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Abstract

Background: Joubert syndrome (OMIM 213300) is an autosomal recessive disorder with gene heterogeneity. Causal
genes and their variants have been identified by sequencing or other technologies for Joubert syndrome subtypes.

Case presentation: A two-year-old boy was diagnosed with Joubert syndrome by global development delay and
molar tooth sign of mid-brain. Whole exome sequencing was performed to detect the causative gene variants in
this individual, and the candidate pathogenic variants were verified by Sanger sequencing. We identified two
pathogenic variants (NM_006346.2: c.1147delC and c.1054A > G) of PIBF1 in this Joubert syndrome individual, which
is consistent with the mode of autosomal recessive inheritance.

Conclusion: In this study, we identified two novel pathogenic variants in PIBF1 in a Joubert syndrome individual
using whole exome sequencing, thereby expanding the PIBF1 pathogenic variant spectrum of Joubert syndrome.
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Background
Joubert syndrome (OMIM: 213300) is an autosomal
recessive disorder characterized by a specific mid-
hindbrain malformation, hypotonia and developmental
delay/intellectual impairment [1]. Molar tooth sign of
mid-brain is a diagnostic standard for Joubert syn-
drome [2]. As Joubert syndrome is a genetically het-
erogeneous disease, causal genes and their variants
have been identified with improved sequencing tech-
nologies. Individuals with Joubert syndrome have

many of the clinical features of ciliopathies [3], and
many ciliary/basal body genes and variants have been
discovered to be associated with Joubert syndrome [4,
5]. Joubert syndrome 33 (JBTS33) is caused by PIBF1.
Wheway et al. first identified 4 variants or deletions
in the PIBF1 gene associated with Joubert syndrome
from Hutterite families and other families [6]. A
homozygous 36-bp insertion in PIBF1 (c.1181_
1182ins36) in a Joubert syndrome family has been re-
ported by Hebbar M. et al. [7]. Moreover, Ott T.
et al. found a compound heterozygote (c.1453C > T
and c.1508A > G) in a German patient [8].
In this study, we identified two novel pathogenic vari-

ants on PIBF1 in a Joubert syndrome individual using
whole exome sequencing.
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Case presentation
A two-year-old boy was born to a nonconsanguineous
couple by cesarean section with a birth weight of 3.42
kg, and the boy’s global development was delayed. He
raised his head at 4 months, turned over at 8 months, sat
all by himself at 10 months, crawled at 24 months, and
stood with support at 28 months. The boy spoke with
only monosyllables but had no other verbal communica-
tion skills. He had moderate intellectual disability evalu-
ated by the Chinese Developmental Scale for children
aged 0–6 years (WS/T 580–2017). The boy had a height
of 95 cm (+ 2 SD), weight of 12.4 kg (0 SD), and occipi-
tofrontal circumference of 53 cm (+ 3 SD) at 2 years.
Physical examination showed frontal prominence, right
eye esotropia, hypotonia and lower myodynamia. Ultra-
sonic examination showed normal liver, gallbladder,
spleen, kidneys, ureter and bladder. Magnetic resonance
imaging of his brain revealed unclear vermis of cerebel-
lum, superior cerebellar peduncle thickening and length-
ening (a clear molar tooth sign) as well as cerebellar
hemispheres joining in the midline of brain and a
smaller midbrain (Fig. 1). Thus, the boy was diagnosed
with Joubert syndrome.
EDTA anticoagulant venous blood samples (2 mL)

were obtained from all affected and unaffected family
members. Genomic DNA was extracted from whole

blood using the QIAamp® DNA Blood Mini Kit (QIAG
EN, Germany) according to the manufacturer’s protocol,
and whole exome sequencing was performed for the pa-
tient. An Agilent SureSelect Human All Exon V6 kit
(Agilent Technologies Inc., USA) was used for prepar-
ation of the exome library using appromximately 3 μg of
genomic DNA. The exome library was sequenced with a
mean 100× coverage on an Illumina NovaSeq 6000 plat-
form (Illumina Inc., USA). The average target coverage
depth was 126× with > 97% of the bases covered at >20x,
and the sensitivity was > 98%.
Raw data that passed quality control was aligned to

the human reference genome (GRCh37/hg19), and
only high-quality data (>Q30) was used for variant
calling. Alignment to the human reference genome
(GRCh37/hg19) and variant calling were performed
using Burrows-Wheeler Aligner software (http://bio-
bwa.sourceforge.net), followed by variant annotation
by ANNOVAR [9] with the dbSNP147 databases
(https://www.ncbi.nlm.nih.gov/SNP/), 1000G database
(http://www.1000genomes.org/), ExAC database
(http://exac.hms.harvard.edu/), HGMD (http://www.
hgmd.cf.ac.uk/ac/index.php) and OMIM (https://www.
ncbi.nlm.nih.gov/omim/).
The filtering criteria are shown in supplementary

Table 1. The filtered variants were classified by the

Fig. 1 Brain magnetic resonance imaging (MRI) findings for the Joubert syndrome individual. Molar tooth sign with moderate cerebellar vermis
hyoplasia, lengthening and thickening of superior cerebellar peduncles as well as superior cerebellar dysplasia as indicated by white arrows. a T2-
weighted image. b T1-weighted image. c Pedigree of Joubert syndrome patient
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American College of Medical Genetics and Genomics
(ACMG) standard to determine the pathogenic genes
and variant sites. Conservation of different species was
analyzed by MEGA6.0 software [10]. The candidate
variants identified via whole exome sequencing were val-
idated, and segregation analysis was performed by
Sanger sequencing using the ABI3730xl Genetic
Analyzer (Life Technologies, Carlsbad, CA) following
the manufacturer’s protocol. The Sanger sequencing

chromatogram was viewed by Chromas software and
aligned to other reference sequences by SeqMan soft-
ware. The PolyPhen-2 (http://genetics.bwh.harvard.edu/
pph2/), PROVEAN (http://provean.jcvi.org/index.php)
and Mutation Taster (http://www.mutationtaster.org/)
online tools were used to predict the effect of candidate
variants for protein function. The protein domains were
analyzed by the SMART online service (http://smart.
embl-heidelberg.de/).

Fig. 2 Sanger chromatograms. a c.1147delC variant in PIBF1 in a heterozygous state in the proband (upper panel) and a heterozygous state in
the mother (middle panel) and a wild-type homozygous state in the father (lower panel). b c.1054A > G variant in PIBF1 in a heterozygous state
in the proband (upper panel) and a wild-type homozygous state in the mother (middle panel) and a heterozygous state in the father (lower
panel). c c.1626 + 1G > A variant in AHI1 in a heterozygous state in the proband (upper panel) and a wild-type homozygous state in the mother
(middle panel) and a heterozygous state in the father (lower panel)
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Whole exome sequencing identified one variant
(c.1626 + 1G > A) in AHI1 (NM_001134832.1) and two
variants (c.1147delC and c.1054A > G) in PIBF1 (NM_
006346.2) in a heterozygous state in the affected individ-
ual. Direct Sanger sequencing of the patient and parents
showed that AHI1 c.1626 + 1G > A was from his father

(heterozygote) as his mother was wild-type for this vari-
ant. For PIBF1, only one heterozygote of these two vari-
ants was observed in his parents (c.1147delC in mother
and c.1054A > G in father) (Fig. 2).
These two PIBFI variants were absent in the 1000 Ge-

nomes Project, ESP, gnomAD, Exome Variant Server

Table 1 Summary of clinical characteristics and PIBFI variants observed in Joubert syndrome patients

current study Wheway et al.1 Wheway et al.1 Hebbar M. et al.2 Ott T. et al.3

number of
patients

1 1 6 1 1

gender male female three female, three male female female

Origin Chinese NA Canada Hutterite Indian German

clinical
features

Developmental
delay

+ + all were + + +

Hypotonia + + all were + + +

ocular movement
abnormality

+ NA all were NA NA +

Ataxia NA + all were + NA NA

Cystic kidney
disease

– NA all were NA + –

Retinal
degeneration

– NA all were NA – –

Molar tooth sign + + two patients was -, one was
NA, and three was +

+ +

Perisylvian
polymicrogyria

– – all were - + +

Hypoplasia of
corpus callosum

– – all were - + –

Cerebellar vermis
hypoplasia

+ + five patients were +, and one
was NA

+ +

Foramen magnum
cephalocele

+ NA four patients were -, one was
NA, and one was +

– –

variant
details

mutation1 c.1147delC,
p.Gln383LysfsTer4

c.1214G > A,
p.Arg405Gln

c.1910A > C, p.Asp637Ala c.1181_1182ins36,
p.(Gln394_Leu395ins12)

c.1453C > T,
p.Gln485∗

mutation2 c.1054A > G,
p.Lys352Glu

c.1669delC,
p.Leu557Phefs*18

c.1910A > C, p.Asp637Ala c.1181_1182ins36,
p.(Gln394_Leu395ins12)

c.1508A > G,
p.Tyr503Cys

+ affected, – not affected, NA not available. 1. Wheway G, et.al. Nat Cell Biol. 2015;17(8):1074–1087. 2. Hebbar M, et al. J Hum Genet. 2018;63(8):935–939. 3. Ott T,
et al. Front Physiol. 2019;10:134

Fig. 3 Pathogenic variants in the PIBF1 gene and the protein structure. The novel variants of this study are marked in red. CC, coiled coil region;
lc, low complexity region
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(EVS) and Exome Aggregation Consortium (ExAC) data-
sets. The c.1147delC variant is located in exon 9 of
PIBF1, leading to an amino acid change from glutamine
to lysine at the position 383 of the PIBF1 protein, which
causes a frameshift, resulting a premature protein trun-
cation (p.Gln383LysfsTer4). The c.1054A > G variant is
located in exon 8 of PIBF1, and it is a missense variant
in exon 8, leading to an amino acid change from lysine
to glutamic acid at position 352 of the PIBF1 protein
(p.Lys352Glu). This variant was predicted to be probably
damaging, deleterious and disease causing according to
the protein predicted by PolyPhen-2 with a score of
0.962, PROVEAN with a score of − 2.833, and Mutation
Taster with a score of > 0.999, respectively. According to
the ACMG standards and guidelines, these PIBF1 vari-
ants were classified as pathogenic (c.1147delC) and likely
pathogenic (c.1054A > G) [11].

Discussion and conclusions
We identified two novel pathogenic variants (NM_
006346.2: c.1147delC and c.1054A > G) in PIBF1 by
whole exome sequencing of a Joubert syndrome individ-
ual. These two variants were present in heterozygous
state in the affected child, which was consistent with the
autosomal recessive inheritance mode. The c.1147delC
variant was maternally inherited, and the c.1054A > G
variant was paternally inherited.
PIBF1 is located in chromosome 13q21-q22, contains

18 exons and spans more than 234 kb [12], and it en-
codes a predicted hydrophilic 757-amino acid alpha-
helical protein [13], which is produced during pregnancy
in response to progesterone [14]. Kim K. et al. reported
that the PIBF1 protein plays an important role in the
formation of primary cilia [15]. PIBF1 is a core compo-
nent of the human centrosome and is crucial for the ac-
cumulation of centriolar satellites, eventually forming
the primary cilia [15]. Depletion of PIBF1 causes mitotic
arrest, misaligned chromosomes and spindle pole frag-
mentation [15]. Exogenous expression of human wild-
type PIBF1 following siRNA knockdown rescues cilio-
genesis in mIMCD3 cells [6]. A whole genome siRNA
reverse genetics screen has identified recessive variants
in PIBF1 in seven individuals with Joubert syndrome [6].
Some variants of PIBF1 have been identified to be as-

sociated with Joubert syndrome (Table 1) and all the
variants are showed in Fig. 3. In this study, we found
two novel variants in a Joubert syndrome individual. All
Joubert syndrome individuals with PIBF1 variants have a
developmental delay and hypotonia, and most of these
individuals have molar tooth sign and cerebellar vermis
hypoplasia. Abnomal ocular movement was present in
the affected boy of the present study and in a girl previ-
ously reported by Ott. T et al. Only Hutterite descent in-
dividuals shown the syndrome of ataxia (Table 1). Due

to limited cases, the relationship of variant type and Jou-
bert syndrome symptoms needs further investigation.
A reported pathogenic variant (NM_001134832.1

c.1626 + 1G > A) in the AHI1 gene was found in a het-
erozygous state in the patient and his father but as a
wild-type in his mother, indicating that this variant did
not segregate in the family. AHI1 is located in chromo-
some 6q23.3, contains 33 exons and spans more than
213 kb [16]. Ferland R.J. et al. first reported the relation-
ship between Joubert syndrome and AHI1 variants [17].
Parisi, M. A. et al. reported that variants of AHI1 cause
both retinal dystrophy and renal cystic disease in Joubert
syndrome patients [18]. To date, more than 10 variants
associated with Joubert syndrome have been reported
[17, 19–23]. AHI1 c.1626 + 1G > A represents a G to A
transition at the first base downstream of the 3′ end of
exon 12 in AHI1 as a splice variant. This variant was re-
ported by Bachmann-Gagescu, R. et al., as a compound
heterozygote combined with the c.2361G > T variant in
AHI1 to cause Joubert syndrome [19]. We screened all
of the AHI1 exons by Sanger sequencing for this Joubert
syndrome patient and his parents, and we did not find
another pathogenic or likely pathogenic variant in AHI1,
except for c.1626 + 1G > A. Therefore, this variant was
not the pathogenic cause for this child (data not shown).
Next generation sequencing has aided in the search

for genetic variants of rare inherited diseases, such as
Joubert syndrome. To date, however, Joubert syndrome
can be treated but not cured. Thus, it is important to
understand the underlying disease mechanism. Add-
itional functional information is required to develop a
treatment and comprehend the developmental regularity
of the inherited diseases.
In conclusion, the present study identified two novel

variants in PIBF1 associated with Joubert syndrome and
expanded the PIBF1 pathogenic variant spectrum of Jou-
bert syndrome. Further functional validation is necessary
to clarify the pathogenic mechanism of the PIBF1 gene
in Joubert syndrome.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12881-020-01130-x.
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