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Abstract

Background: The prevalence of Parkinson’s disease (PD) is increasing in sub-Saharan Africa, but little is known about
the genetics of PD in these populations. Due to their unique ancestry and diversity, sub-Saharan African populations
have the potential to reveal novel insights into the pathobiology of PD. In this study, we aimed to characterise the
genetic variation in known and novel PD genes in a group of Black South African and Nigerian patients.

Methods: We recruited 33 Black South African and 14 Nigerian PD patients, and screened them for sequence variants
in 751 genes using an Ion AmpliSeq™ Neurological Research panel. We used bcftools to filter variants and annovar
software for the annotation. Rare variants were prioritised using MetaLR and MetaSVM prediction scores. The effect of a
variant on ATP13A2’s protein structure was investigated by molecular modelling.

Results: We identified 14,655 rare variants with a minor allele frequency≤ 0.01, which included 2448 missense variants.
Notably, no common pathogenic mutations were identified in these patients. Also, none of the known PD-associated
mutations were found highlighting the need for more studies in African populations. Altogether, 54 rare variants in 42
genes were considered deleterious and were prioritized, based on MetaLR and MetaSVM scores, for follow-up studies.
Protein modelling showed that the S1004R variant in ATP13A2 possibly alters the conformation of the protein.

Conclusions: We identified several rare variants predicted to be deleterious in sub-Saharan Africa PD patients;
however, further studies are required to determine the biological effects of these variants and their possible role in PD.
Studies such as these are important to elucidate the genetic aetiology of this disorder in patients of African ancestry.
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Background
Parkinson’s disease (PD) is a debilitating neurodegenera-
tive disorder that impairs patients’ motor skills, and
speech coordination. It is one of the leading causes of
disability and mortality among neurological disorders
globally [1]. The neuropathological hallmark of PD is
the progressive loss of predominantly dopaminergic neu-
rons of the substantia nigra pars compacta of the mid-
brain, which regulate voluntary movement. The
diagnosis of this disorder is largely clinical using criteria
such as the UK PD Society Brain Bank criteria
(UKPDSBBC) to differentiate ageing related symptoms
from PD [2]. The pathobiology is yet to be fully eluci-
dated, but environmental and genetic factors have been
linked to PD aetiology [3, 4]. PD symptoms usually
manifest in the same way in all patients, but the preva-
lence, incidence and risk factors may vary according to
the geographical region [5]. Estimates of PD prevalence
in sub-Saharan Africa (SSA) vary widely across previous
studies and range from 10 to 235/100,000 in urban pop-
ulations [6, 7].
Genetics as an etiologic concept in PD has been well-

established [8, 9]. Approximately 5–10% of PD patients
have a familial form of the disease, which is due to
highly penetrant, rare pathogenic mutations [9]. For
sporadic forms of this disorder, the genetics is complex
as common genetic variants may act in concert with en-
vironmental factors [9–11]. The genetic discoveries have
led to important hypotheses about the mechanisms
underlying PD, which include dysfunction of the ubiqui-
tin–proteasome system and mitochondrial dysfunction
coupled with oxidative stress [12].
Most of the studies on the established PD genes or

genes associated with PD including SNCA, LRRK2,
PRKN, PINK1, PARK7, ATP13A2 and GBA, have been
performed in European, North American, North African
Arab or Asian populations [9, 13, 14]. In general, limited
studies exist on the genetics of PD in the Black African
populations [15]. It has been suggested that the variants
most commonly associated with PD are rare among
South African PD patients [16, 17]. Similarly, a previous
genetic study screened for mutations in LRRK2, PRKN
and ATXN3 in 57 Nigerian PD patients but did not
identify any pathogenic mutations [18]. African popula-
tions have a diverse ancestry, and have more private al-
leles than any other population, suggesting that the
genetic aetiology of PD in African populations could be
unique [19].
Next-Generation Sequencing (NGS) provides a way to

explore the genetic basis of diseases, and has resulted in
the discovery of a large number of disease-associated
mutations [20]. In contrast to whole-genome or whole-
exome sequencing [21, 22], targeted sequencing panels
[23] focus the analysis on specific genes of interest. The

Ion AmpliSeq™ Neurological Research Panel is a com-
mercially available panel designed to screen genes linked
to neurological disorders as well as genes involved in
brain function. The primary goals of the present study
were to use this panel to determine whether a common
pathogenic mutation was present, and to characterise
the genetic variation in known and novel PD genes, in a
group of Black South African and Nigerian PD patients.

Methods
Study participants
The study group consisted of 33 unrelated Black South
African PD patients and 14 unrelated Nigerian PD pa-
tients. South African patients were primarily recruited at
the Neurology Clinic of Tygerberg Academic Hospital,
Cape Town, South Africa, and at the Neurology Clinic
of Frere Hospital, East London, South Africa. Nigerian
PD patients were recruited at the Neurology Clinic,
Obafemi Awolowo University Teaching Hospitals Com-
plex, Ile-Ife, Nigeria. All patients were confirmed to have
PD by neurologists, based on the UKPDSBBC diagnostic
criteria. All patients provided written informed consent
to take part in the study and provided peripheral blood
samples for genetic studies. This study was approved by
the Health Research Ethics Committee of Stellenbosch
University (HREC 2002/C059, N16/04/041 and S16/08/
151), and the Ethics and Research Committee of Oba-
femi Awolowo University Teaching Hospitals (ERC/
2015/08/15). Demographic information and clinical
characteristics of the patients are provided in Table 1
and Additional file 1: Table S1.

Quality control and annotation of targeted next-
generation sequencing (tNGS) data
The Ion AmpliSeq™ Neurological Research panel and
the Ion AmpliSeq™ Library Kit 2.0 (Thermo Scientific,
Waltham, Massachusetts, USA) were used for multi-
plex PCR amplification of 751 genes (Additional file 2:
Table S2). The intronic regions incorporated as part
of the exon targets are listed separately in
Additional file 3: Table S3. Details on the library con-
struction and next-generation-sequencing protocols
are available in Additional file 4.
The flow space calibration, base calling, alignment

with the reference genome (GRCh38–hg19), coverage
analysis and variant calling were performed using stand-
ard parameters in the Ion Torrent Software Suite (ISS)
version 5.4.0. Sequenced variants, including insertions
and deletions (INDELs), splice site variants, single nu-
cleotide variants (SNVs), multiple nucleotide variants
(MNVs), as well as variants in the 3′ untranslated region
(UTR3) and 5′ untranslated region (UTR5) were identi-
fied. The variant call format (VCF) files produced by the
ISS were filtered using bcftools to ensure that:
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FILTER = PASS (the ISS internal criteria for setting the
PASS filter were met).
QUAL > 100 (the quality score exceeded 100).
FMT/AO ≥ 20 (there were at least 20 reads for the
alternative allele).
FMT/DP ≥ 40 (there were at least 40 reads in total).
FMT/SAF ≥ 5 (there were at least 5 reads of the
alternative allele in the forward direction).
FMT/SAR ≥ 5 (there were at least 5 reads of the
alternative allele in the reverse direction).

These criteria ensured that the observation was made
in both directions with at least five reads in either direc-
tion, the overall depth was at least 40 and the alternative
allele depth was at least 20.
The sequencing data on the 47 samples were of good

overall quality. We plotted a graph for the target region
coverage using the bam files generated by the Ion Tor-
rent Variant Caller (Additional file 5: Figure S1). This
graph showed that 41 samples had at least 80% coverage
of the target region at an average read depth of 40X,
three samples had a coverage of 78–79%, and another
three samples had a coverage of 61–76%.
The VCF files were merged into a single file and processed

with the utility annovar (annovar.openbioinformatics.org/) to
produce an annotation file for all the variants that passed the
criteria above. All available annotations were included. These
included conservation scores, allele frequencies and func-
tional predictions (Additional file 6: Table S4). Perl (https://
www.perl.org/) was used to extract data and analyses were
carried out in R (R Core Team, 2018) [24]. Variants were ex-
tracted as homozygous or heterozygous for the alternative al-
lele. The quality scores for all the variants passing the filters
were extracted and analysed in R. Using the bam files, bed-
tools was used to generate statistics on the coverage (depth
of sequencing) for the regions in the Ampliseq capture panel
as defined by the manufacturer’s bed file. We focused
on variants that are rare in control populations as de-
fined by a minor allele frequency (MAF) threshold of
0.01. We created global classifications of variants and
generated a summary of variant types, to encode vari-
ants as synonymous, missense or frameshift in the
variable amino acid class, insertion, deletion or substi-
tution in the variable mutation type, as well as single

or multiple base variants in the variable mutated base.
We merged the variant summary (whether the variant
was observed as a homozygous or heterozygous), with
the annotation.

Variant prioritisation
We used the prediction scores MetaLR and MetaSVM for
selecting deleterious sequence variants (Additional file 6:
Table S4). MetaLR and MetaSVM are themselves ensem-
bles (composite models) of many other scores [25]. Cur-
rently, these two have the best performance on curated
data sets (training and test) of non-synonymous variants
that contain both deleterious (protein-function altering)
and benign variants. We therefore used these to prioritize
the rare variants in our data. Both metrics were scaled as
probabilities [0, 1] with scores close to 1 indicating certainty
that the variant is deleterious. We used a score of > 0.8 as a
cut-off for including the variant into our list of rare “patho-
genic variants” as recommended by Liu et al [25]. We also
used 24 other variant scoring algorithms. We plotted the
correlation matrix of all 26 scoring algorithm outputs used
in our study (Additional file 7: Figure S2). We generated
Radar plots (http://www.cmap.polytechnique.fr/~lepennec/
R/Radar/RadarAndParallelPlots.html) for each variant likely
to be deleterious to demonstrate the correlation among 17
different scoring algorithms. All scores were standardized
to 0–1 scale with score 1 (furthest from the centre of the
graph) indicating strongest evidence that the variant is
deleterious.

Protein structures and modelling for functional prediction
To determine the consequences introduced by potential
pathogenic variants on the protein structure, we selected
a variant in ATP13A2, for this analysis. We extracted
protein information from the Protein Data Bank (PDB)
of the Research Collaboratory for Structural Bioinfor-
matics (RCSB) (https://www.rcsb.org/) [26]. The struc-
ture of ATP13A2 was modelled by submitting the 1180
amino acid UniProt accession ACQ9NQ11 to the
Phyre2 server [27]. Phyre2 is a suite of tools available
on the web to predict and analyse protein structure,
function and mutations. The predicted ATP13A2
structure conformed well with those of known P-type
ATPase cation pumps [28–31]. This structure was

Table 1 Characteristics of the 47 Parkinson’s disease patients

Characteristic Black South African
N = 33

Nigerian
N = 14

Sex, male, n (%) 18 (54) 11 (78)

Average age-at-onset ± SD (range), years 48 ± 8 (30–59) 63 ± 13 (36–80)

Average age at recruitment ± SD (range), years 55 ± 11 (35–78) 67 ± 11 (42–81)

Positive family history of PD, n (%) 2a (6) 0
a Individuals s43_059 and s94_069 have a possible Mendelian inheritance pattern for PD
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used for additional modelling using the Maestro 11.4
suite of software (Schrödinger Inc., Cambridge, MA).
The protein parameterization was carried out using
the Maestro Preparation Wizard. The Ca2+ binding
sites were identified based on the availability of co-
ordinating glutamate, aspartate, asparagine and glu-
tamine sidechains as found in the other P-type
ATPase structures. The two Ca2+ ions were manually
docked into the active sites and the structure's energy
minimized. The S1004R mutation was generated using
in silico mutagenesis with subsequent energy
minimization. Based on these structures, the inter-
action network between the mutated site and Ca2+

was identified (Kenyon et al. unpublished results).

Results
The mean age-at-onset (AAO) of PD in patients varied
between the two study groups. It was 48 ± 8 years and
63 ± 13 years for the South African and Nigerian pa-
tients, respectively (Table 1). This may be because re-
cruitment in South Africa was predominantly focussed
on patients with earlier AAO (< 50 years). Two of the
South African PD patients had a positive family history
with both having an affected sibling and an affected
parent.

Identification of sequence variants
We applied stringent threshold criteria for the filtering
and annotation of the variants to exclude low quality
variants. Altogether 25,917 sequence variants passed
quality control. We then removed all variants with MAF
> 0.01 in any of the sequencing databases used as refer-
ence databases for the study (Additional file 6: Table S4)
and were left with 14,655 rare variants. These rare vari-
ants could be classified into 7934 intronic and 5695 ex-
onic variants (Fig. 1; an interactive html-version of the
figure is at BMC website). They included 198 UTR5 and
341 UTR3 variants, as well as 32 frameshift, 3175 syn-
onymous and 2448 missense variants. Altogether 14,057
were SNVs and 598 MNVs. There were 261 insertions,
600 deletions and 13,794 substitutions.
In addition, we separately screened 16 PD genes on the

panel (SNCA, LRRK2, PRKN, PINK1, PARK7, ATP13A2,
EIF4G1, GIGYF2, PLA2G6, FBXO7, VPS35, MAPT,
HTRA2, SPG11, GRN and DCTN1) for all sequence vari-
ants, and these results are shown in Additional file 8:
Table S5).

Pathogenicity prediction of variants
To determine which rare variants are likely to be dele-
terious and could potentially contribute to the PD

Fig. 1 Sunburst diagram showing the functional classes of 14,655 rare (MAF≤ 0 .01) sequence variants identified in 33 Black South African and 14
Nigerian PD patients. An interactive HTML-version of the figure is available at BMC website
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pathobiology in the study participants, we used MetaLR
and MetaSVM. We focused on identifying rare (MAF ≤
0.01) or novel (not seen in any of the databases listed in
Additional file 6: Table S4) exonic variants predicted to
be deleterious. The goal was to minimize the number of
false positives by applying stringent filtering criteria.
Altogether, 52 heterozygous, one hemizygous and one
homozygous exonic rare (MAF ≤ 0.01) missense variants
predicted to be deleterious were found in 42 genes (Ta-
bles 2 and 3). This included a heterozygous missense
variant in one of the known PD genes, ATP13A2
(S1004R) which was validated by Sanger sequencing
(data not shown). Radar plots demonstrating pathogen-
icity scores for each of these 54 rare variants are shown
in Additional file 9: Figure S3.
We then analysed separately the two South African in-

dividuals (S43_059 and S94_069) with a positive family
history of PD (one affected sibling and an affected par-
ent). They each had three heterozygous variants
(Table 3). Both individuals had a pyruvate carboxylase
(PC) R732G variant (rs112948607). Additionally, individ-
ual S43_059 carried galactosylceramidase (GALC) T445S
(rs34134328) and TSC complex subunit 2 (TSC2) S1092
L (rs148527903) variants; while S94_069 carried arylsul-
fatase A (ARSA) N442S (rs6151427) and prickle planar
cell polarity protein 2 (PRICKLE2) Q274P (rs564701683)
variants. All of the variants had a high certainty of being
predicted to be deleterious (pathogenicity score > 0.8)
(Table 2). The GALC variant was excluded based on its
high MAF in GnomAD African controls (MAF = 0.016)
but all of the other variants are rare (MAF < 0.01) ([32];
Table 2) and are therefore potential candidates. Notably,
the PC R732G variant that they both share was not
found in any of the other patients screened. However,
since there was only DNA available for one affected sib-
ling for each of these patients, co-segregation analysis of
the variants with disease could not be performed.
We attempted to prioritise one possible pathogenic

variant per patient based on MAF (< 0.01), pathogenicity
prediction scores (> 0.8) and evidence of prior associ-
ation of the gene/protein with PD or Parkinsonism
(Table 2; Additional file 10: Table S6). In some cases,
the MAF of the variant in African controls in GnomAD
was ≥0.01, similar to the frequency observed in the pa-
tients (Table 2), and those variants were therefore ex-
cluded. The prioritised variants are shown in bold and in
green font in Table 3. In a few individuals, one variant
could not be prioritised over others as more than one
variant fulfilled these criteria.

Protein modelling for the S1004R variant in ATP13A2
When the S1004R variant was inserted into the
ATP13A2 structure and energy minimized (Kenyon
et al. unpublished results), we found that the peptide

backbone around the cation binding site was displaced,
changing the distance between the cation and a coordin-
ating atom from 3.44 to 2.66 Å (Additional file 11: Fig-
ure S4). It could be postulated that the conformational
change may alter the efficiency of the pump by interfer-
ing with the reaction cycle [28–30].

Discussion
In this study, 47 Black South African and Nigerian PD
patients were screened and 54 potentially deleterious se-
quence variants with MAF ≤ 0.01 in 42 different genes
were identified. The 751-gene panel used in the current
study contains only 16 of the 34 known PD genes, but it
does have six genes (ATP13A2, LRRK2, PARK7, PINK1,
PRKN, and SNCA) with strong prior evidence of being
involved in PD pathobiology. We identified a rare se-
quence variant predicted to be deleterious in only one of
these genes, ATP13A2. Notably, we did not identify any
of the previously reported pathogenic PD mutations cat-
alogued in the PDmutDB database (https://www.molgen.
vib-ua.be/PDMutDB/database) in the SSA patients. One
possible reason is that, as seen in previous genetic stud-
ies on SSA PD patients, common mutations such as
LRRK2 G2019S may be a rare cause of PD in these pop-
ulations [15].
Protein modelling analysis of the ATP13A2 S1004R

variant, which was found in a South African patient
(AAO of 39 years), revealed that the variant is potentially
functionally important. An interaction between R1004
and the cation binding site was identified suggesting that
the variant would interfere with the function of
ATP13A2 as a pump of inorganic cations such as metal
ions. A previous functional study demonstrated that in-
creased expression of ATP13A2 supresses α-synuclein
toxicity in neural cells and that ATP13A2 was likely to
act as a Zn2+ pump [33]. Thus, this variant could poten-
tially contribute to PD however, wet-laboratory func-
tional studies are necessary to prove that the variant is
indeed pathogenic.
In the two patients with a possible Mendelian inherit-

ance of PD, five heterozygous variants were identified.
Co-segregation analysis of the variants with disease in
these families was not possible due to a lack of DNA of
the family members. However, none of the genes in
which these variants were found has been linked to
Mendelian forms of PD. In fact, mutations within the
PC, PRICKLE2 and TSC2 genes have previously been as-
sociated with non-neurodegenerative diseases including
diseases involved in energy deficiency, tumour formation
and seizures [34–36]. Therefore, it is unlikely that muta-
tions in these genes would contribute to a Mendelian in-
heritance pattern of PD in these patients. ARSA
mutations, similar to GBA mutations, have been previ-
ously linked to lysosomal storage diseases (LSDs) [37].
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Although lysosomal mechanisms are increasingly
being shown to be important in PD pathogenesis, the
interplay between genetic mutations, lysosomal stor-
age biology and PD is complex and require further
elucidation to understand the underlying biology con-
necting lysosomal storage and PD. However, there is
no evidence currently indicating that ARSA mutations
cause familial forms of PD.
Limitations of our study include the fact that the sample

size was small making it difficult to estimate the actual
contribution of genetic factors to PD in the SSA popula-
tions. The belief among Black SSA populations that PD is
caused by witchcraft and does not have a genetic link [38]
and the notion that it is part of normal ageing, may have

contributed to the difficulty in recruiting more patients
for the study. Also, 18 of the 34 previously identified PD
genes were not on the panel. In addition, annotation of se-
quence variants in terms of effect on the protein using
bioinformatic tools remains problematic. We chose to use
the MetaLR and MetaSVM algorithms that currently ap-
pear to perform best, but functional studies are needed for
validation of these results. Future studies will involve using
a custom-panel that captures all of the known PD genes;
using whole-exome or whole-genome sequencing; screen-
ing of the patients for copy number variations especially
in the PINK1 and PRKN genes; and recruitment of a large
number of ethnic-matched controls to determine the fre-
quency of prioritized variants in these populations.

Table 3 Rare deleterious variants identified in the study participants

Subject, sample code; Coverage, global tNGS data coverage for the listed sample; AAO < 50 y, cases with early-onset PD are indicated (Y, yes); Other column
headers indicate gene and variant for which data are provided. Hem, patient was hemizygous for the variant; het, patient was heterozygous for the variant; hom,
patient was homozygous for the variant. TOTAL COUNT, number of each rare deleterious variant in the study population. *, These individuals have a positive
family history of PD. The variants in bold and green font are the candidate variants prioritized for further analyses
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Conclusions
Studies are urgently needed to characterise the genetic
variation in the known as well as novel PD genes in the
understudied SSA populations. Multi-national collabora-
tions across Africa are essential to recruit the large
numbers of patients and controls required. The current
study provides a starting point to address this need and
although it is acknowledged that the sample sizes used
here are relatively small, the use of NGS technologies
means that the full spectrum of sequence variation in
751 genes has been captured and is available for future
studies. We identified several rare variants predicted to
be deleterious and they provide new putative candidates
for PD but further studies are required to assess their
role in PD pathobiology. It is important to include SSA
populations in PD genetic studies to ensure that they do
not miss out on the potential benefits and opportunities
promised by precision medicine [39].
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