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The 6R’s of drug induced nephrotoxicity
Linda Awdishu1,2* and Ravindra L. Mehta2

Abstract

Drug induced kidney injury is a frequent adverse event which contributes to morbidity and increased healthcare
utilization. Our current knowledge of drug induced kidney disease is limited due to varying definitions of kidney
injury, incomplete assessment of concurrent risk factors and lack of long term outcome reporting. Electronic
surveillance presents a powerful tool to identify susceptible populations, improve recognition of events and
provide decision support on preventative strategies or early intervention in the case of injury. Research in the
area of biomarkers for detecting kidney injury and genetic predisposition for this adverse event will enhance
detection of injury, identify those susceptible to injury and likely mitigate risk. In this review we will present a 6R
framework to identify and mange drug induced kidney injury – risk, recognition, response, renal support,
rehabilitation and research.

Keywords: Nephrotoxicity, Acute kidney injury, Drugs, Hypersensitivity, Adverse reaction, Tubular toxicity, Nephrolithiasis,
Glomerular, Crystalluria

Background
Drug-induced nephrotoxicity is increasingly recognized
as a significant contributor to kidney disease including
acute kidney injury (AKI) and chronic kidney disease
(CKD). Nephrotoxicity has a wide spectrum, reflecting
damage to different nephron segments based upon indi-
vidual drug mechanisms. Both glomerular and tubular
injuries are recognized targets for drug toxicity and may
result in acute or chronic functional changes. However,
standard definitions of drug induced kidney disease
(DIKD) are lacking, leading to challenges in recognition
and reporting. The clinical manifestations of DIKD often
go unrecognized, particularly in the setting of short drug
exposures. This poses challenges in assessing the inci-
dence, severity and long-term consequences of DIKD.
Our knowledge of the epidemiology of nephrotoxicity

focuses predominantly on drug induced AKI. Prospective
cohort studies of AKI have documented the frequency of
drug-induced nephrotoxicity to be approximately 14-26%
in adult populations [1–3]. Nephrotoxicity is a significant
concern in pediatrics with 16% of hospitalized AKI
events being attributable primarily to a drug [4]. The
epidemiology of tubular disorders is unclear as a standard

definition is lacking and many published reports docu-
ment tubular dysfunction leading to AKI. This may under-
estimate the true incidence of tubular disorders since only
cases associated with a change in serum creatinine (Scr)
are recognized. However, frequent use of specific drugs,
such as tenofovir, has led to greater attention to tubular
injuries with documented frequencies of 12–22% of
treated subjects in cohort studies [5, 6]. Glomerular in-
jury is uncommon and most of the literature is limited
to case reports or case series. However, novel chemo-
therapeutic agents are increasingly being associated
with this form of toxicity [7]. Given these challenges in
the reported epidemiology and outcomes of DIKD, we
propose a novel framework to approach drug induced
nephrotoxicity focused on Risk assessment, early Recogni-
tion, targeted Response, timely Renal support and Re-
habilitation coupled with Research (the 6R approach).

Risk
To evaluate the risk of nephrotoxicity, general questions
can be applied to each causal drug. What is the predict-
able risk based on the known pharmacology of the drug?
What is the known risk, contributing risk factors and the
typical timeline for injury? If the risks are known, how is
this information used clinically to predict the risk for an
individual patient (i.e. clinical risk scores for contrast
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nephropathy)? How is this information used to mitigate
the risk?
Drug induced adverse events can be classified into two

categories: dose dependent and idiosyncratic reactions.
This categorization is important to consider in the context
of drug induced kidney disease (DIKD) since the mecha-
nisms for drug toxicity are different posing challenges in
risk assessment. Dose dependent reactions are predictable
from the known pharmacology of the drug. For example,
the risk of aminoglycoside induced nephrotoxicity
increases with higher trough drug concentrations and
longer duration of therapy [8]. Whereas, interstitial
nephritis from proton pump inhibitors is an unpredictable
idiosyncratic reaction, which is unlikely to be preventable
or minimized.
When assessing the known risk of DIKD, often this

information may be in the form of case reports, adverse
event reporting from clinical trials or post marketing
surveillance [9]. Prospective studies focused on determining
the incidence of DIKD are few. Most studies are retro-
spective and are focused largely on drugs with predictable
toxicities and therapeutic drug monitoring (TDM). Deter-
mining the incidence of idiosyncratic reactions is difficult
since data is often limited to case reports. Some studies at-
tempt to demonstrate an association using claims data
and diagnostic codes; however, the incidence of the AKI is
variable between cohorts and likely overstated [10–12]
Most importantly, the definition of DIKD has not been
standardized, making interpretation of the epidemiology
challenging. The information on drug specific DIKD risk
is summarized in Table 1.
Risk factors contributing to the development of DIKD

include patient specific factors, disease specific factors and
process of care factors (Table 1). Common risk factors in-
clude age, causal drug single and/or cumulative dose,
underlying CKD and concurrent nephrotoxin exposures.
In the case of hospitalized patients, our experience is that
a retrospective evaluation of DIKD almost always reveals
the prescription of additional nephrotoxins concurrent to
the causal drug (i.e. ketorolac prescribed to a patient re-
ceiving gentamicin and vancomycin). Minimizing these
exposures may mitigate the development of DIKD.
Assessing kidney function is critical to the dosing of

drugs and mitigation of DIKD. An important patient spe-
cific risk factor is low serum Scr values due to reduced
muscle mass, which may be age related or disease related
(muscular dystrophy, spina bifida, etc.). This poses a chal-
lenge to assessment of kidney function using estimating
equations. Pharmacists often “round” Scr values to an ar-
bitrary threshold value in older patients or those with low
Scr values to account for low muscle mass. This practice
is inaccurate and may lead to drug dosing errors in certain
populations [13–16]. Currently, KDIGO guidelines on
drug dosing advocate using either Cockcroft Gault or

MDRD equation for drug dosing [17]. Since the drug in-
formation from manufacturers submitted to the U.S. Food
and Drug Administration still utilizes the Cockcroft Gault
equation for estimates of kidney function and no pro-
spective studies have been conducted on clinical outcomes
of the various equations, we feel that either equation could
be used in the absence of kidney disease.
Published reports of DIKD have not consistently eval-

uated cases for the presence of common AKI risk fac-
tors. Subsequently, risk factors specific to a causal
agent have emerged but have not been validated in lar-
ger studies and across multiple drugs. As an example,
drug interactions have emerged as an important risk
factor for the development of AKI. Interactions leading
to increased concentrations of anti-hypertensive medi-
cations, subsequent hypotension and AKI have been re-
ported [18]. In a study by Gandhi and colleagues, the
risk for hospitalization with AKI was compared in patients
receiving a prescription for amlodipine and one of two
macrolide antimicrobials, clarithromycin or azithromycin.
Clarithromycin is known to inhibit cytochrome P450 3A4
isoenzyme, which is involved in the metabolism of
amlodipine, whereas azithromycin does not interact to
the same extent. The authors found co-prescription with
clarithromycin was associated with an odds ratio [OR],
1.98 [95% CI, 1.68–2.34] compared to co-prescription
with azithromycin [18].
Identification of general DIKD risk factors is central to

the development of clinical risk scores for the prediction
and minimization of risk. For example, the identification
of risk factors for contrast-induced nephropathy has led
to the development of risk scores and evaluation of pre-
ventative treatments [19–23]. This has great applicability
to the clinical setting, where an electronic medical rec-
ord (EMR) can calculate the risk score and cardiologists
or radiologists can prescribe preventative measures.
Additionally these risk scores may predict long-term
outcomes [24, 25].

Recognition
Currently, there is no standard definition of DIKD and
incidence of nephrotoxicity varies depending on the
definition employed and the causal drug. The most
common drugs that cause DIKD include antibiotics, anti-
rejection medications, antiviral agents, non-steroidal anti-
inflammatory agents, anti-ulcer agents and chemotherapy.
Most studies have defined nephrotoxicity as 0.5 mg/dL

or 50% rise in Scr over 24–72 h time frame and a mini-
mum 24–48 h of drug exposure. However, these defini-
tions pose challenges since a 50% increase in Scr may not
have high specificity for DIKD since the underlying dis-
ease being treated as well as other AKI risk factors could
be significant to the attribution of risk. In the setting of
fluctuating renal function or those patients receiving renal
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replacement therapies, it is difficult to recognize DIKD.
For example, if a critically ill patient develops AKI from
sepsis, it may be difficult to recognize whether an anti-
biotic is causing additional injury to the susceptible kid-
ney. Recognition is also complicated by the fact that the
mechanism of kidney injury and time period for onset of
injury varies by drug and some drugs cause injury by more
than one mechanism. For instance, NSAIDS can result in
AKI due to hemodynamic changes or acute interstitial
nephritis (AIN), or nephrotic range proteinuria from
glomerular injury.
In order to improve the recognition of DIKD in the

literature, we convened an expert panel to develop
consensus-based definitions [26]. We propose that DIKD
presents in one of four phenotypes: AKI, glomerular dis-
order, tubular disorder, or nephrolithiasis/crystalluria
[26]. The clinical presentation of each phenotype is
based on primary and secondary criteria. We suggest
that at least one primary criterion must be met for all
drugs suspected of causing DIKD [26]. For each pheno-
type definition, the following critical elements from the
Bradford-Hill causal criteria must be met:

1. The drug exposure must be at least 24 h preceding
the event.

2. There should be biological plausibility for the causal
drug, based on known mechanism of drug effect;
metabolism and immunogenicity.

3. Complete data (including but not limited to
co-morbidities, additional nephrotoxic exposures,
exposure to contrast agents, surgical procedures,
blood pressure, urine output) surrounding the
period of drug exposure is required to account
for concomitant risks and exposures to other
nephrotoxic agents.

4. The strength of the relationship between the
attributable drug and phenotype should be based
on drug exposure duration, extent of primary and
secondary criteria met and the time course of
the injury.

In defining the time course for DIKD, it is important
to consider consensus definitions for AKI, acute kidney
disease and CKD. Acute kidney injury develops in 7 days
or less, injury beyond 7 days but less than 90 days re-
flects acute kidney disease and beyond 90 days CKD
[27]. Using the KDIGO definitions, the development of
DIKD can similarly be divided into acute (1–7 days),
sub-acute (8–90 days) and chronic (>90 days) post drug
exposure [26]. This approach permits classification and
tracking of injuries for duration and outcomes. Based on
this conceptual model, for each phenotype, thresholds
could be established to detect DIKD, define its severity
and ascertain recovery.

The reference Scr used for defining DIKD should as
close as possible to the event to meet the definition of
AKI but may not always be available as in the case of
ambulatory care exposures. In this scenario, we recom-
mend using the lowest Scr within 90 days of the event
as the reference Scr. It is recognized that CKD is an im-
portant risk factor for the development of DIKD. Under-
lying kidney disease impacts the recognition of DIKD.
We recommend using a Scr value greater than 90 days
from the DIKD event to define the presence of CKD.
These standard definitions will become increasingly

important when designing tools within the EMR to
screen for DIKD. Such screening tools have been success-
ful at identifying AKI and guiding the physician on the
need for nephrology consultation [28]. Pharmacovigilence
programs can identify patients who have been exposed to
nephrotoxic medications and develop AKI with high
serum drug concentrations [29]. Additionally, these
electronic screening tools can be customized. At risk
patients, such as those receiving multiple nephrotoxins
or prolonged nephrotoxin exposures, can be targeted.
Identification of such patients can prompt interventions
such as intensified Scr monitoring and improve the re-
covery of DIKD [30]. However, electronic screening and
identification cannot establish causality. These tools are
limited due to the complex interplay of risk factor as-
sessment, concurrent multi-drug exposures, lack of
TDM, comorbid conditions and lack of kidney damage
biomarkers. It is important that DIKD cases are adjudi-
cated for causality and an attribution of risk is esti-
mated for each contributing drug or risk factor. In the
case of vancomycin, a pharmaco-vigilence program
identified 32% of patients exposed to vancomycin with
high trough concentrations and AKI [29]. However,
when the cases were adjudicated, only 8.4% of AKI
cases were attributed to vancomycin toxicity [29]. Attri-
bution of risk from each potential risk factor or from
each causal drug in the case of multi-drug injury is diffi-
cult since these assessments are based on the individual
patient presentation and might reflect a substantial degree
of subjectivity depending on the adjudicator’s knowledge
of DIKD and AKI epidemiology. We recommend when
evaluating cases of DIKD, the consulting nephrologist
document their causality assessment in the medical record
including a percent attribution assigned to each causal
drug with an overall likelihood to cause the DIKD, as well
as a percent attribution for each of the identified concur-
rent AKI risk factors. Adverse event causality scoring tools
exist for general adverse events as well as drug induced
liver and skin injury (Naranjo, Rucam, Liverpool), how-
ever, these tools have not been evaluated for the causality
scoring of DIKD. Previous genomic studies of drug
induced liver and skin injury have employed adjudication
of cases by unbiased hepatologists or immunologists/
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dermatologists, respectively [31, 32]. Often, published case
reports lack the evaluation of causality using these scoring
systems or adjudication. As the body of knowledge sur-
rounding DIKD increases, we recommend employing
these scoring tools in addition to adjudication of cases by
a secondary nephrologist when publishing case reports or
series.

Response
Treatment of nephrotoxicity is dependent on the pheno-
type, severity of the injury and the underlying condition
for which the medication was prescribed. The decision
to stop or reduce the dose of the offending drug requires
a careful consideration of the risk versus benefit. In Type
A reactions, dose reduction may be sufficient to mitigate
the injury (e.g. vancomycin or gentamicin). However,
stage 2 AKI often warrants drug discontinuation. In the
setting of vancomycin DIKD, a critical appraisal of other
therapeutic options and dose minimization is warranted.
National guidelines on the use of vancomycin have rec-
ommended higher target trough concentrations to obtain
a high area under the curve (AUC) to minimum inhibitory
concentration (MIC) ratio [33, 34]. However, the level of
evidence for this recommendation was grade IIIb (limited
evidence) [34]. With the widespread adoption of this
recommendation [35], the rate of nephrotoxicity has in-
creased. Meta-analysis conducted found the incidence of
nephrotoxicity to be between 5-43% and target trough
concentrations > 15 ng/mL to have a 2.67 odds ratio for
the development of nephrotoxicity [36]. A more recent
study of 1430 patients receiving vancomycin provides
support for the association between concentrations and
duration of therapy with risk of nephrotoxicity [37]. Post
hoc analysis of prospective studies have examined the
need for higher targets and demonstrated equivocal or
lower cure rates with trough concentrations above
15 ng/mL for the treatment of staphylococcus aureus
nosocomial acquired pneumonia [38, 39]. Additionally,
these studies have demonstrated that alternative treat-
ments such as linezolid or telavancin could be considered
[39, 40]. Based on these studies, we believe that DIKD
from higher vancomycin trough concentrations is a real
concern. However, prospective studies designed to
evaluate the benefits and risks of high therapeutic con-
centrations need to be done. Type B DIKD, which is
idiosyncratic, will require discontinuation of the offending
drug and careful observation. Severe injuries or type B
reactions often require longer periods of time to improve
and may not completely resolve.
When DIKD has been identified, the patient should be

monitored carefully including daily assessment of Scr
and urine output as changes in kidney function may lead
to further injury or lack of clinical cure for infections.
Concurrent risk factors for kidney injury should be

addressed such as but not limited to hypotension, hyper-
glycemia, anemia, minimization of nephrotoxins or drug
interactions, which may contribute to the injury. Dose
adjustments for kidney function should be made for
other medications the patient is receiving. In some cases,
timed urine collections for CLcr determination may be
warranted to assist in the determination of renal function
for the purpose of dosage adjustment. Where available,
TDM should be employed and continued even after drug
discontinuation in cases where supra-therapeutic concen-
trations are documented during the injury. Pharmacist
consultation improves the achievement of target concen-
trations and improves clinical cure rates [41]. Additionally,
documentation of the event is imperative to prevent future
injuries from subsequent exposures. Patients should be
informed of the event to empower them to inform other
healthcare providers of their susceptibility to the drug.
Often, the sub-phenotype is difficult to distinguish from

laboratory parameters (i.e. ATN vs. AIN) and kidney bi-
opsy information can guide treatment decisions. Several
studies have demonstrated the importance of kidney biop-
sies for classifying the type of injury and establishing the
causal drug in the setting of nephrotoxicity. Zaidan and
colleagues published a series of 222 kidney biopsies from
HIV infected patients, 59 cases demonstrated tubulopathy
or interstitial nephritis with 52.5% attributable to a drug
[42]. Tenofovir was identified as the most common culprit
of tubular damage in this series whereas infections and
dysimmune syndromes accounted for the majority of
interstitial nephritis cases [42]. Xie and colleagues pub-
lished a case series of kidney injury from clindamycin, a
previously unrecognized adverse event [43]. Biopsy results
documented the majority of cases with AIN (75%) and
remainder with ATN (25%) [43]. Chu and colleagues
demonstrated that only 79.2% of patients with biopsy
proven acute tubular necrosis met the clinical criteria
for AKI [44]. Most patients had a slower increase in Scr
than current KDIGO definitions [44]. Kidney biopsy in-
formation in addition to careful consideration of the
temporal and causal relationship to drugs can provide a
more accurate diagnosis of DIKD. Additionally, DIKD
is often caused by multiple drugs and determining causal-
ity can be difficult. Even with kidney biopsy data, it may be
difficult to determine exact causality for multi-drug in-
jury. Sequential discontinuation of suspected causal
drugs and subsequent re-challenge may assist in causality
assessment.

Renal Support
The need for renal support to treat DIKD is low (Table 1).
The use of renal replacement therapy for DIKD is two-
fold, firstly, dialysis can be utilized to remove the offending
drug and minimize ongoing damage; additionally, dialysis
can be utilized to support renal function to allow recovery.
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The decision to start renal replacement therapy is a
complex one and generally reserved for severe injuries
or cases in which the drug toxicity may be mitigated
through removal by dialysis (example: vancomycin [45],
aminoglycosides [46]).
Drug removal by dialysis is dependent on the charac-

teristic of the drug including molecular weight, protein
binding, volume of distribution and operational charac-
teristics of the dialysis treatment include type of mem-
brane, blood and dialysate flow rates and duration of
therapy [47].
When starting renal support therapy, it is critical to

consider the potential for errors in drug dosing and ex-
posures. Renal clearance is determined by the dialysis
prescription for drug dosing. However, in the critically ill
population, gaps in dialysis delivery are frequent (e.g.
filter clotting, time off treatment for procedures) and
current prediction equations do not account for these
situations. When possible, TDM should be employed.
The decision to stop renal support is challenging and
generally based on changes in pre-dialysis Scr values,
urine output, fluid status and acidosis. These transitions
from AKI with no renal support to dialysis therapies to
resolution of injury are time periods with increased sus-
ceptibility to drug dosing errors. During recovery, total
renal clearance should be estimated by quantifying in-
trinsic kidney function in addition to the dialysis therapy
for drug dosing. Urinary creatinine clearance determin-
ation, despite its limitations [48, 49], may assist in the esti-
mation of intrinsic kidney function. During resolution,
drug clearance estimated from TDM may be used in the
assessment of kidney function. For example, the clearance
of aminoglycosides and vancomycin correlate well with
creatinine clearance [50, 51]. Estimation of clearance of
these drugs by TDM may assist the clinician in dosing
other drugs that are not monitored (e.g. cephalosporins,
quinolones).

Rehabilitation
Most cases of nephrotoxicity are acute, non-oliguric and
resolve with discontinuation of the causal drug (e.g. amino-
glycosides) (Table 1). However, for some drugs, mixed
patterns of injury may complicate the assessment of
recovery. In the case of cisplatin, glomerular filtration
decline tends to be reversible whereas tubular dysfunc-
tion may persist [52]. Clinical issues to consider include
follow-up in specialized AKI ambulatory clinics and repeat
assessment of kidney function to ascertain reversibility
and delayed recovery, reporting of the adverse event to
the U.S. Food and Drug Administration (https://www.ac-
cessdata.fda.gov/scripts/medwatch) [53], documentation
of the adverse effect in the allergy section of the EMR,
limiting re-exposures to the causal drug and appropriately
using information from past exposures (i.e. TDM) to limit

future adverse events. For example, TDM software can be
used to determine appropriate initial dosing for antibiotics
based on population based pharmacokinetic parameters.
However, if a patient has experienced AKI from an
antibiotic in the past and the information is relatively
recent, the past pharmacokinetic parameters estimates
for that particular patient should be used to guide future
empiric dosing recommendations. Therapeutic drug
monitoring may prevent nephrotoxicity and result in cost
avoidance [54, 55].

Research
Research in the epidemiology of DIKD has been limited.
The lack of consensus definitions has led to variability in
the incidence of DIKD. Acute kidney injury is multifac-
torial and risk factors for AKI have been identified for
different populations. Risk factors for DIKD vary by
drug; however, it is very likely that we can determine
common risk factors that identify vulnerable popula-
tions, such as older age or history of CKD. Establishing
causality is challenging in DIKD; it requires attribution
of risk to not only the suspect drug but also the relative
contribution from each concurrent risk factor. Newly
identified DIKD is often published as case reports or
case series. In such reports, the attribution of risk from
concurrent risk factors is lacking. Clinical trials and FDA
surveillance programs provide some information, but
post-marketing surveillance is voluntary and requires
clinicians to identify the association of an AKI event
with a drug. As accepted definitions of AKI are imple-
mented in research and AKI awareness increases, the
identification and outcomes of DIKD will be better char-
acterized. The use of EMRs and decision support tools
will facilitate electronic surveillance of DIKD, identifying
the event and risk factors and directing clinicians on
treatment options. However, more research is required
in the area of causality assessment, risk score calculation
and adjudication of cases. Electronic surveillance alone
provides an initial step in case identification, however,
without causality assessment, these tools lack validity
and will lose their effectiveness in clinical practice.
Often, histologic confirmation of drug toxicity is lacking.

The decision to biopsy a patient is a risk/benefit assess-
ment and central is the question of whether a biopsy will
change patient management? The majority of clinicians
opt to discontinue a suspect drug rather than biopsy.
However, given the lack of validated tools for causality
assessment, we feel that biopsy information from cases
series of drug toxicity will contribute significantly to
this area of research. As our body of knowledge increases;
risk score calculators, causality assessment tools coupled
with information on outcomes of DIKD can lead to the
development of predictive analytics which may identify in-
dividuals at risk of nephrotoxicity from a drug. Population
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based studies provide a large sample and aid in the identi-
fication of rare or previously unrecognized events such as
antipsychotic associated AKI [56] or drug interactions that
lead to drug toxicity and AKI [18].
Translational research models of drug-induced nephro-

toxicity identifying pharmacokinetic parameters, drug
transporters and kidney injury biomarkers have been de-
veloped but there are no prospective studies validating
these models [57–61]. Molecular characterization of drug
toxicity using proteomics and microarrays will further
delineate mechanisms for kidney injury and pathways
for repair [62–65]. Ongoing research in the area of bio-
markers to earlier detect damage in drug toxicity will
facilitate prevention of functional changes [66–70].
Importantly, research on the preventative strategies

and response to nephrotoxicity is limited. Although,
TDM and pharmacokinetic analysis improves achieve-
ment of target concentrations, vulnerable populations do
not have the same pharmacokinetic parameters as general
population based estimates. For example, there is limited
information on pharmacokinetic parameters for specific
nephrotoxic drugs in CKD or heart failure putting these
populations at risk. Additionally, TDM is not uniform
across the United States. There is a need for increased
pharmacokinetic studies on vulnerable populations, as
well as studies on target drug concentrations linked to pa-
tient outcomes. The emergence of increased vancomycin
nephrotoxicity is a case example of widespread application
of consensus-based recommendations on higher drug
concentrations with a lack of strong evidence for patient
outcomes across various types of infections.
Consensus guidelines on drug dosing in AKI provide

practical recommendations and should be considered for
dosing other drugs that patient is concurrently taking
during a nephrotoxic insult [17]. However, research on
drug dosing in AKI is limited. More information is needed
on kidney function estimation in AKI, the impact of tubu-
lar function and metabolism of drugs during AKI and
pharmacokinetic changes in AKI [71–73]. Enhancing this
research will translate to the mitigation of additional risk
and in turn enhanced recovery from a nephrotoxic event.
The field of AKI and DIKD research is rapidly evolving

with the development of large international registries of
patients with AKI and DIKD. This presents tremendous
opportunities for trainees with an interest in kidney disease
to collaborate with other disciplines on research that will
enhance our body of knowledge in these important areas.

Conclusions
In conclusion, we provide a 6R framework for DIKD that
allows clinicians to apply what is known about DIKD
and more importantly to recognize the unknown and
limitations of our current clinical care.
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