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Abstract

Background: Oxidative stress is thought to be involved in the pathogenesis of microalbuminuria in Sickle cell
anemia (SCA). Antioxidant enzymes such as glutathione peroxidase (GPx) and Cu-Zn superoxide dismutase (SOD)
may play an important protective role. This study aimed to evaluate the association between albuminuria and these
two antioxidant enzymes.

Methods: We consecutively recruited Steady state children aged between 2 and 18 years old with established
diagnosis of homozygous SCA in two hospitals of Kinshasa/DR Congo. The relationship between Urinary Albumin
Creatinine Ratio (UACR) and other variables of interest (age, systolic blood pressure, diastolic blood pressure, plasma
GPx and Cu-Zn SOD, free plasmatic hemoglobin, LDH, indirect bilirubin, white blood cells (WBC), percentage of fetal
hemoglobin, serum iron, ferritin, CRP) was analyzed by Bivariate correlation (Pearson’s correlation coefficient).
Microalbuminuria was defined by urine albumin/creatinine ratio between 30 and 299 mg/g.

Results: Seventy Steady state Black African children with SCA (56% boys; average age 9.9 ± 4.3 years; 53% receiving
hydroxyurea) were selected. Prevalence of microalbuminuria was 11.8%. LDH (r = 0.260; p= 0.033) and WBC count (r = 0.
264; p = 0.033) were positively correlated with UACR whereas GPx (− 0.328; p = 0.007) and Cu-Zn SOD (− 0.210; p = 0.091)
were negatively correlated with UACR.

Conclusions: Albuminuria is associated with decreased antioxidant capacity and increased levels of markers of hemolysis
and inflammation. Therefore, strategies targeting the reduction of sickling and subsequent hemolysis, oxidative stress and
inflammation could help preventing or at least delaying the progression of kidney disease in SCA children.

Keywords: Sickle cell anemia, Albuminuria, GPx, Cu-Zn SOD, Lactate dehydrogenase, Inflammation

* Correspondence: jrmakulo2016@gmail.com
2Nephrology Unit, Department of Internal Medicine, University of Kinshasa
Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
4Faculty of Medicine, University of Kinshasa Hospital, Kinshasa, Democratic
Republic of the Congo
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Itokua et al. BMC Nephrology  (2016) 17:178 
DOI 10.1186/s12882-016-0398-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12882-016-0398-0&domain=pdf
mailto:jrmakulo2016@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Sickle cell anemia (SCA) is a hemoglobinopathy character-
ized by hemolytic anemia, increased susceptibility to infec-
tions and vaso-occlusion leading to a reduced patient’s
quality of life and life expectancy [1]. Oxidative stress has
been reported to play a significant role in the pathophysi-
ology of hemolysis, vaso-occlusion and subsequent organ
damage including the kidneys [1–3]. Sickling and subse-
quent hemolysis and anemia increase superoxide anion
and other reactive oxygen species (ROS) production and
impair ROS scavenging enzymes levels and activity in
SCA patients [1]. Low ROS scavenging enzymes activity,
due to either low intake of vitamins or impaired synthesis
of enzymes because of cofactors deficiency [4], is thought
to play the main role in the pathogenesis of oxidative
stress-induced vascular complications and microalbumi-
nuria [5]. Indeed, lower activities of superoxide dismutase
(SOD), glutathione peroxidase (GPx) and catalase (CAT)
as well as altered levels of enzyme cofactors such as zinc,
copper, selenium and iron have been reported in SCA
patients without and with microalbuminuria [5]. The
knowledge of the association of microalbuminuria with
oxidative stress could be of therapeutic interest. Although
the use of antioxidants and supplementation of enzyme
cofactors can be conceivably envisaged, the prominent
renoprotective effect of angiotensin II type 1 receptor
blocker (ARB) Telmisartan in type 2 diabetes, a condition
associated with microalbuminuria as SCA has been
reported to be mediated through enhancing antioxidant
defense capacity and reducing oxidative stress [6]. Unfor-
tunately, data on oxidative stress in SCA patients with and
without microalbuminuria are very scare in Africa, a
setting where SCA is prevailing [7–10]. In order to con-
tribute to a better understanding of the physiopathology
of glomerular damage in SCA, this work aimed to study
the relationship between urinary albumin creatinine ratio
(UACR) and enzymatic antioxidant status assessed using
two markers: serum GPx and Cu-Zn SOD, in Steady state
Black African children with SCA.

Methods
Subjects and study design
The design of this cross sectional study has been described
elsewhere [11]. The study was conducted over a period of
three months in two hospitals of Kinshasa/DR Congo:
Monkole hospital and Saint-Crispin Medical Center. We
consecutively recruited Steady state children aged between
2 and 18 years old with established diagnosis of
homozygous SCA by isoelectric focusing method on the
Capillaris 2® (SEBIA, France) after written informed
consent provided by their legal guardians. Exclusion
criteria included a recent history of blood transfusion, a
current crisis or history of sickle cell crisis or acute illness
two months prior to the study.

Data collection procedure and laboratory analysis
For each patient, anthropometric parameters, past medical
history especially current medication were obtained and
physical examination performed.
A venous blood sample was collected for the deter-

mination of the level of GPx and Cu-Zn SOD as well as
other biochemical parameters of interest including Fetal
hemoglobin (HbF), blood count, serum creatinine, total
bilirubin and its fractions, lactate dehydrogenase (LDH),
iron, ferritin, C reactive protein (CRP), plasma free Hb.
Cu-Zn SOD and GPx were assayed by double-sandwich

Elisa method using biotin-streptavidin system [11]. For
GPx and Cu-Zn SOD, the blood samples were centrifuged
for 10 min at 3000 × g and the obtained plasma was
separated, aliquoted to microtubes, and stored frozen at
−80 °C until testing a few days later.
Single spot morning urine specimens were collected and

urine samples containing blood (1+ or greater), white
blood cells (1+ or greater) and/or nitrites were excluded.
Both urine dipstick test and UACR measurement were
performed. UACR was performed using an immunoassay
method with DCA Bayer 2000 reagent (DCA Bayer
analyzer®, Siemens Healthcare Diagnostics Pyt Ltd., 885
Mountain Highway, Australia). Normal albuminuria,
microalbuminuria and macroalbuminuria were defined as
UACR < 30 mg/g, 30 to 299 mg/g and ≥ 300 mg/g,
respectively [12].

Ethical approval
Ethical approval for the study was granted by the
institutional review boards of the Monkole hospital
(006 CEFA-MONKOLE/2014) in line with the princi-
ples of the Declaration of Helsinki, second revision.
The aim and study procedures were explained to the
parents or legal guardians and they provided written
consent before any of the subjects were included.

Data management and statistical analysis
Statistical analyses were performed using SPSS (version
21.0, SPSS Inc., Chicago, USA). The primary focus in the
data analysis was to assess the relationship between
UACR and the antioxidant status. For this purpose,
bivariate correlation (Pearson’s correlation coefficient)
analyses were performed to analyze the relationships
between UACR and other numerical data. Analyses were
carried out with Pearson’s correlation, simple and mul-
tiple linear regressions. Step-wise multivariate regression
analysis was performed to determine the independent
variables for UACR. For other results, numerical
variables are presented as mean ± standard deviation
(SD) for normally distributed values or as median with
interquartile (IQ) range for nonparametric values and
categorical variables are presented as percentage.
Pearson chi-square or Fisher’s exact test were used to
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assess differences in categorical data between groups
and Student t-test or Mann Whitney U test were used to
assess numerical data as appropriate. Statistical signifi-
cance was defined as p value of < 0.05.

Results
General characteristics of patients
Table 1 shows the general characteristics of the study
population. Seventy children with SCA in steady state (56%
boys) were selected among which 68 had UACR results.
Their mean age was 9.9 ± 4.3 years. Macroalbuminuria was
not found in this series. Prevalence of microalbuminuria
was 11.8% in the whole group. Microalbuminuria was more
prevalent among girls than boys, however, there was no
statistically difference between the two groups (17.2%
versus 7.7%; p = 0.293.
In the study group, 37 patients (53%) received hydroxy-

urea (HU). Compared with the untreated patients, those
who received HU had higher rates of GPx and Cu-SOD.
They also had lower levels of UACR but the difference
was not statistically significant (Table 2).

Correlation between UACR and study variables
Table 3 shows correlation between UACR and study
variables. LDH (r = 0.260; p = 0.033) and leucocytes

levels (r = 0.264; p = 0.033) were positively correlated
with UACR whereas GPx (− 0.328; p = 0.007) and Cu-Zn
SOD (− 0.210; p = 0.091) were negatively correlated with
UACR. There was no statistically correlation between
UACR and age, systolic blood pressure, diastolic blood
pressure, creatinine, glomerular filtration, fetal hemoglobin,
plasma free hemoglobin, serum iron, ferritin, indirect
bilirubin and CRP.

Linear regression considering UACR as dependent
variable
The results related to the linear regression are reported
in Table 4 and Figs. 1 and 2. Simple linear regression in-
dicates that GPx, leucocytes levels and LDH respectively
explain 10.8, 7.0 and 6.8% of the variation of UACR. The
Cu-Zn SOD influences the variation of UACR by about
4.4% without reaching statistical significance. In multi-
variate analysis, only GPx and LDH were associated with
UACR. After adjustment, these two factors account for
14.4% of change in UACR.

Discussion
The main findings of the present cross-sectional study
of Steady state SCA children can be summarized as
follows. First, albuminuria was inversely correlated with

Table 1 General characteristics of the study population

Whole group n = 70 Boys n = 39 Girls n = 31 p

Age, years 9.9 ± 4.4 10.5 ± 4.3 9.0 ± 4.4 0.153

Hb, g/dl 8.2 ± 1.3 7.9 ± 1.3 8.6 ± 1.4 0.040

Leukocytes, elts/mm3 11618 ± 4621 11339 ± 4114 12011 ± 5113 0.568

Platelets, elts/mm3 380727 ± 154522 364.358 ± 132.846 401.884 ± 184.553 0.344

Reticulocytes, % 12.0 (8.5–17.6) 11,0 (7,0–15,5) 14,0 (9,6–19,8) 0.117

HbF, % 8.7 (3.5–16.9) 13.9 (6.9–21.4) 6.2 (2.1–9.7) 0.004

Patients receiving HU, % 37 21 16 0.552

HbF in patients receiving HU, % 14 (7–21) 11 (6–18) 19 (13–25) 0.081

Indirect Bilirubin, mg/dl 1.9 (0.9–3.5) 1.5 (0.9–3.8) 1.9 (1.1–3.5) 0.941

Total Bilirubin, mg/dl 2.5 (1.5–4.0) 2.2 (1.3–4.3) 2.6 (1.7–4.0) 0.632

Creatinine, mg/dl 0.38 ± 1.05 0.38 ± 0.12 0.37 ± 0.11 0.600

GFR, ml/min/1.73 m2 211 ± 54 209 ± 67 215 ± 35 0.691

LDH, UI/l 544 (400–771) 457 (338–761) 653 (490–788) 0.012

CPR, mg/l 3.4 (2.0–5.1) 3.0 (1.3–4.5) 3.9 (2.8–6.9) 0.151

Iron, micromol/l 16.2 (13.2–19.2) 16.3 (14.0–21.1) 15.5 (11.5–17.8) 0.892

Ferritin, ng/ml 209 (106–453) 301 (111–613) 184 (104–378) 0.396

Free plasmatic Hb, mg/l 168 (116–267) 140 (120–240) 210 (106–288) 0.278

Cu-Zn SOD, pg/ml 305 (112–556) 281 (96–426) 360 (130–657) 0.803

GPx, micromol/l 220 (100–476) 242 (107–549) 210 (93–466) 0.699

UACR, mg/g 12 (9–22) 10 (9–20) 18 (10–26) 0.058

Values are presented as means ± SD, median (IQ 25–75) or absolute frequency
CRP C reactive protein, HU hydroxyurea, GFR glomerular filtration rate, Hb hemoglobin, HbF fetal hemoglobin, LDH lactate deshydogenase, GPx Gluthation
peroxidase, SOD Superoxide dismutase, UACR Urinary albumin creatinine ratio
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antioxidant enzyme levels and positively to absolute
white blood cell (WBC) count and LDH enzyme levels.
Second, antioxidant enzyme glutathione peroxidase
(GPx) and LDH levels emerged as the main independent
multivariate determinants of albuminuria but the model
explained only 14% of the variations of albuminuria.
Third, patients receiving hydroxyurea appear to have im-
proved antioxidant capacity and low UACR.
In our cohort, we found an inverse correlation

between albuminuria and antioxidant enzyme GPx and
Cu-Zn SOD. This observation is similar to previous
reports from Nigeria [8], Egypt [9] and Qatar [5]. The
decrease in antioxidant enzyme levels and activity could
be explained by their susceptibility to ROS-induced
oxidation [13, 14]. Reduced glutathione (GSH), a cofac-
tor for GPx, is oxidized to glutathione disulfide (GSSG)
through its reduction of free radicals and ROS and is an
essential element to reduce hydrogen peroxide (H202).
This finding may suggest that the overabundance of
oxidative stress leads to consumption or inactivation this
protective cofactor [13, 14]. Oxidative damage may alter
both the structure and the function of the glomerulus due
to its effects on mesangial and endothelial cells [8, 15].

Oxidative stress has been reported to oxidize angio-
tensinogen and convert it to angiotensin II (ATII) and to
increase secondary angiotensin type 1 receptor (AT1R)-
mediated generation of transforming growth factor-beta
(TGFβ) in the kidney in SCA; excessive AT1R signaling
causes SCA glomerulopathy [15, 16].
A Previous study reported the relationship between

albuminuria and inflammation, and hemolysis [17]. This
report has been confirmed by our results, albuminuria
was positively correlated with leukocytes count and
LDH level. These results suggest that the activation of
vascular endothelial cells and the circulating blood cells
represent the continual inflammation seen in SCA.
Upon activation, circulating white blood cells and
platelets express adhesion glycoproteins leading that will
interact with endothelial cell adhesion molecules leading
consequently to endothelial dysfunction [14].
The LDH is known to be a marker of hemolysis. The

positive association between albuminuria and LDH sug-
gest the central role of hemolysis as the starting point
for many of the subsequent complications of SCA,
including kidney damage [14, 18]. A Previous study has
already reported a significant correlation between serum
LDH levels and albuminuria [19]. Indeed, hemolysis
through increased plasma-free hemoglobin concen-
trations can induce the generation of ROS by non-
enzymatic (Fenton reaction) with subsequent oxidative
stress, inflammation, endothelial dysfunction and tissue
damage [14, 19]. However, the hemolytic origin of circu-
lating LDH remains a matter of controversy. Indeed,
Neely et al. found that the increase in serum LDL levels
was not correlated with plasma-free hemoglobin level
and suggested that the source of LDH is damaged tissue
as this enzyme is an ubiquitous one and seen in nearly
all living cells where it catalyzes the conversion of lactate
to pyruvic acid [20].
In multivariate analysis, GPx and LDH levels were inde-

pendent determinants of albuminuria but the model ex-
plained only 14% of the variation in albuminuria levels
suggesting the non-inclusion in the model of other

Table 2 Comparison of rates of antioxidants and albuminuria
based on the HU treatment

Treated (37) Untreated (33) P

GPx, micromol/l 391 (199–678) 108 (65–220) <0.001

Cu-Zn SOD, pg/ml 402 (96–694) 132 (53–407) 0.139

UACR, mg/g 10 (9–17) 19 (10–27) 0.094

Values are presented as median (IQ 25–75)
GPx Gluthation peroxidase, SOD Superoxide dismutase, UACR Urinary albumin
creatinine ratio

Table 3 Correlation between UACR and other variables in
patients studied

Variables UACR mg/g

r p value

GPx, micromol/l −0.328 0.007

Cu-Zn SOD, pg/ml −0.210 0.091

Age, years −0.135 0.271

SBP, mmHg 0.224 0.078

DBP, mmHg 0.110 0.389

Leucocytes/mm3 0.264 0.033

Fetal Hb, % −0.011 0.931

LDH, UI/l 0.260 0.033

Free plasmatic hemoglobin, mg/dl 0.139 0.264

Indirect bilirubin, mg/dl −0.016 0.898

CRP, mg/l −0.002 0.988

Serum iron, micromol/l −0.009 0.940

Ferritin, ng/ml −0.104 0.397

Table 4 Simple and Multiple linear Regression of UACR
according to other variables of interest in patients studied

Variables constant ß coefficient P value R2

Simple linear regression

GPx, micromol/l 20.955 −0.012 0.007 0.108

Cu-Zn SOD, pg/ml 19.943 −0.008 0.091 0.044

Leucocytes/mm3 9.802 0.001 0.033 0.070

LDH, UI/l 10.917 0.011 0.033 0.068

Multiple linear regression 14.727 0.144

GPx, micromol/l −0.010 0.049

LDH, UI/l 0.010 0.046
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variables susceptible to influence this variation. Although
an association between markers of oxidative stress and
common secondary diseases in SCA have been reported,
other factors such as diet, physical activity, and other
comorbid diseases associated with SCA may interfere
with the variations in albuminuria levels [14]. Some of
these factors were not included in the present study
and could explain the low determination coefficient of
the multivariate model.
For decades, many studies worldwide have shown the

benefit of HU in SCA [21, 22]. Although the difference
did not reach statistical significance, patients who re-
ceived HU had higher levels of Cu-Zn SOD and lower
UACR. Unlike GPx in both groups (under HU patients
and untreated patients) had reached statistical signifi-
cance. The precise mechanism by which HU produces
its varied effects is not fully elucidated. The efficacy of
HU is generally attributed to its ability to boost the
levels of HbF [23].

Our results should be interpreted within the limitations
of the present work. First, the cross-sectional design of the
study precludes the establishment of temporal relation-
ships between study variables. Secondly, the small sample
does not confer much power to statistics tests to identify
additional associations between the study variables. Third,
given the limited financial resources, we did not measure
the cofactors of antioxidant enzymes and trace elements
to better explain the alterations in enzymes levels. The
assay of transferrin also was not done. However, we can
mention that both ferritin (evaluated in present study) and
transferrin prevent the iron to react with its immediate
environment. Indeed, in healthy cells, the iron ions are
chelated by transport proteins (transferrin) or storage pro-
teins (ferritin). Fourth, in medical human literature, there
are few data on reference values of each antioxidant or
oxidative stress markers. It is known that, initially, the
body will react in a moderate oxidative stress by overex-
pressing antioxidant enzymes (eg when exercise). If the

Fig. 1 UACR as a function of GPx

Fig. 2 UACR as a function of Cu-Zn SOD
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stress persists and produces massively free radicals, SOD
and GPx will be destroyed and its concentration drops.
Paradoxically, a too high concentration of SOD can be
dangerous because, in this case, it is the basis of a
hydrogen peroxide overproduction (paradoxical effect of
antioxidants) [24].

Conclusion
In the present study, albuminuria was associated with
decreased antioxidant capacity and increased levels of
markers of hemolysis and inflammation. Therefore, strat-
egies targeting the reduction of Sickling and subsequent
hemolysis and oxidative stress and inflammation could help
preventing or at least delaying the progression of cardiovas-
cular and kidney disease in SCA children.
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