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Abstract 

Background:  Focal and segmental glomerulosclerosis (FSGS) is a histologic pattern of injury that characterizes a 
wide spectrum of diseases. Many genetic causes have been identified in FSGS but even in families with comprehen-
sive testing, a significant proportion remain unexplained.

Methods:  In a family with adult-onset autosomal dominant FSGS, linkage analysis was performed in 11 family mem-
bers followed by whole exome sequencing (WES) in 3 affected relatives to identify candidate genes.

Results:  Pathogenic variants in known nephropathy genes were excluded. Subsequently, linkage analysis was per-
formed and narrowed the disease gene(s) to within 3% of the genome. WES identified 5 heterozygous rare variants, 
which were sequenced in 11 relatives where DNA was available. Two of these variants, in LAMA2 and LOXL4, remained 
as candidates after segregation analysis and encode extracellular matrix proteins of the glomerulus. Renal biopsies 
showed classic segmental sclerosis/hyalinosis lesion on a background of mild mesangial hypercellularity. Examination 
of basement membranes with electron microscopy showed regions of dense mesangial matrix in one individual and 
wider glomerular basement membrane (GBM) thickness in two individuals compared to historic control averages.

Conclusions:  Based on our findings, we postulate that the additive effect of digenic inheritance of heterozygous 
variants in LAMA2 and LOXL4 leads to adult-onset FSGS. Limitations to our study includes the absence of functional 
characterization to support pathogenicity. Alternatively, identification of additional FSGS cases with suspected delete-
rious variants in LAMA2 and LOXL4 will provide more evidence for disease causality. Thus, our report will be of benefit 
to the renal community as sequencing in renal disease becomes more widespread.
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Background
Focal and segmental glomerulosclerosis (FSGS) is a his-
tologic lesion with varied causes which include putative 
circulating factor(s), monogenic etiologies and hyperfil-
tering conditions [1, 2]. Monogenic FSGS has extensive 
genetic heterogeneity with 59 implicated genes and the 
list continues to expand, facilitated by the adoption of 
next-generation sequencing technologies [3].

Defects in basement membrane proteins of the kid-
ney such as those encoded by type IV collagen and 
LAMβ2 are amongst the monogenic causes of FSGS [1, 
2]. Through broader sequencing efforts, reports over the 
past several years have identified an under-recognition 
of pathogenic variants in type IV collagen, causative for 
Alport syndrome, in patients presenting with a range of 
phenotypes spanning from non-progressive haematuria/
albuminuria, adult-onset FSGS and classic (severe) dis-
ease [4–7]. The most abundant protein in the glomerular 
based membrane (GBM) is heterotrimeric type IV col-
lagen (α3α4α5) but there exists numerous other proteins 
that contribute to GBM architecture and turnover. Our 
own local experience has highlighted a preponderance 
of undiagnosed Alport syndrome but here we describe 
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an unexplained family with FSGS, where our detailed 
genetic analysis identified an association with segregat-
ing heterozygous variants in LAMA2 and LOXL4, whose 
encoded proteins serve roles in basement membrane 
assembly and function.

Methods
Patient ascertainment
Patients were recruited at University Health Network, 
Toronto, ON, Canada after receiving informed consent 
in accordance with the hospital Research Ethics Board. 
We obtained longitudinal clinical data and eventually 
blood, saliva, or isolated DNA. Clinical information was 
obtained from telephone interviews, questionnaires and 
physician reports. Genomic DNA was extracted from 
blood or saliva samples using standard procedures.

Linkage analysis
Three affected individuals were genotyped with 
HumanOmni2-5Exome-8-v1-1-A (2,583,651 markers) 
while 8 samples were genotyped with InfiniumOmni2-
5Exome-8v1-3_A1 (2,612,357 markers). Parametric 
multipoint linkage analysis was performed using Merlin 
under a fully penetrant dominant model, with a disease 
allele frequency of 0.0001 [8]. Starting with an original set 
of 2,482,589 autosomal markers, several marker filtering 
steps were performed including minor allele frequency 
(MAF) and linkage disequilibrium (LD) based marker fil-
tering, markers with MAF > 0.4 and those with pairwise 
r2 < 0.1 on each chromosome were kept. This ultimately 
resulted in a set of 11,335 markers across 22 autosomes 
which were included in the linkage analyses. Since the 
affection status of 3 out the 11 samples (7014, 7015 and 
7824) was undetermined, linkage analysis was performed 
on the pedigree 3 times taking into account each of the 
three possible scenarios – (1) all 3 samples are affected, 
(2) all are unaffected, and (3) all unknown. Results are 
shown for scenario 3.

Exome capture and next‑generation sequencing
Whole exome sequencing (WES) was performed by The 
Centre for Applied Genomics, The Hospital for Sick 
Children, Toronto, Canada. A shotgun library was made 
from each sample and captured using the Agilent Sure-
Select Human All Exon V5 (Santa Clara, CA) according 
to protocol. The manufacturer’s specifications state that 
the capture regions total approximately ≈180,000 exons 
from ≈18,700 genes or 54  Mb. Enriched libraries were 
then sequenced by 150  bp, paired-end read sequencing 
on Illumina HiSeq 2500 (Illumina Inc, San Diego, CA).

In silico data processing
Reads were mapped to the hg19 reference sequence 
using the BWA-backtrack algorithm from BWA v0.5.9 
[9]. Duplicate reads were removed using MarkDupli-
cates from Picard v1.79. Local read realignment around 
insertions and deletions (indels), base quality score 
recalibration, and variant calling with UnifiedGeno-
typer, were accomplished using GATK v1.1–28 [10, 
11]. SNP calls were subjected to variant quality score 
recalibration. Indels were discarded if they overlapped 
repeat masked regions, and hard-filtered by variant 
call annotations QualByDepth (QD < 10.0), ReadPos-
RankSumTest (ReadPosRankSum < -20.0), and Strand 
Bias (SB > -0.01). Base calling was performed using 
CASAVA v1.8.2. Copy number variants (CNVs) were 
identified using XHMM after filtering out regions with 
extreme GC-content and repeat-masked regions [12, 
13].

Basement membrane measurements
Distances were measured in Fiji/ImageJ using a grid 
method to obtain a minimum of 100 measurement per 
individual normalised to the length of the GBM [14]. 
The total number of measurements for each individual 
were: 6237: n = 177; 6238: n = 160; 6463: n = 210; 7825: 
n = 359. The mean ± SEM was calculated and a one-
way ANOVA with Tukey’s multiple comparisons test 
was performed using GraphPad Prism version 8.4.3 for 
Windows, GraphPad Software, San Diego, California 
USA, www.​graph​pad.​com.

Results
The proband, 6238, presented with proteinuria in 
his early 20s, with protein excretion rising to up to 
8  g/day, and a kidney biopsy at age 41 demonstrated 
FSGS (Figs.  1 and 2). Additionally, focally duplicated 
and irregular thickening of the GBM along with focal 
effacement of podocyte foot processes was observed. 
His brothers (7825, 6237) were shown to have FSGS 
in the 4th and 5th decades of life. The proband and his 
elder brother, 7825, developed end-stage kidney dis-
ease (ESKD) in the 5th decade of life while the young-
est brother, 6237, has stage 3b A3 CKD at age 59. One 
sister, 6464, developed proteinuria and impaired kidney 
function at the time of last follow-up at age 54. Her 
daughter, 6463, who was found to have FSGS at age 
23, had ~ 3.3 g/d of proteinuria and an eGFR of 48 mL/
min/1.73m2 at age 30. Two of the proband’s sisters, 
7014 and 7015, were reported to have proteinuria and 
no renal biopsies by the 5th decade of life. The proband’s 
mother was reported to have FSGS, developing ESKD 
at age 68. The proband’s son, 7824, was described to 
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have proteinuria. 7827 has not had recent screening in 
his 30s. There was no reported history of hematuria in 
any of the family members.

Six hundred and twenty-five genes associated with 
nephropathy, including 59 FSGS, were examined in the 
family with no segregating rare variants identified [6]. 

Fig. 1  Digenic Inheritance of Rare Variants in LAMA2 and LOXL4 in a Family with Autosomal Dominant FSGS. Individuals with dot indicates 
microalbuminuria and unclear affectation status. A Exome Sequencing was performed in 3 affected members (6238, 6237, 6463) of family FSGS 15. 
B Five heterozygous rare variants were identified and sequenced in each relative, with LAMA2 (*) and LOXL4 ( +) segregating in affected individuals. 
C These variants affect highly conserved residues across species and are predicted to be deleterious by prediction programs. gnomAD v.2.1.1 
accessed May 3, 2020

Fig. 2  Kidney biopsies from proband, 6238, and sibling 6237. A 6238: The first biopsy showed classic segmental sclerosis/hyalinosis lesion on a 
background of mild mesangial hypercellularity (PAS, 20x). B 6238: Ultrastructural examination showed mild podocyte foot process effacement 
and normal glomerular basement membranes (GBM)(2500x). C and D 6237: no significant GBM alterations (red arrows) are seen but there are 
regions of dense extracellular matrix (*), postulated to be mesangial, which appear to enclose cells to the point where only the nucleus is visible 
(yellow arrows). (E) Comparison of nested averages (mean ± SEM) for each individual: 6237(M): 574.3 nm ± 11.8; 6238(M): 345.7 nm ± 8.1; 6463(F): 
375.6 nm ± 8.5; 7825(M): 495.9 nm ± 7.2; all individuals, except 6238(M) & 6463(F), are significantly different from each other (p < 0.0001). Dotted 
lines are the average GBM thickness for males (red; 373 ± 42 nm) and females (blue; 326 ± 45 nm) according to Steffes et al. Lab Invest. 1983 
Jul;49(1):82–6
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Of note, pathogenic variants causing medullary cystic 
kidney disease type 1 may lie in a variable-number tan-
dem repeat (VNTR) sequence in MUC1 and is missed by 
massively parallel sequencing [15]. However, in this fam-
ily, the index of suspicion is low for MUC1-associated 
disease given the clinical characteristics consistent with 
a primary glomerular disorder as evidence by > 3 g/day of 
protein excretion and supported by pathologic findings 
rather than a primary tubulointerstitial process [16].

Genotype data from 11 individuals of this European 
descent pedigree was analyzed for multipoint linkage 
analysis, which included a set of 11,335 SNPs across auto-
somes. The segregation of the disease in the pedigree was 
not compatible with X-linked disease and therefore only 
autosomal linkage analysis was performed under a fully 
penetrant dominant model, with the affection status of 
5 individuals as affected (6237, 6238, 6463, 6464, 7825), 
3 individuals as unaffected (7826, 7827, 7828) and 3 as 
unknown (7014, 7015, 7824). The maximum LOD score 
was 0.9028, and it was observed at 388 markers across 11 
different chromosomes (chromosome 1, 2, 3, 4, 6, 7, 8, 10, 
12, 13 and 18), narrowing the candidate gene(s) to only 
3% (388 SNPs/11,335 SNPs) of the genome (Supplemen-
tary Fig. 1). Copy number variants (CNV) were also ana-
lyzed but there was no co-segregation of any particular 
CNV in all affected individuals of the family.

Whole exome sequencing was performed in 6237, 
6238 and 6463, identifying 5 heterozygous rare vari-
ants (minor allele frequency or MAF < 0.01) in the 
linked regions (Fig.  1). Sanger sequencing of the 5 
variants in 11 individuals where DNA was available 
identified 2 of these to be segregating in all affected indi-
viduals, while the other 3 did not (Fig. 1). This included 
the variants in LAMA2 (chr6, NM_000426.3:c.380A > G 
(p.Thr127Ala); MAF 1.76 × 10–5) and LOXL4 (chr10, 
NM_0002211:c.1684_1686del (p.Glu562del); MAF 
3.871 × 10–5), which affected amino acid residues 
that were found to be highly conserved across species 
(Fig.  1). MAFs were determined by gnomAD v.2.1.1, 
which contains 125,748 exome sequences and 15,708 
whole-genome sequences. Both variants were predicted 
to be deleterious by in silico programs (Supplementary 
Tables 1 and 2).
LAMA2 contributes to laminin networks and local-

izes to the mesangium while LOXL4 catalyzes cross 
linking of collagens and is expressed in glomeruli and 
tubules. Detailed examination of electron microscopy 
of basement membranes was undertaken in 4 individu-
als: 6237, 6238, 6463 and 7825. In 6237, regions of dense 
mesangial matrix were observed (Fig. 2) but this was not 
observed in other biopsies of the same individual or the 
3 other individuals. The glomerular basement membrane 
(GBM) thickness was also compared. The average GBM 

widths (± SEM) were: 574.3  nm ± 11.8 (6237; male), 
345.7 nm ± 8.1 (6238; male), 375.6 nm ± 8.5 (7825; male), 
495.9 ± 7.2 (all individuals) (Fig. 2). Two of these patients, 
6237 and 7825, had wider GBMs than historic control 
averages (male 373 ± 42 nm, n = 59 male kidney donors; 
and 326 ± 45 nm, n = 59 female kidney donors) [17].

Discussion and conclusions
Our comprehensive genetic analysis in this FSGS family 
consisting of linkage analysis narrowed candidates to 3% 
(388 SNPs/11,335 SNPs) of the genome. Whole exome 
sequencing subsequently identified segregating rare vari-
ants in LAMA2 and LOXL4 as candidate disease genes.

Laminins are found in an intricate lattice of proteins 
that compose extracellular matrices of organs. LAMA2 
encodes the laminin alpha-2 subunit. In the glomerulus, 
it heterotrimerizes with laminin beta-1 or 2 (LAMβ1, 
LAMβ2) and laminin gamma-1 (LAMC1), called laminin 
211 or 221, to form the mesangial extracellular matrix 
[18, 19]. The variant LAMA2 T127A exists in the laminin 
N-terminal (LN) domain, which is responsible for trimer-
trimer interaction of laminin polymer formation involved 
in the initiation of basement membrane assembly [20]. 
Certain variants in LAMA2 have reported to cause 
LAMA2-muscular dystrophy, an autosomal recessive 
disorder caused by loss of laminin-211 in skeletal muscle 
[21]. None of the affected family members had evidence 
of LAMA2-muscular dystrophy. Lama2 protein is also 
expressed in most tubular segments with the exception of 
proximal tubules (https://​esbl.​nhlbi.​nih.​gov/​KTEA/)​(22).
LOXL4 encodes an amine oxidase enzyme that is cop-

per dependent and hypothesized to catalyze the cross 
linking of collagens and elastins [23]. It is expressed in 
both glomeruli and tubules (https://​www.​prote​inatl​as.​
org/​ENSG0​00001​38131-​LOXL4/​tissue/​kidney; https://​
gtexp​ortal.​org/​home/​gene/​LOXL4; https://​esbl.​nhlbi.​nih.​
gov/​KTEA/)​(22). The single amino acid deletion occurs at 
the C-terminus of the protein, which is highly conserved.

Segregation analysis was performed and deemed not 
to segregate if not found in an affected individual. How-
ever, an unaffected or unknown status individual could 
have the variant and still satisfy segregation analysis due 
to reasons of incomplete penetrance or later onset of 
disease. In this family, ESKD occurs in the 5th to 6th dec-
ade of life and some of the female relatives have milder 
disease.

We designate LAMA2 and LOXL4 as candidate FSGS 
genes due to several study limitations. These include the 
absence of rigorous functional characterization to sup-
port pathogenicity, which is challenging for matrix pro-
teins. Instead we provide renal pathology correlations, 
demonstrating GBM and mesangial matrix thickening 
in 3 affected relatives. Alternatively, identification of 

https://esbl.nhlbi.nih.gov/KTEA/)(22
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additional FSGS cases with suspected deleterious vari-
ants in LAMA2 and LOXL4 will provide more evidence 
for disease causality. Thus, our report will be of interest 
to clinicians and genetic groups as sequencing in renal 
disease becomes more widespread. Though the LAMA2 
and LOXL4 variants are rare, they are not absent in gno-
mAD v.2.1.1 but phenotypic data is not available for cor-
relation. However, it is unlikely that these 2 rare variants 
exist in the same individuals but this is impossible to 
ascertain based on the summary data that is available in 
gnomAD. Another limitation is our use of whole exome 
sequencing, which may not adequately capture some 
regions and only evaluates coding but not intronic or 
intergenic sequence.

Based on our findings, we narrow candidates to 3% 
of the genome and identify coding sequence variants in 
LAMA2 and LOXL4, which have biologic plausibility, as 
candidates for disease causation in a family with FSGS. 
We postulate that the additive effect of digenic inherit-
ance of heterozygous variants in LAMA2 and LOXL4 
leads to late adult-onset disease in the affected relatives. 
We further postulate that the absence of clinically signifi-
cant extra-kidney features including muscular dystrophy 
is as a result of the impact of the variant (heterozygous 
missense for LAMA2, heterozygous single base pair dele-
tion in LOXL4), which should lead to translated protein 
rather than complete deficiency that can be seen in auto-
somal recessive disorders like LAMA2-muscular dys-
trophy. Our report will thus be of benefit to the renal 
community as sequencing in disease becomes more 
widely applied should more candidate variants in these 
genes be discovered.
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