0127 0.36 -1.29 0.01 0.01 0.00 0.00
Leucine 0.95 t [(CH3)2] 0.00 0.0136 0.36 -1.11 0.01 0.02 0.00 0.00
Formic acid 8.25 s [CH] 0.01 0.0361 0.29 -1.15 0.03 0.03 0.01 0.01
Valine 1.04 d [CH3] 0.00 0.0436 0.28 -1.24 0.01 0.01 0.00 0.00
Histamine 870 d [CH] 0.08 0.0436 0.28 -1.29 0.06 0.07 0.06 0.05
N-acetyl-X 203 s [CH3] 0.02 0.0464 0.27 -1.28 0.01 0.02 0.00 0.01
Lysine 1.73 m [CH2] 0.61 0.0739 0.23 -1.03 0.1 0.12 0.03 0.06
Hippuric acid 418 d [CH2] 1.61 0.0966 0.21 -1.55 0.22 0.35 0.10 0.24
Citric acid 2.89 AB [(CH)4] 1.36 0.1070 0.20 -1.21 0.39 047 0.16 0.17
Alanine 1.51 d [CH3] 0.13 0.1785 0.15 -1.16 0.06 0.07 0.02 0.03
Histidine 8.68 d [CH] 0.85 0.1942 0.14 1.19 0.07 0.06 0.04 0.04
Carnitine 3.22 5 [(CH3)3] 0.02 0.2107 0.13 —1.24 0.02 0.02 0.01 0.01
Threonine 1.33 d [CH3] 0.04 0.2648 0.10 -1.28 0.03 0.04 0.01 0.04
3-Hydroxyisovaleric acid 1.33 s [(CH3)2] 0.00 04942 0.00 -1.02 0.00 0.00 0.00 0.00

origin [22], with high VIP, ES and ES values, despite
being present in low concentrations. The endogenous
metabolites include seven amino acids (tyrosine, leu-
cine, valine, histidine, alanine, threonine and lysine),
seven metabolites directly or indirectly associated with
energy metabolism (lactic acid, succinic acid, citric
acid, 3-hydroxyisovaleric acid, creatine, carnitine and
formic acid), three osmolytes (taurine, TMAO and
dimethylglycine), a major mammalian detoxification
product (hippuric acid), histamine and an N-acetyl-
derivative. The N-acetyl-derivative showed a singlet at
2.03 ppm, possibly indicative of an N-acetyl group.
One-dimensional spectral data suggested that aspartic
acid (multiplet at 4.70 ppm) could be the moiety
linked to the N-acetyl group, which, however, could
not be substantiated as N-acetyl-aspartic acid by
two-dimensional NMR spectral analysis Additional
file 1: Figure S4). We thus designated the variable as
an N-acetyl derivative (N-acetyl-X).

We subsequently performed multivariate (log and
centred concentration values) and univariate (unscaled
concentration values) analyses on the reduced bins
(endogenous metabolites, converted to their respective
metabolite concentrations) to refine our identification of
the key variables that discriminate between the FMS

patients and the controls. All cases were retained for this
analysis as none were identified as outliers based on the
concentrations. Multivariate PCA (Fig. 4a) and PLS-DA
(Fig. 4b) both indicated that the 20 metabolites con-
tained information that differentiates, but did not separ-
ate, the FMS patients from the young controls. Model
performance was evaluated using the goodness of fit (R?)
and goodness of prediction (Q?) parameters, which were
R*(X) = 0.52 and Q*(Y) = 0.05, respectively, indicating a
reasonable (R*) but not necessarily reproducible (Q?) fit
between the variation in the data and the components
(quantified metabolites) comprising the model for the
present FMS group. It thus appears that some metabo-
lites below the sensitivity range for quantification from
the NMR spectra might be required for reproducibility
(Q% and for further differentiation between the FMS
patients and young controls.

Univariate analyses using Mann—Whitney p-values and
fold changes, as summarized in a volcano plot (Fig. 5a),
point to important substances that cause group differenti-
ation. The outcome of this analysis of the data set of 20
variables is presented in Fig. 5a, indicating which large-
magnitude changes (fold change: |log, FC|  1.5) are also
statistically significant (Mann—Whitney test: p < 0.05). Six
informative metabolites complied with these measures,
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Fig. 4 PCA (a) and PLS-DA (b) for the FMS patients relative to the young controls, based on the quantified 20 metabolites
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with their respective VIP values shown in brackets: succi-
nic acid (0.246), taurine (5.214), tyrosine (0.365), lactic
acid (2.832), creatine (4.402) and trimethylamine N-oxide
(TMAQ; 2.209).

Important endogenous metabolites in the FMS patient
group

A summary of the results for the univariate and multi-
variate statistical analyses is presented in Table 1, nine of
which could be related to physiological functions that
could be related to FMS.

The neurological functions of succinic acid, tyrosine and
lactic acid are well known: the aerobic mitochondrial en-
ergy regeneration function, a precursor for neurotransmit-
ters and a key metabolite in the astrocyte-neuron lactate

shuttle [23], respectively. Taurine is an abundant f-amino
acid in the mammalian brain [24] and has been shown to
be a neurotransmitter in the substantia nigra (SN). It has
been suggested from micro-dialysis experiments on
Sprague-Dawley rats that osmoregulation of the nonsy-
naptic taurine pool of the SN could influence the nigral
cell vulnerability, seen in the pathogenesis of Parkinson’s
disease [25]. Likewise, nutritional studies [26] suggest that
TMAO may be involved in diet-induced variations in the
balance of several osmolytes, including betaine, choline,
creatinine and creatine, whereas creatine has also been
proposed as being involved in pain experienced in FMS
[25]. Thus, we subsequently evaluated the potential diag-
nostic value of these six metabolites on FMS by means of
a logistic regression analysis, as indicated below.
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Fig. 5 Statistical assessments of three metabolites indicative of FMS: (a) Volcano plot mapped by the scaled fold change and p-values for the 20
metabolites observed for FMS patients and young controls. Metabolites with high FC and significant p-values among patients are indicated by
black squares. (b) ROC analyses for discriminating FMS patients from controls (AUROC) as well as leave-one-out crossvalidated ROC analysis

(CV AUROQ). The discriminator consisted of the three informative metabolites (succinic acid, taurine and creatine) identified by multivariate, univariate
and metabolic pathway analyses
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Important exogenous metabolites in the FMS patient
group

The pain intensity of patients with FMS has been
reported to correlate with the degree of small intestinal
bacterial overgrowth [9, 10]. This clinical observation
may have pathogenetic relevance for FMS, because
bacterial overgrowth leads to the exposure of immune
cells to luminal antigens and consequent immune modu-
lation. An untargeted NMR metabolomics study of celiac
disease, a multifactorial immune-mediated enteropathy
[27], suggested alterations of energy metabolism - a
clinical characteristic in FMS - while urine data pointed
to alterations of gut microbiota. At least three metabo-
lites observed in the urine samples of our FMS patient
group suggest perturbations in their gut metabolome
(Fig. 6): (1) Hippuric acid is a normal and major compo-
nent of urine and appear in humans as an increased
excretory product from unnatural (detoxification) and
natural (gastroesophageal reflux disease in children)
sources. (2) 2-Hydroxyisobutyric acid, the most discrim-
inatory variable between our FMS group and controls
(VIP = 6.2 — Table 1), is an apparent catabolic from gut
microbiotica and was shown to be statistically linked to
Faecalibacterium prausnitzii [28] an important com-
mensal bacterium of the human gut flora proposed to be
an indicator of the dynamic basis of host—microbiome
symbiosis. (3) Lactic acid is a key intermediate in many
biochemical processes and is a measure of critical illness
in patients with poor prognosis. It may be of endogen-
ous (L-lactate) or exogenous (D-lactate) origin and we
recently proposed that the determination of its enantio-
mers in infectious conditions may provide a basis for
substantiating the clinical significance of disease markers
[29]. The presence of these exogenous markers of gut
origin provides further indications of the connectivity
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between disturbances in the gut microbial populations
and the metabolic consequences of the altered micro-
bial-mammalian metabolic balance influencing host
disease, which will be discussed below in the context
of FMS.

A putative biosignature for FMS
A combination of three selection methods (Forward,
Backward and Step-wise selection) was used to identify
the best metabolite predictors. Instead of using one selec-
tion method, a combined approach was chosen since each
method has its advantages and disadvantages [30, 31].
Although our aim was to explore a small set of highly
discriminatory endogenous metabolites, we also investi-
gated the potential of a combination of these metabolites
to function as a biosignature for the FMS patient group.
We followed a forced entry approach to evaluate the com-
bination of metabolites. Table 2 lists the methods used as
well as the preferred metabolite predictors selected from
the six informative metabolites. The last model (Forced
entry) entered succinic acid, taurine and creatine, and pro-
duced the best model based on -2 Log Likelihood (-2LL)
from the present data. Table 2 also reports other model
performance measures, but -2LL was used to select the
best model as it gives an indication of the variation not
explained in the data, and gave the lowest -2LL value
compared to the other models. The Forced entry model
was also well calibrated since the Hosmer Lemeshow (HL)
statistic was not significant. The model fit is reported by
using the Max Rescaled R-squared value and only the
Forced entry model had a satisfactory value of above 0.6.
Finally, the classification ability of each model was
assessed by using a Receiver Operating Characteristic
(ROC) analysis to the data mentioned. The values of the
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Fig. 6 Graphs showing important urinary metabolites related to the gut microbiome. Indicated in the figure are: FMS patients relative to
young controls for hippuric (a), 2-hydroxyisobutyric (b) and lactic (c) acids. Values for all individual cases are shown as dots, while the
squared area represents the 95% confidence interval (orange) and 1 standard deviation (blue) of the mean (red line)
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Table 2 Summary of logistic regression results for the six informative metabolites. The predictors used or selected by the logistic
regression model are listed as Predictors selected. Other columns report the model fit results (Max Rescaled R-squared), the relative
variance explained (—2LL), the calibration (HL p-value), and the classification ability (AUC and AUC (LOO CV)) of each model

Selection method Predictors selected -2LL HL p-value Max rescaled R-squared AUC AUC (LOO CV)
Forward Creatine & succinic acid 36.15 0.0273 047 0.8917 0.8583
Backward Taurine 40.16 0.6336 037 0.8056 0.7556
Stepwise Succinic acid 40.87 0.5496 0.35 0.8583 0.8306

Forced Entry Creatine; succinic acid & taurine 29.66 0.0932 0.60 0.8972 0.875

area under the ROC curve (AUC) provide a measure of
how well this combination could distinguish between
the two groups. A value of AUC = 1 represents a perfect
test, while a cursory guide for classifying the accuracy of
a diagnostic test is given by: AUC = 0.90-1 (excellent,
i.e. high sensitivity and high specificity); 0.80-0.90
(good); 0.70-0.80 (fair); 0.60-0.70 (poor); 0.50—0.60
(fail). To provide some indication of how well the model
would potentially generalize, the last column in Table 2
reports the classification ability when one sample is left
out repeatedly — in other words, based on a leave-one-
out cross-validation strategy (AUC (LOO CV)). Again
the Forced entry model performed the best (AUC = 90%
[0.8972]; AUC (LOOCYV) = 88% [0.8750]).

Correlation between clinical and metabolic indicators

Pearson and Spearman correlation analysis was done to
compare the bivariate relationships between responses
to the FIQR and the three endogenous variables defining
the biosignature of FMS. Specifically, correlations were
assessed between the sum of all three FIQR domains as
well as the sum of the functional, impact and symptoms
domains and SUM-3, SUM-2, creatine, succinic acid and
taurine. Finally we inspected the data for symptoms
related to metabolism to be included in the bivariate
correlation analysis. In this regard it should be noted: (1)
The scores of the 21 questions of the FIQR corresponds
to an average based on the subjective self-assessment of
the FMS patients as used in the behavioural sciences
(i.e., it is not empirically based). We therefore used the
mean scores of fibromyalgia patients on the symptoms
for experience of pain, low energy levels and tenderness
to touch only as a directive to include these symptoms
in the bivariate correlation analysis [30]. Their mean
values did not differed in practice from the data of a
reference group of the revised FIQR (Additional file 1:
Figure S1). (2) The number of FMS cases is relatively
small for assessment of normality in the data
distribution. We therefore included the Pearson and
Spearman correlations in Table 3, but used only the
Spearman’s correlations for the interpretation of the
bivariate correlation analyses, with guideline values
for “small”(r > 0.1), “medium” (r > 0.3) and “large”

(r = 0.5) as operational convention for the correlation
coefficients [32].

The results shown indicate a medium and borderline
significant relationship between the SUM-3 biosignature
and the sum of the FIQR, with insignificant correlations
for its functional and impact domains. Sum-3 and the
symptoms domain showed a large and significant correl-
ation. The relationship between SUM-2 and the sum of
the FIQR and its three domains improved significantly.
Taken together these results directs to a more meaning-
ful relationship between the metabolites which comprise
the biosignature and clinical symptoms related to
biochemical perturbations in FMS. This impression is
substantiated by the strong and significant relationship
between SUM-3 and SUM-2 on the experience of pain
(p = 0.004 and 0.016, respectively) and loss of energy
(p = 0.006 and 0.001, respectively) in the FMS patients
as a group. Notably this relationship is not shared by
succinic acid (a metabolite from the Krebs cycle) and
taurine (an osmolite), but a good and significant
relationship was shown between creatine and the symp-
toms pain and energy (p = 0.024 and 0.003, respectively).
The relationship between the biosignature components
to tenderness to touch, the third clinical symptom
evaluated, was statistically insignificant (not included in
Table 2). All correlation coefficients were positive
indicating that patients with high scores on the biosigna-
ture will likely also have high FIQR scores.

Discussion

The results of this metabolomics study lead to three
main discussion points — whether FMS presents with a
unique global metabolic profile which characterizes this
disease, whether metabolomics studies contributed to
the advancement of an objective clinical diagnosis of
EMS in patients so affected and on gut microbial-host
metabolic perturbations in FMS.

As the overall health status of individuals is captured
in their metabolic state, there exists a prevailing view
that metabolomics results embody global biochemical
changes in an individual due to a disease and neuro-
logical conditions [33], and supported by our results and
of two other NMR metabolomics investigations. The
first NMR metabolomics study evaluated the diagnostic
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Table 3 Relationship between the clinical information of the FIQR and the components of the FMS biosignature

Bivariate components for the correlation analysis

Pearson correlation

Spearman correlation

Coeff. (n p—valueb Coeff. (r) p-value
Correlations of the biosignature (SUM-3)? with the FIQR domain categories
SUM-3 vs Sum of 21 questions of the full FIQR 0.35 0.102 042 0.059
SUM-3 vs Sum of 9 questions of the functional domain 031 0.134 0.25 0.134
SUM-3 vs Sum of 2 questions of the impact domain 0.15 0316 0.22 0.241
SUM-3 vs Sum of 10 questions of the symptoms domain 041 0.057 0.57 0.011*
Correlations of two components of the biosignature (SUM-2) with the FIQR domain categories
SUM-2 vs Sum of 21 questions of the full FIQR 0.56 0.016* 0.53 0.021*
SUM-2 vsSum of 9 questions of the functional domain 0.52 0.023* 041 0.008**
SUM-2 vs Sum of 2 questions of the impact domain 0.5 0.043% 051 0.039*
SUM-2 vs Sum of 10 questions of the symptoms domain 0.59 0.009** 0.57 0.011*
Correlations of components of the biosignature with the symptom of pain®
SUM-3 vs pain experience 046 0.037* 0.64 0.004**
SUM-2 vs pain experience 0.52 0.02* 0.54 0.016*
Creatine vs pain experience 0.5 0.025* 0.5 0.024*
Succinic acid vs pain experience 0.08 0384 0.18 0.249
Taurine vs pain experience 0.39 0.069 0.29 0.135
Correlations of components of the biosignature with the symptom of energy®
SUM-3 vs energy loss 0.32 0.115 0.61 0.006**
SUM-2 vs energy loss 0.68 0.002** 0.72 0.001**
Creatine vs energy loss 0.65 0.003** 0.66 0.003**
Succinic acid vs energy loss 0.15 0.295 0.22 0.221
Taurine vs energy loss 0.22 0.204 0.14 0.307

“Biosignature: SUM-3 = creatine + succinic acid + taurine; SUM-2 = creatine + succinic acid

Bstatistical significance: *significant at p < 0.05, **significant at p < 0.01
Pain: No pain = 0; Unbearable pain = 10
dEnergy: Lots of energy = 0; No energy = 10

accuracy of biomarker profiles in three neurological con-
ditions: idiopathic intracranial hypertension, multiple
sclerosis, and cerebrovascular disease relative to controls
with either no or combined neurological diseases [34]. It
appeared that the metabolomics investigation identified
differences in metabolite profiles in patients suffering
from these three conditions. A related conclusion was
drawn from the second NMR metabolomics study of
EMS [14]. Although a relatively small number of patients
formed the experimental group, the metabolomics
approach was successful in identifying distinct metabolic
profiles for FMS patients relative to controls, supporting
the concept that the Platelet Activating Factor/Platelet
Activating Factor Receptor (PAF/PAFr) system plays a
role in modulating pain signalling. Our results further-
more indicated the differentiation of the three control
groups used (family members, an age-matched group,
and young individuals) and the FMS patients (Additional
file 1: Figure S3). Statistical assessment of the outcome
of a supervised PLS-DA model confirmed the complete
separation between the FMS and young control groups.

Good model fit values substantiated some unique differ-
ences between the global metabolic profiles of the FMS
patients and the healthy young controls. The metabolites
principally responsible for the differentiation between
our FMS patients and controls included taurine and
TMAO which were also reported to be significantly
increased (p < 0.05) in an FMS patient group in a
preliminary targeted NMR study [12]. In addition, we
observed perturbed succinic acid suggesting altered
energy metabolism in FMS. This result is linked to a
study [13] where there was relatively elevated: glucose,
the glycolytic intermediate phosphoenolpyruvate, pyru-
vate and nicotinamide adenine dinucleotide (NADY)
seen in dried blood spots from FMS patients. This
observation was previously reported for patients with
chronic widespread pain [35].

A common thread in the metabolomics studies on
EMS discussed here is the affirmation of the ability of
metabolomics to identify distinct metabolic profiles for
EMS patients relative to controls. Some metabolites/bio-
markers could therefore contribute to the disease
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phenotype by having a role in the pathogenesis of FMS.
The biomarkers revealed in these metabolomics studies
seemed, however, not to be metabolically closely linked,
but may be due to the multi-factorial nature of FMS. Note-
worthy also are the two main limitations of our own and
the other two metabolomics studies: the FMS groups in-
vestigated and analytical methods used. Most metabolo-
mics studies are limited by the number of experimental
subjects available for investigation, and therefore ultimately
call for follow-up validation studies with larger and better-
defined experimental groups. Further, given the complexity
of the human metabolome and the multi-dimensional na-
ture of biofluids and other biological samples available for
metabolomics studies, no single analytical technology can
fully disclose and account for the information encapsulated
in these samples. Nonetheless, metabolomics retains a
promise well beyond the scope of standard clinical chemis-
try techniques, for affording detailed characterization of
metabolic phenotypes and is believed, eventually, to lead to
so-called precision medicine in which knowledge of their
unique metabolic derangements explains the disease state
of individual patients [36]. A third limitation in the present
study is the use of the 1990 criteria for FMS (1, 14) as the
patient selection was one before publication of the revised
criteria in 2011. The use of the revised criteria is now
standard practice in our pain clinic.

So, can metabolomics studies contribute to the advance-
ment of objective clinical diagnosis of FMS? The results of
the present and the two other metabolomics studies on
the disease imply that they can, albeit with qualifications.
The analyses of blood spots from FMS patients provided
information using IRMS technology that differentiated
samples from FMS subjects from those with RA or OA
with zero misclassifications (100% accuracy). The accuracy
of the metabolomics approach was 75%, but with the
advantage of disclosing a prioritized list of metabolites
that may underlie the differences identified [9]. The pos-
sible role of lysoPCs as biomarkers or as contributors to
the FMS phenotype and function in the pathogenesis of
this condition suggest they are potential new disease bio-
markers and thereby open a new approach for the treat-
ment in FMS [10]. Likewise, the predictive potential of the
combination of succinic acid, taurine and creatine proved
to be excellent for discriminating between our cases of
FMS and controls (AUC = 90%). The combination of cre-
atine and succinic acid also showed a significant correl-
ation with the characteristic symptoms of pain and fatigue
in FMS. The inclusion of this predictive information on
these three metabolites could in time be considered to
form part of the initial evaluation of patients suspected of
suffering from the disease, in anticipation of validation of
EMS diagnostic markers.

Finally, the involvement of gut microbial-host meta-
bolic perturbations in FMS may prove to contribute
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significantly in defining the clinical profile in FMS.
In health, brain-gut interactions are crucial in the
maintaining of homeostasis [37]. It appears that
neuroplasticity-related systems and neurotransmitter sys-
tems are influenced by the gut—brain axis regulation and
perturbed homeostasis may contribute to risk of disease
through alterations in gastrointestinal tract, central ner-
vous, autonomic nervous and immune systems [38]. The
frequent comorbidity of fibromyalgia with stress related
disorders, such as chronic fatigue and irritable bowel syn-
dromes and some CNS related abnormalities, suggests
that gut—brain axis regulation may at least be a partial
common denominator for these disorders. This view may
well be revealed by data from a follow-up targeted meta-
bolomics investigation of high sensitivity, like through
mass spectrometric-based technologies.

Conclusions

An untargeted '"H NMR metabolomics analysis of urine
samples obtained from a group of clinically well-defined
female FMS patients with no psychiatric co-morbidity
could be fully differentiated from a group of young healthy
women. The presence of metabolic indicators of perturba-
tions in the gut microbiome (hippuric, 2-hydroxyisobutyric
and lactic acids) supports the paradigm that regulation of
the gut-brain axis becomes affected in stress related disor-
ders, like FMS. Three metabolite markers (taurine, creatine
and succinic acid) were important for the differentiation
between FMS patients and controls and were significant
indicators of the pain and fatigue symptoms in FMS. ROC
analysis and odds ratios substantiated the good predictive
potential of a combination of these three metabolites for
FMS in the present patient group. Follow-up metabolomics
research on a larger number of urine samples, including
those from individuals at high risk of developing the dis-
ease, as well as longitudinal studies on FMS patients during
treatment, are needed to validate the findings presented
here and to potentially detect effects which would require
greater statistical power. These markers may in time pro-
vide objective supplementary information together with
tender-point measurements and FIQR questionnaires used
to confirm FMS.
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