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Abstract

Background: Mixed pathology, particularly Alzheimer's disease with cerebrovascular lesions, is reported as the
second most common cause of dementia. Research on mixed dementia typically includes people with a primary
AD diagnosis and hence, little is known about the effects of co-existing amyloid pathology in people with vascular
cognitive impairment (VC). The purpose of this study was to understand whether individual differences in amyloid
pathology might explain variations in cognitive impairment among individuals with clinical subcortical VCI (SVCI).

Methods: Twenty-two participants with SVCl completed an ''C Pittsburgh compound B (PIB) position emission
tomography (PET) scan to quantify global amyloid deposition. Cognitive function was measured using: 1) MOCA; 2)
ADAS-Cog; 3) EXIT-25; and 4) specific executive processes including a) Digits Forward and Backwards Test, b)
Stroop-Colour Word Test, and ¢) Trail Making Test. To assess the effect of amyloid deposition on cognitive function
we conducted Pearson bivariate correlations to determine which cognitive measures to include in our regression
models. Cognitive variables that were significantly correlated with PIB retention values were entered in a hierarchical
multiple linear regression analysis to determine the unique effect of amyloid on cognitive function. We controlled for
age, education, and ApoF &4 status.

Results: Bivariate correlation results showed that PIB binding was significantly correlated with ADAS-Cog (p < 0.01) and
MOCA (p < 0.01); increased PIB binding was associated with worse cognitive function on both cognitive measures. PIB
binding was not significantly correlated with the EXIT-25 or with specific executive processes (p > 0.05).

Regression analyses controlling for age, education, and ApoE &4 status indicated an independent association between
PIB retention and the ADAS-Cog (adjusted R-square change of 15.0 %, Sig F Change = 0.03). PIB retention was also
independently associated with MOCA scores (adjusted R-Square Change of 27.0 %, Sig F Change = 0.02).

Conclusion: We found that increased global amyloid deposition was significantly associated with greater memory and
executive dysfunctions as measured by the ADAS-Cog and MOCA. Our findings point to the important role of co-existing
amyloid deposition for cognitive function in those with a primary SVCI diagnosis. As such, therapeutic approaches
targeting SVCI must consider the potential role of amyloid for the optimal care of those with mixed dementia.
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Background

The world’s population is rapidly aging and the total num-
ber of people living with dementia is projected to increase
globally from 24.3 million in 2001 to 81.1 million in 2040
[1]. Alzheimer’s disease (AD) and vascular cognitive im-
pairment (VCI) are the two most common causes of cogni-
tive dysfunction [2]. AD is a neurodegenerative disease
characterized by amyloid-beta (AB) plaques and neurofib-
rillary tangles (NFT) [3]. Individuals with AD often present
with impaired episodic memory, defined as the conscious
retrieval of autobiographical events [3, 4]. Vascular cogni-
tive impairment can be associated with both large vessel
disease and small vessel disease [5]; this study will focus on
those with subcortical VCI (SVCI) as this group is sug-
gested to be a more homogenous group of patients that
are expected to show greater predictability in their clin-
ical picture, natural history, outcome, and treatment re-
sponse [6]. SVCI is caused by small vessel damage that is
typically associated with chronic and diffuse hypoperfu-
sion causing cerebral white matter lesions (WML) and
lacunes [7]. People with SVCI display relatively intact
episodic memory, but show impairments on measures of
executive functions, defined as higher-order cognitive pro-
cesses underpinning goal directed behaviors [8].

AD and SVCI are often reported as two distinct diseases
in epidemiological studies; however, evidence from
neuropathological studies indicate a high rate of mixed
AD-vascular pathology, generally referred to as “mixed de-
mentia”. Mixed pathology is present in approximately half
of all clinically diagnosed AD cases [9—13], including partic-
ipants of AD clinical trials who were extensively screened
for pure AD [14]. An autopsy study reported AD with cere-
brovascular lesions to be the second most common path-
ology after AD [15]; thus, mixed pathology may often be
the rule rather than the exception in clinical diagnosis. Re-
cently, efforts were made in understanding the manifest-
ation of AD with cerebrovascular disease [16]. For example,
at the early AD pathology stage of entorhinal cortical in-
volvement—which is generally clinically asymptomatic—the
presence of cerebrovascular lesions is associated with cog-
nitive impairment. This suggests that cerebrovascular le-
sions may lower the threshold for dementia [17]. In
addition, among those with AD, the presence of ischemic
lesions is associated with a greater degree of cognitive defi-
cits compared with pure AD pathology. Overall, it is hy-
pothesized that vascular lesions may magnify the effect of
mild AD pathology, result in more severe cognitive impair-
ment, and accelerate disease progression [18]. Currently,
much of our knowledge on mixed dementia stems from
the perspective of a primary AD diagnosis and hence, little
is known on the effects of secondary AD pathology in a pri-
mary SVCI diagnosis. Specifically, it is unclear how co-
existing amyloid pathology may affect cognitive function in
people with a primary clinical SVCI diagnosis.
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To investigate cognitive function in mixed pathology it is
important to include cognitive domains associated with
both SVCI and AD to understand the full spectrum of
cognitive impairment. There is consensus that cognitive
measures such as the Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS-Cog) [19], the Executive
Interview Test (EXIT-25) [20], and the Montreal Cognitive
Assessment (MOCA) [21] should be included for an opti-
mal assessment battery in AD and VCI trials [22]. The
ADAS-Cog is sensitive to a wide range of disease severity
specific to the central dysfunctions experienced in AD in-
cluding memory, praxis, and language; it is regarded as the
standard instrument for use in clinical trials as a primary
index of cognitive change in AD [23]. The EXIT-25 and the
MOCA provide a standardized clinical assessment of ex-
ecutive control functions relevant to SVCI [20, 21]. Though
it is important to use clinically relevant measures, these
generalized tests may not capture specific processes that
may be impaired in mixed dementia. As such, additional
tests of specific executive functions—i.e. working memory
(Digits Forward and Backward Test), attention and re-
sponse inhibition (Stroop Test), and set shifting (Trail Mak-
ing Test)—may be more sensitive to subtle change [24].

The neurocognitive profile of SVCI with co-existing
amyloid pathology remains to be elucidated. A better un-
derstanding of the cognitive dysfunctions associated with
amyloid pathology in SVCI may be a useful adjunct in the
clinical assessment of mixed SVCI-AD dementia. Thus, the
purpose of this study was to understand whether individual
differences in amyloid pathology might explain variations
in cognitive impairment among individuals with clinical
SVCI, using a clinically relevant neuropsychological test
battery that is sensitive to both pathologies.

Methods

Study design and participants

We conducted a cross-sectional analysis of baseline data
acquired from a proof-of-concept randomized controlled
trial of aerobic exercise (i.e., NCT01027858) [25].

This study consisted of adults with a clinical diagnosis
of mild SVCI. We recruited from the University of British
Columbia Hospital Clinic for AD and Related Disorders,
the Vancouver General Hospital Stroke Prevention Clinic,
and specialized geriatric clinics in Metro Vancouver, BC.
Clinical diagnosis of SVCI was made by neurologists and
geriatricians based on the presence of both small vessel
ischemic disease and cognitive syndrome. Small vessel is-
chemic disease was defined as evidence of relevant cere-
brovascular disease on MRI brain imaging that included:
1) Periventricular and deep WML: patchy areas of low at-
tenuation or diffuse symmetrical areas of low attenuation
with ill defined margins extending to the centrum semio-
vale, and at least one lacune; 2) Absence of cortical and or
cortico-subcortical non-lacunar territorial infarcts and
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watershed infarcts, hemorrhages indicating large vessel
disease, signs of normal pressure hydrocephalus, or
other specific causes of WML (i.e. multiple sclerosis,
leukodystrophies, sarcoidosis, and brain irradiation). Cogni-
tive syndrome was defined as a MOCA score < 26/30 at
baseline-the MOCA is a brief screening tool for mild cog-
nitive impairment with high sensitivity and specificity [26].
Furthermore, study participants exhibited progressive cog-
nitive decline (compared with previous level of cognitive
function) as confirmed through medical records or care-
giver/family member interviews. Overall, participants were
generally functioning independently and living in the com-
munity with minimal assistance by family or caregiver. All
participants underwent a physician assessment to confirm
current health status and eligibility for the study. Ethical
approval was obtained from the Vancouver Coastal
Health Research Institute (V07-01160) and the University
of British Columbia’s Clinical Research Ethics Board (HO07-
01160). All participants provided written informed consent.

Individuals were eligible for study entry if they met the
following criteria: 1) aged 55 years or older; 2) MOCA
score < 26/30 at screening [26]; 3) Mini-Mental State
Examination score > 20 at screening [27]; 4) lived in Metro
Vancouver, Canada and was able to read, write, and speak
English; 5) if participants are on cognitive medications
(i.e. donepezil, galantamine, rivastigmine, memantine,
etc.) they must be on a fixed dose for the duration of
the trial; 6) must be in sufficient health to participate in
the study’s aerobic-based exercise training program; and
7) provide informed consent. Exclusion criteria included:
1) absence of small vessel ischemic lesions such as WML
or lacunes on brain CT or MRI; 2) diagnosed with another
type of dementia (e.g. AD, dementia with lewy bodies, or
frontal-temporal dementia) or other neurological condi-
tions (e.g. multiple sclerosis or Parkinson’s disease); 3)
taking medications that may negatively affect cognitive
function (e.g. anticholinergics); and 4) people who
planned to participate in a clinical drug trial concurrent
to this study. This analysis included a sub-set of 22 par-
ticipants who met the overall study eligibility criteria
and volunteered to complete a positron emission tom-
ography (PET) scan.

Descriptive variables

Demographic variables

Information regarding age, sex, education level, body
mass index (BMI), and waist-hip ratio (WHR) was col-
lected at study entry.

WML quantification

Scanning protocol

Structural MRI data was acquired on a Philips 3 T
Achieva MRI scanner (Philips Medical Systems, Best,
The Netherlands) at the UBC MRI Research Centre. A
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T2-weighted scan and a Proton-Density-weighted (PD-
weighted) scan were acquired. The repetition time (TR)
and echo time (TE) for the T2-weighted images were
TR =5431 and TE = 90 ms and for the PD-weighted im-
ages were TR =2000 ms and TE = 8 ms. Dimensions for
the T2-and PD-weighted scans were 256 x 256 x 60 voxels
with a voxel size of 0.937 x 0.937 x 3.000 mm.

Image analysis
Prior to lesion identification and segmentation, each MR
image was preprocessed using standard and publicly avail-
able neuroimaging tools that included: 1) MR intensity in-
homogeneity correction using a multiscale version of
the nonparametric non-uniform intensity normalization
method (N3) [28]; 2) a structure-preserving noise-removal
filter (SUSAN) was applied [29]; and 3) all non-brain tissues
were removed using the brain extraction tool (BET) [30].
WML were identified and digitally marked by a single
radiologist with extensive experience in WML identifica-
tion. The radiologist used the following guidelines in the
seeding procedure, which was designed to be simple while
enabling subsequent automated processing:

1. Mark all distinct WML regardless of size.

2. Place more than one point on a lesion if the additional
points would help define the extent of the lesion.

3. Place at least one point near the center of each lesion.

WML were then segmented by a method that auto-
matically computed the extent of each marked lesion
[31]. This segmentation method has been extensively
validated in large data sets with a large range of lesion
loads, and was found to be highly accurate compared to
radiologist segmentations and also robust to variations
in the placement of the seed points [31]. Full details on
the point placement procedure and subsequent auto-
matic segmentation are described in previous work [31],
but briefly, the seed points were processed by a custom-
ized Parzen windows classifier [32] to estimate the inten-
sity distribution of the lesions. The algorithm included
heuristics to optimize the accuracy of the estimated dis-
tributions by dynamically adjusting the position and the
number of seed points used for the Parzen window com-
putation, as well as a spatial method that approximated
visual shape partitioning to identify areas that were likely
to be false positives. The lesion masks were then used to
quantify WML volumes in mm?>.

Dependent variables
Global cognitive function

MOCA This is a cognitive screening tool that includes an
assessment of set shifting, visuospatial abilities, short-term
and working memory, attention, concentration, language,
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abstraction, and orientation to time and place—generally, it
places emphasis on executive functions [33]. The MOCA
computes a score out of 30 with lower scores indicating
greater cognitive impairment. The MOCA is a sensitive
tool for detecting both mild cognitive impairment [26] and
VCI, including SVCI [34].

ADAS-Cog This scale assesses memory, language, and
praxis. There are 11 tests and scores range from 0 to 70
with higher scores indicating greater cognitive dysfunc-
tion. The inter-rater reliability of the ADAS-Cog is 0.989
and its test-retest reliability is 0.915 [35].

Executive functions

EXIT-2 This is a standardized clinical assessment of global
executive functions [20, 36] and is designed to detect
frontal systems pathology [37]. This test contains 25 items
and scores range from 0 to 50 with higher scores indicating
greater global executive dysfunctions. This measure can ac-
curately separate non-demented subjects from those with
cortical or subcortical dementias [38]. Its inter-rater reli-
ability is 0.90 [39].

Specific executive processes

Three specific executive processes were measured: 1)
Working memory was assessed with the Verbal Digits
Forward and Backward Tests [40]. Participants repeated
progressively longer random number sequences in the
same order as presented (forward) and in the reversed
order (backward). The difference in score between the
two tests was calculated, with smaller differences indi-
cating better performance; 2) Selective attention and
conflict resolution was assessed by the Stroop test [41],
which involved three different conditions (80 trials each).
First, participants read out words printed in black ink;
second, they named the display colour of coloured-X’s;
and third, they were shown a page with colour-words
printed in incongruent coloured inks (e.g., the word
“BLUE” printed in red ink). Participants were asked to
name the ink colour in which the words were printed
(while ignoring the word itself). We recorded the time
participants took to read the items in each condition
and calculated the time difference between the third
condition and the second condition. Smaller time dif-
ferences indicate better selective attention and conflict
resolution; 3) Set shifting was assessed by the Trail
Making Test (Part A and B) [42]. First, participants
drew lines connecting encircled numbers sequentially
(Part A) then they were asked to alternate between
numbers and letters (Part B). The difference in time to
complete Part B and Part A was calculated, smaller dif-
ference scores indicated better performance.
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Independent variables
Amyloid imaging

Scanning protocol PET scans were performed using
"'C-PIB produced at UBC TRIUMEF. Scans were per-
formed in 3-D mode using the GE Advance tomograph
(General Electric, Canada/USA). Prior to injection, a
10-minute transmission scan with a ®*Ge rod was col-
lected for attenuation correction. After the transmission
scan, 555 to 560 MBq of "'C-PIB was injected as a bolus
into the antecubital vein and flushed with saline. A 90-
minute dynamic acquisition started at tracer injection
and data were framed into an 18x300 sec imaging
sequence.

Image analysis Parametric images of the non-displaceable
binding potential (BPyp) [43] were generated using tissue
input Logan graphical analysis [44, 45] with the cerebellum
as the reference region. This method has been validated as
reliable for quantification of amyloid deposition [46, 47]. A
mean PIB-PET image, ie. radiotracer concentration aver-
aged over the entire scan duration was also formed for
image co-registration and ROI definition purposes. Using
SPM 8 (Wellcome Department of Cognitive Neurology, In-
stitute of Neurology, University College London) each sub-
jects MRI image was co-registered to the corresponding
mean PIB-PET image. Each subject’s MRI image was then
normalized to the SPM MNI305 template and the corre-
sponding transformation parameters were applied to the
subject’s PET images (mean and parametric images). For
those without MRI scans (5 subjects did not scan due to
MR contraindications), the subjects mean PIB-PET image
was normalized to a mean PIB-PET image template in
MNI space. This PIB-PET image template was created by
averaging 6 healthy control PIB-PET scans that had all been
warped with their own MRI to the SPM MNI305 template.

Regions of interest analysis A custom set of regions of
interest (ROIs) was defined on the coronal view of the
MNI305 template [48]. These ROIs were transposed to
each subject’s warped MRI and mean-PET images (in MNI
space). ROIs were adjusted as necessary using both the
MRI and mean PIB-PET image for guidance (1-2 pixels
maximum). The modified set of ROIs was then applied to
the parametric PIB-PET image and the average BPyp
within each ROI was extracted. Global PIB binding was de-
termined by averaging values in bilateral frontal (combined
orbitofrontal and medial prefrontal cortex), parietal (com-
bined angular gyrus, superior parietal, precuneus, and
supramarginal gyrus), temporal (combined lateral temporal
and middle temporal gyrus), and occipital cortices, and an-
terior and posterior cingulate gyrus [49].
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PIB-positive vs PIB-negative categorization To deter-
mine PIB-positive/negative categorization we used stan-
dardized uptake values (SUV—tracer concentration/(injected
dose/body weight)) normalized to the cerebellar cortex SUV,
referred to as SUV ratio (SUVR-global SUV/cerebellar
cortex SUV). An SUVR threshold of 1.50 was imple-
mented—this PIB threshold was based on studies in a
large group of cognitively normal subjects studied at the
University of Pittsburgh [50] and is used by ADNI [51].
Participants with global SUVR above 1.50 were catego-
rized as PIB-positive; participants with global SUVR below
1.50 were categorized as PIB-negative.

Amyloid and cognitive function To determine the effect
of amyloid on cognitive function we used Logan graphical
analysis [44, 45] as it is more accurate when compared with
SUVR [52].

Covariates

APOE €4 genotype

ApoE genotype was determined using TagMan assay sys-
tems for the single nucleotide polymorphisms—219G/T.
DNA was extracted from whole blood using an auto-
mated DNA extraction machine (AutogenflexStar, Auto-
gen Inc, Hollisten, MA). Because the ApoE €4 genotype
is relatively rare, the ApoE €4 genotype odds ratios was
collapsed into 2 main categories: those with at least 1 €4
allele and those with no €4 allele [53].

Statistical analysis

All statistical analyses were performed using Statistical
Package for the Social Sciences 22.0. Initial data inspec-
tion determined that the distributions were normal (all
skew values were less than the absolute value of 1). We
first conducted Pearson bivariate correlations to deter-
mine which cognitive measures to include in our regres-
sion models—cognitive variables that were significantly
correlated with PIB BPyp values (p <.05) were then en-
tered in a hierarchical multiple linear regression analysis
to determine the unique effect of amyloid on cognitive
function. In the regression age, education, and ApoE &4
status were entered in the first step as covariates, and
PIB BPy\p was entered in the second step to determine
the unique contribution of amyloid of cognitive function.
However, due to our small sample size we conducted a
regression analysis without covariates and a regression
with covariates to ensure the robustness of our results.
Also, we report adjusted R”> values, which penalizes
the explained variance for each additional covariate.
For each hierarchical regression model, we computed
collinearity statistics (tolerance and variance inflation
factor), histograms of the residuals, and scatterplots
of the predicted versus residual values to ensure that
the assumptions of linear regression were met. In all
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models, mutlicollinearity was not an issue among
predictor variables, and the residuals were normally
distributed and homoscedastic. These analyses also
confirmed a linear association between the predictors
and outcome variables for a hierarchical multiple linear
regression.

Results

Descriptive variables

Twenty-two participants (8 females, 14 males) completed
PIB-PET imaging. The mean age was 72.95+7.76 years
with an average MOCA score of 23.54 +2.34. Five out of
22 participants did not complete an MRI scan due to MR
contraindications (e.g. presence of coronary stent or artifi-
cial optic lens). One scan was discarded from WML quanti-
fication analysis due to severe motion artifacts—with a
subset of 16 participants, WML volume ranged from 23.49-
3093.39 mm® with an average of 616.41 + 849.13 mm?®. Of
22 participants, six were PIB-positive and 16 were PIB-
negative. The global PIB BPyp was 0.07 + 0.23. Detailed
demographic characteristics, neuropsychological test re-
sults, WML volume, and PIB BPyp, values are presented in
Table 1. Compared with the total participants in the ran-
domized controlled trial, this subset was not different in
age (mean difference = 2.42, p > 0.05), but displayed higher
MOCA scores (mean difference = 3.07, p < 0.01).

Bivariate correlations

PIB binding was significantly correlated with ADAS-Cog
(r=0.58, p<0.01) and MOCA (r =-0.55, p <0.01)-spe-
cifically, increased PIB BPyp was associated with worse
cognitive performance on the ADAS-Cog and the MOCA
(Table 2). PIB BPyp was not significantly correlated with
the EXIT-25 or with any of the specific executive pro-
cesses (p > 0.05).

Linear regression

To determine the independent association between PIB
BPnp and ADAS-Cog and MOCA scores we conducted
a hierarchical multiple linear regression.

ADAS-Cog

Without covariates in the model, PIB rentention accounted
for 31.0 % (adjusted R-square) of the variance in ADAS-
Cog scores (F [1, 20] = 10.27, p = 0.00—Table 3). When con-
trolled for age, education, and APOE &4, this accounted for
27.0 % of the variance in ADAS-Cog scores. Adding PIB
BPnp to the model resulted in a significant adjusted R-
square change of 15.0 % (F Change [1, 17] =5.78, Sig F
Change = 0.03-Table 3). The total adjusted variance
accounted by the final model was 42.0 %.
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Table 1 Descriptive Characteristic

Variable Mean SD
Age 72.95 7.77
Female Sex, No. (%) 8 (36 %)
Education, No. (%)
High school education 1 (5 %)
Trade or professional certificate or diploma 12 (55 %)
University education 9 (41 %)
MMSE (max. score 30) 27.50 1.95
MOCA (max. score 30) 23.55 2.34
WHR 091 0.08
BMI 2695 4.78
PIB-positive, No. (%) 6 (27 %)
Global PIB BPyp 0.07 023
WML volume (mm?), n=16 61641 849.13
Cognitive Assessments
ADAS-Cog (max. score 70) 899 330
Exit-25 (max. score 50) 10.59 438
Stroop CW-C, sec. 6144 26.01
Trails B-A, sec. 5051 2484
Digits F-B, sec. 3.23 2.79

SD = Standard Deviation, MMSE = Mini-Mental State Examination, MOCA =
Montreal Cognitive Assessment, WHR = Waist-to-Hip Ratio, BM/ = Body Mass
Index, ADAS-Cog = Alzheimer’s Disease Assessment Scale — Cognitive subscale,
Exit-25 = Executive Interview Test, Stroop CW-W = Stroop Color Words minus
Stroop colored x’s, Trails B-A =Trails B (numbers and letters) minus Trails A
(numbers), Digits F-B = Digits F-B = Digits Forwards minus Digits Backwards

MOCA

Without covariates in the model, PIB retention accounted
for 27.0 % (adjusted R-square) of the variance in MOCA
scores (F [1, 20] = 8.66, p = 0.01-Table 4). When controlled
for age, education, and APOE &4 this accounted for-7.0 %
of the variance in MOCA scores, which suggests that the
penalty for adding these covariates outweighed their ex-
plained variance in MOCA scores. Adding PIB BPyp to

Table 2 Correlation Matrix
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the model resulted in a significant adjusted R-square change
of 27.0 % (F Change [1, 17] =6.98, Sig F Change = 0.02—
Table 4). The total adjusted variance accounted by the final
model was 20.0 %.

Discussion

To date, few studies have focused on the role of co-existing
amyloid pathology in a primary SVCI diagnosis. Our study
found that six out of twenty-two participants with clinical
SVCI were PIB-positive. In assessing the effect of amyloid
on cognitive function, we found that increased global amyl-
oid deposition—suggestive of co-existing Alzheimer path-
ology—was significantly associated with worse cognitive
function as indicated by the ADAS-Cog and MOCA. Our
findings concur with and extend the results of previous
literature assessing the role of amyloid on cognitive func-
tion in people with mild cognitive impairments (MCI) and
healthy older adults.

The ADAS-Cog primarily assesses episodic memory
and has been linked to amyloid deposition [54]. This as-
sociation is present in both healthy older adults and
people with MCI. Longitudinal studies in healthy older
adults found that increased PIB binding was associated
with greater memory decline over time [55, 56] and may
be indicative of preclinical AD [56]. A similar association
is found in people with MCI. Several studies have found
increased PIB binding to be strongly correlated with epi-
sodic memory impairments in amnestic MCI subtypes
[57, 58]; furthermore, PIB-positive amnestic MCI patients
are more likely to progress to AD [59, 60]. Together, these
previous studies have established the association between
amyloid and memory impairments within an AD context.
The current study extends previous knowledge of amyloid
deposition by showing that greater amyloid deposition on
PIB-PET screening is associated with greater memory im-
pairment in a SVCI cohort.

Our study also found increased amyloid to be associ-
ated with lower MOCA scores, which assesses a mix of

PIB BPno Age Education APOE €4 ADAS-Cog MOCA EXIT 25 Digits Stroop Trails
PIB BPyp
Age -0.01
Education 0.09 0.21
APOE €4 036 0.13 0.04
ADAS-Cog 0.58** 0.15 0.04 061**
MOCA —0.55*% -0.12 -0.25 -0.16 -0.41
EXIT-25 0.13 0.18 0.22 0.25 043* -040
Digits 0.02 0.12 0.34 -045% -0.26 0.17 -0.04
Stroop 017 -0.04 0.04 -0.11 0.34 -0.18 0.34 0.04
Trails 0.19 -0.02 0.12 0.48* 028 -0.18 029 0.01 0.13

*significant at p < 0.05; **significant at p < 0.01
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Table 3 Multiple linear regression models assessing the contribution of PIB retention on ADAS-Cog

Independent variables R Adjusted R? R’ Change Unstandardized B (Standard error) Standardized 3 P- Value
Model 1

PIB BP\p 0.34 0.31 - 8.56 (2.67) 0.58 0.00
Model 2

Step 1 037 0.27 0.37*

Age 0.03 (0.08) 0.070 0.73
Education 0.02 (0.68) 0.01 0.97
APOE €4 4.14 (1.30) 0.60 0.01
Step 2 053 042 0.16*

Age 0.04 (0.07) 0.10 0.56
Education —-0.11 (0.61) -0.03 0.86
APOE €4 3.07 (1.24) 044 0.02
PIB BPnp 631 (262) 043 0.03

*significant at p < 0.05

cognitive functions with an emphasis on executive func-
tions. Though AD is typically associated with memory
impairments, people in the early stages of AD display
executive dysfunctions [61, 62]; thus, it is plausible that
amyloid deposition would also be associated with execu-
tive dysfunctions. However, we note that we did not find
a significant association with specific executive measures
(i.e., Digit Span Test, Stroop test, and Trail Making Test)
and the EXIT-25 test. No other studies have reported
data on the EXIT-25 and few studies have examined the
effect of amyloid deposition on specific executive pro-
cesses. One reason for these non-significant results may
lie in the minimal power of these tests to detect an ef-
fect. A complex statistical study conducted by ADNI
found a composite score (ADNI-EF included: Category
Fluency, Clock Drawing, WAIS-R Digit Symbol, Digit
Span Backwards, and the Trail Making Test including

Trails A, Trails B, and Trails B minus Trails A) to be
superior to any independent measure of executive func-
tioning. Specifically, ADNI-EF was sensitive to capturing
changes in cognitive function over time and was the
strongest baseline predictor of conversion to AD [63].
Although the MOCA does include a memory subtest, it
places greater emphasis on tasks of executive function
and has similar components to ADNI-EF (includes Clock
Drawing, Digit Span Backwards, and Trail Making and
additionally includes a phonemic fluency task, a two-item
verbal abstraction task, a sustained attention task, and a
concentration task). Thus, the MOCA-as a global com-
posite measure—may be more sensitive compared with
specific executive processes.

Overall, we found that amyloid was associated with
impairments in multiple domains of cognitive function
including memory and executive dysfunctions in people

Table 4 Multiple linear regression models assessing the contribution of PIB retention on MOCA

Independent variables R’ Adjusted R? R? Change Unstandardized B (Standard error) Standardized 3 P- Value
Model 1

PIB BPnp 030 027 - —5.75 (1.95) -0.55 0.01
Model 2

Step 1 0.09 -007 0.09

Age —-0.02 (0.07) -0.06 0.81
Education —-0.58 (0.59) -0.23 0.34
APOE €4 -0.72 (1.12) -0.15 053
Step 2 035 0.20 0.27*

Age —0.03 (0.06) -0.10 0.63
Education —046 (0.51) -0.18 0.39
APOE €4 027 (1.04) 0.06 0.80
PIB BPyp —5.80 (2.20) -0.56 0.02

*significant at p < 0.05
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with clinical SVCI. A similar study conducted by Lee
and colleagues [64] found that PIB retention in
people with small vessel MCI was associated with
impairments in multiple domains of cognitive func-
tion including language, visuospatial, memory, and
executive functions. Furthermore, these results con-
cur with a study published by Nordlund and col-
leagues [65] who found that people with cognitive
impairments in multiple domains (i.e. memory and execu-
tive dysfunctions) were more likely to convert to mixed
dementia and vascular dementia compared with people
who exhibited either memory or executive dysfunction
alone.

However, our conclusions are not without limitations.
First, this is an exploratory study, and thus, is limited by
its small sample size; therefore, we are limited in our
ability to detect smaller effects and future studies are re-
quired to confirm and extend our current results. We
also did not account for the effect of NFT on cognitive
function. This is of particular importance as neocortical
NEFT is more consistently correlated with dementia sever-
ity, and it is suggested that NFT may mediate the associ-
ation of amyloid on cognitive function [66]. In addition,
we were not able to acquire MRI scans in all participants
and did not have the sample size to include WML as a co-
variate. As a result, it is not clear how WML may have
uniquely contributed to performance on the ADAS-Cog
and MOCA. This is particularly important as declines in
memory and executive functions have been linked to
increased subcortical white matter disease [67-69].
However, a study published by Park and colleagues
[49] investigating the relationship between cerebrovas-
cular disease, amyloid, and cognitive function in SVCI
suggested that amyloid burden and SVCI pathology
were largely unrelated and that the effects of amyloid
on cognition is independent of markers of SVCI path-
ology. The unique impact of amyloid on cognitive
function is further supported by evidence in cerebrospinal
fluid (CSF). A study assessing the role of amyloid beta (the
42-amino-acid form—Af;_4,) and neurofilament light
(NE-L)—elevated concentration of NF-L in CSF are as-
sociated with WML and small vessel disease—in CSF
found that only AP;_4, was associated with worse cog-
nitive outcomes in people with cerebral vascular disease
[70]. Overall, the results of our study and previous studies
[64, 70, 71] suggest that increased amyloid is independ-
ently associated with worse cognitive outcomes in people
with vascular disease.

Conclusion

It is reported that approximately 33 % of those with SVCI
exhibit amyloid pathology [71]. Yet, few studies have in-
vestigated the effect of amyloid deposition in people with
SVCI and fewer studies have assessed PIB rentention as a
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continuous variable. Categorical diagnostic classifications
of AD, SVCI, and mixed AD/SVCI in clinical practice fail
to take into account the reality of a gradient of brain amyl-
oid deposition across these disease states. Our findings
point to the important role of amyloid deposition for cog-
nitive function even among those with a primary SVCI
diagnosis. As such, therapeutic approaches targeting SVCI
must consider the potential role of amyloid for the opti-
mal care of those with mixed dementia.
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