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Abstract

Background: Leptin (LEP) and adiponectin (ADIPOQ) genes encode adipokines that are mainly secreted by adipose
tissues, involved in energy balance and suspected to play a role in the pathways linking adiposity to impaired
glucose and insulin homeostasis. We have thus hypothesized that LEP and ADIPOQ DNA methylation changes
might be involved in obesity development and its related complications. The objective of this study was to assess
whether LEP and ADIPOQ DNA methylation levels measured in subcutaneous (SAT) and visceral adipose tissues
(VAT) are associated with anthropometric measures and metabolic profile in severely obese men and women.
These analyses were repeated with DNA methylation profiles from blood cells obtained from the same individuals
to determine whether they showed similarities.

Methods: Paired SAT, VAT and blood samples were obtained from 73 severely obese patients undergoing a
bioliopancreatic diversion with duodenal switch. LEP and ADIPOQ DNA methylation and mRNA levels were quantified
using bisulfite-pyrosequencing and qRT-PCR respectively. Pearson’s correlation coefficients were computed to determine
the associations between LEP and ADIPOQ DNA methylation levels, anthropometric measures and metabolic profile.

Results: DNA methylation levels at the ADIPOQ gene locus in SAT was positively associated with BMI and waist girth
whereas LEP DNA methylation levels in blood cells were negatively associated with body mass index (BMI). Fasting
LDL-C levels were found to be positively correlated with DNA methylation levels at LEP-CpG11 and -CpG17 in blood
and SAT and with ADIPOQ DNA methylation levels in SAT (CpGE1 and CpGE3) and VAT (CpGE1).

Conclusions: These results confirm that LEP and ADIPOQ epigenetic profiles are associated with obesity. We also report
associations between LDL-C levels and both LEP and ADIPOQ DNA methylation levels suggesting that LDL-C might
regulate their epigenetic profiles in adipose tissues. Furthermore, similar correlations were observed between LDL-C
and LEP blood DNA methylation levels suggesting a common regulatory pathway of DNA methylation in both adipose
tissues and blood.
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Background
The incidence of obesity and its related disorders (dys-
lipidemia, hypertension, type 2 diabetes and cardiovascu-
lar diseases) has been constantly increasing in the last
few decades leading to a global obesity epidemic [1,2].
Although the heritability estimates for obesity range be-
tween 6%-85% depending on the trait assessed [3], the
obesity-related genetic variants identified have so far ex-
plained less than 2% of the heritability of obesity [4,5].
Hence, it is unlikely that the current obesity epidemic is
solely caused by genetic variations. The interactions be-
tween the gene variants and the components of our obe-
sogenic environment are very likely contributing to the
increasing obesity rates.
Genes are known to adapt to the environment through

epigenetic modifications [6,7] among other mechanisms.
Epigenetics refers to the molecular mechanisms regulating
gene expression without affecting the DNA sequence [8].
DNA methylation, the most understood epigenetic mark,
primarily occurs on the cytosine upstream of a guanine
(dinucleotide CpG) and is catalyzed by the DNA methyl-
transferases (DNMTs) [9]. The methylation of cytosines in
a CpG context has been shown to be sensitive to environ-
mental stimuli including in utero [10-12] and post-natal
environmental conditions [13,14].
Epigenetic modifications contribute to the pathogenesis

of obesity and its obesity-related metabolic complications.
Indeed, studies have reported that DNA methylation levels
at candidate gene loci related to obesity and metabolic dis-
eases are impaired in blood and adipose tissues of obese
patients [15,16] and in low weight loss responder to diet
and exercise interventions [17-20]. The leptin (LEP) and
adiponectin (ADIPOQ) genes are probably those that have
warranted the most attention so far. These genes encode
for leptin and adiponectin proteins, which are mainly syn-
thesized and secreted by the adipocytes. Leptin plasma
concentrations are increased in obese subjects (leptin
resistance is suspected) and has both anorexigenic and pro-
inflammatory properties [21,22], whereas adiponectin im-
proves insulin sensitivity, exerts anti-inflammatory actions
and its secretion is significantly reduced in obesity [21,22].
We have previously reported that maternal hypergly-

caemia (2 h post-oral glucose tolerance test (OGTT))
during the second trimester of pregnancy is associated
with decreased placental DNA methylation levels at LEP
[23] and ADIPOQ [24] gene loci suggesting that epigen-
etic adaptations could be involved in fetal metabolic pro-
gramming and increase newborn lifelong susceptibility
to obesity and metabolic disorders. Other groups have
reported that whole blood LEP DNA methylation levels
are negatively associated with birth weight and child
BMI at 17 months [25]. In addition, DNA methylation
levels at the LEP and ADIPOQ gene promoters in blood
were recently found to be lower in obese and insulin
resistant adolescents [26]. Altogether these results sug-
gest that LEP and ADIPOQ DNA methylation profiles
might be involved in the pathology of obesity and car-
diometabolic diseases. Nevertheless, LEP and ADIPOQ
epigenetic profiles in adipose tissue and their associa-
tions with obesity and obesity-associated metabolic per-
turbations have not been assessed so far. Accordingly,
we hypothesized that decreased LEP DNA methylation
and increased ADIPOQ DNA methylation in adipose
tissue could lead to higher degree of obesity and pro-
inflammatory state, dyslipidemia, hypertension and insulin
resistance. Henceforth, the objective of this study was to
determine whether LEP and ADIPOQ DNA methylation
levels in subcutaneous (SAT) and visceral (VAT) adipose
tissues were associated with obesity and obesity-related
complications severely obese men and women. SAT and
VAT were both analysed because they show specific gene
expression profiles (ex. LEP and ADIPOQ) [27,28] and as-
sociations with cardiovascular risk factors [29]. Moreover,
we tested whether adipokine epigenetic profiles in blood
reflect those in adipose tissues and whether they could be
used as proxies.

Methods
Subjects
Blood, SAT and VAT samples were obtained from 33
men and 40 premenopausal women (BMI >40 kg/m2)
undergoing bioliopancreatic diversion with duodenal
switch to treat obesity. They were selected based on the
fact that they were free of treatment for dyslipidemia,
hypertension and diabetes. The surgical and sampling
procedures have been described previously [30,31]. All
participants provided a written informed consent before
their inclusion in the study, and all clinical data were
denominalized. This project was performed in collabor-
ation with the Tissue bank for the study of obesity and its
complications at the Institut Universitaire de Cardiologie
et de Pneumologie de Québec. The project was approved by
this institution’s and the Université Laval’s ethics committees
and was conducted in accordance with the Declaration of
Helsinki.

Nucleic acid extraction
DNA was purified from whole blood samples with the
Gentra Puregene Blood Kit (Qiagen, Valencia, CA). DNA
and RNA from SAT and VAT were extracted as previously
described [32]. RNA quality was assessed with Agilent
2100 Bioanalyzer RNA Nano Chips (Agilent Technologies,
Santa Clara, CA). Three RNA samples from SAT and VAT
had low RNA integrity numbers (RIN < 6.0) and were ex-
cluded from the analysis. The other RNA samples in SAT
and VAT showed a high quality with mean RIN values of
8.0 ± 0.8 and 8.3 ± 0.6 respectively. RNA samples were not
available for blood samples.
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DNA methylation analyses and genotyping
DNA methylation levels at CpG sites were assessed using
pyrosequencing (Pyromark Q24, QIAGEN-Biotage). Com-
bined with the NaBis DNA treatment, pyrosequencing is a
quantitative real-time sequencing technology that allows
to measure DNA methylation levels (%) at a single cyto-
sine (CpG) of a given genomic region. The NaBis treat-
ment of DNA (EpiTect Bisulfite Kit, Qiagen) specifically
converts unmethylated cytosines into uracil, while the
methylated cytosines are protected from this transition,
creating a cytosine/thymine polymorphism. Once treated,
NaBis-DNA is amplified (Pyromark PCR kit, Qiagen), and
the cytosine and thymine alleles are quantified by pyrose-
quencing [33]. Specific PCR and pyrosequencing primer
pairs for LEP and ADIPOQ DNA methylation analyses are
described in Additional files 1 and 2.
Genotyping of the LEP single nucleotide polymorphism

(SNP) rs2167670 was performed in the three tissues using
pyrosequencing as reported before [34]. The rs2167270
genotype was identical in all three tissues analysed for the
73 patients. Genotype frequencies (GG: 30 (41.1%); GA:
35 (47.9%) and AA: 8 (11.0%)) were found to be under
Hardy-Weinberg equilibrium (p > 0.05). Carriers of the
minor A allele (GA/AA) were grouped together for statis-
tical analysis purposes as the number of homozygous AA
was very low.

LEP and ADIPOQ mRNA measurements
mRNA levels in SAT and VAT were quantified by quan-
titative real-time PCR (qRT-PCR). Complementary DNA
(cDNA) was generated from total RNA using a random
primer hexamer provided with the High Capacity cDNA
Archive Kit from Applied Biosystems (Foster City, CA).
Equal amounts of cDNA were run in duplicate and ampli-
fied in a 20 μL reaction containing 10 μL of Universal
PCR Master Mix (Applied Biosystems). Primers and
Taqman probes were obtained from Applied Biosystems
(LEP: Hs00174877_m1 and ADIPOQ: Hs00605917_m1).
The Glyceraldehyde 3-phosphate dehydrogenase (GAPDH:
Hs99999905_m1; Applied Biosystems) housekeeping gene
was amplified in parallel. LEP, ADIPOQ and GAPDH am-
plifications were performed using the Applied Biosystems
7500 Real Time PCR System, as recommended by the
manufacturer (Applied Biosystems). LEP and ADIPOQ
mRNA (Ct) levels were quantified relative to change in
GAPDH gene expression (Ct). GAPDH/ADIPOQ and
GAPDH/LEP Ct ratios (1/x) were used for the analysis.

Statistical analyses
The mean DNA methylation of the 21 CpGs analysed in
the proximal promoter CpG island of LEP gene (Additional
file 3) was first computed (LEP-Mean) and analysed. More-
over, since we [34] and other groups [35-37] have previ-
ously reported that CpGs located between CpG7 to
CpG17 are of first interest for LEP gene expression regula-
tion through DNA methylation changes, we analysed these
CpGs individually to identify those more likely to be regu-
latory. Out of these 8 CpGs, we excluded the CpG sites
that were found to be unmethylated (≤10.0%) or hyper-
methylated (≥90%) as they show low DNA methylation
variability and are thus unlikely to explain the phenotypic
variability. Hence, CpG12 to CpG16 were not analysed fur-
ther in adipose tissues and blood (Additional file 3).
At ADIPOQ gene locus, CpG island A and C were ei-

ther unmethylated (≤10.0%) or hypermethylated (≥90%)
and were thus not further analysed (Additional file 4).
Mean DNA methylation levels were computed for CpG
island E in SAT, VAT (ADIPOQ-Mean). CpGE1 and
CpGE3 were analysed individually in SAT and VAT,
whereas CpGE2 (hypermethylated) was not analysed fur-
ther. In blood, CpGE3 was the only one analysed as the
ADIPOQ-Mean, and CpGE1 and CpGE2 were found to
be hypermethylated (Additional file 4).
The normal distribution of all variables was assessed

using a Kolmogorov-Smirnov test. Fasting triglyceride
(TG), C-reactive protein (CRP) and both fasting glucose
and DNA methylation levels at ADIPOQ-CpGE3 locus
in blood were found to be normally distributed after
they were log10-transformed and ranked respectively.
The associations between adipokine genes DNA methyla-
tion levels, anthropometric measures and metabolic pro-
file were assessed with partial Pearson’s correlations. The
partial Pearson correlations were also used to determine
the relationship between fasting low-density lipoprotein
cholesterol (LDL-C) levels, LEP DNA methylation and
mRNA levels in SAT. Pearson’s correlation coefficients
were adjusted for the following covariates when appropri-
ate: sex, age, and waist circumference. Waist circumfer-
ence is a stronger cardiometabolic disease risk marker and
was preferred to BMI as a covariate [38,39]. Moreover, all
results remained unchanged after consideration of smoking
status. Two-sided p-values ≤ 0.05 were considered statisti-
cally significant. The statistical analyses were performed
with the IBM SPSS Statistics 20 software (release 20.0.0,
SPSS, Chicago, Il, USA).

Results
The characteristics of the subjects included in this study
are shown in Table 1. All subjects were severely obese
(obese class III [40]) with BMI ranging from 40.0 to
60.0 kg/m2. The patients were slightly hypertensive but
had generally good metabolic health without diabetes or
dyslipidemia [41,42].

LEP and ADIPOQ DNA methylation and anthropometric
variables
To determine whether LEP and ADIPOQ epigenetic pro-
files are involved in the pathogenesis of obesity and



Table 1 Characteristics of the subjects studied (n = 73)

Mean ± SD Range (min-max)

Men (%) 33 (45.2%) -

Age (years) 34.7 ± 7.1 21.4 – 53.8

BMI (kg/m2) 49.6 ± 6.0 40.0 – 60.0

Hip circumference (cm) 147.7 ± 14.0 123.0 – 193.0

Waist circumference (cm) 139.3 ± 16.6 99.0 – 180.0

Waist hip ratio 0.95 ± 0.11 0.68 – 1.17

Fasting glucose (mmol/l)a 5.51 ± 1.05 4.00 – 8.70

Systolic blood pressure (mm Hg) 137.0 ± 14.0 101.0 – 183.0

Diastolic blood pressure (mm Hg) 86.0 ± 10.0 57.0 – 108.0

TC (mmol/l) 4.87 ± 0.85 3.22 – 6.92

LDL-C (mmol/l) 2.96 ± 0.76 1.20 – 5.40

HDL-C (mmol/l) 1.17 ± 0.27 0.70 – 2.12

TC/HDL-C 4.32 ± 1.24 0.98 – 7.56

TGa (mmol/l) 1.52 ± 0.98 0.52 – 6.89

CRPa (mg/L) (n = 53) 8.2 ± 10.2 2.0 – 54.9

Current smokers 17 (23.3%) -

BMI, body Mass Index; TC, total cholesterol; LDL-C, low-density lipoprotein-cholesterol;
HDL-C, high-density lipoprotein-cholesterol; TC/HDL-C, total cholesterol to
high-density lipoprotein-cholesterol ratio; TG, triglycerides; CRP, c-reactive protein.
aGeometric mean.
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cardiometabolic complications, we first assessed the as-
sociations between LEP and ADIPOQ DNA methylation
levels in adipose tissues and blood and obesity-related
anthropometric measures. The mean DNA methylation
levels of LEP promoter CpG island were found to be nega-
tively correlated with BMI (r = −0.328; p = 0.005) and hip
circumference (r = −0.230; p = 0.05) (Pearson’s correlation
coefficients adjusted for age and sex) (Additional file 5).
To identify the CpGs that are more likely to be regulatory,
LEP-CpG7, LEP-CpG11 and LEP-CpG17 were analysed
independently. Negative correlations were observed be-
tween BMI and LEP-CpG7 (r = −0.252; p = 0.03) and
LEP-CpG11 (r = −0.234; p = 0.05) (Figure 1-Panel A and
B). As obesity-related proinflammatory response is associ-
ated with higher plasma leptin levels, we also assessed
whether LEP DNA methylation levels in blood cells are
associated with circulating levels of the pro-inflammatory
CRP. Lower LEP-Mean and LEP-CpG7 DNA methyla-
tion levels in blood were associated with increased levels
of CRP (LEP-Mean: r = −0.285; p = 0.05 and LEP-CpG7:
r = −0.397, p = 0.004, n = 53) (Additional file 6). Of
note, the correlations reported between LEP DNA methy-
lation levels in blood and BMI were no longer significant
after adjusting for CRP levels (LEP-Mean: r = −0.237;
p = 0.10; LEP-CpG7: r = −0.151; p = 0.294 and LEP-
CpG11: r = −0.155; p = 0.283 (n = 53)).
ADIPOQ DNA methylation levels in SAT were found cor-

related with BMI (ADIPOQ-Mean: r = 0.250; p = 0.04 and
ADIPOQ-CpGE1: r = 0.265; p = 0.03) (Figure 1-Panel C)
(Additional file 5) and waist circumference (ADIPOQ-Mean:
r = 0.361; p = 0.002; ADIPOQ-CpGE1: r = 0.364; p = 0.002
and ADIPOQ-CpGE3: r = 0.304; p = 0.01) (Figure 2-Panel
A and B) (Additional file 5). Moreover, DNA methylation
levels at ADIPOQ-CpGE3 locus in SAT were positively
correlated with hip circumference (r = 0.234; p = 0.05)
(Additional file 5). No additional association was observed
between LEP and ADIPOQ DNA methylation levels and
anthropometric variables (Additional file 5).

LEP and ADIPOQ DNA methylation and obesity-related
complications
We next determined whether LEP and ADIPOQ DNA
methylation levels in adipose tissue and blood were associ-
ated with obesity-related complications including dyslipid-
emia, hyperglycemia and hypertension. Fasting low-density
lipoprotein-cholesterol (LDL-C) levels were positively cor-
related with LEP-Mean DNA methylation levels in VAT
(r = 0.273; p = 0.02) and ADIPOQ-Mean DNA methylation
levels in SAT (r = 0.268; p = 0.03) and VAT (r = 0.245; p =
0.04) (Table 2). Analyses of individual CpG sites revealed
positive correlations between LDL-C levels and DNA
methylation levels at LEP-CpG17 locus in blood (r =
0.234; p = 0.05) and SAT (r = 0.391; p = 0.001) (Table 2).
At the ADIPOQ gene loci, CpGE1 (r = 0.236; p = 0.05) and
CpGE3 (r = 0.292; p = 0.01) in SAT and CpGE1 in VAT
(CpGE1: r = 0.267; p = 0.03) were also positively correlated
with fasting LDL-C levels (Table 2). A trend for associ-
ation was also observed between LDL-C and DNA methy-
lation levels at LEP-CpG11 in blood and SAT (Table 2).
DNA methylation levels at the ADIPOQ gene loci (ADIPOQ-
Mean and ADIPOQ-CpGE3) in SAT and at LEP-CpG7 in
VAT were associated with fasting total cholesterol (TC)
and high-density lipoprotein-cholesterol (HDL-C), re-
spectively (Additional file 6). Adipokine genes DNA methy-
lation levels were not found to be associated with fasting
glucose levels and either systolic or diastolic blood pres-
sure (Additional file 6).

LEP and ADIPOQ DNA methylation and mRNA levels in
SAT and VAT, and obesity-related complications
To further explore the functionality of the associations re-
ported in the two previous sections, we verified whether
LEP and ADIPOQ gene expression and DNA methylation
levels in SAT and VAT were correlated with phenotypic
variability.
We have previously reported that LEP-CpG17 DNA

methylation levels are negatively associated with LEPmRNA
levels in SAT, specifically in carriers of the rs2167270 A al-
leles (GA/AA genotypes; r = −0.367, p= 0.02) [34] (Table 3).
The LEP genotypes were thus taken into account. LDL-C
levels were found to be negatively correlated with LEP
mRNA levels (r = −0.317; p = 0.04) in rs2167270 A allele
carriers only (Table 3). Of note, the correlation between
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Figure 1 LEP and ADIPOQ DNA methylation levels according to body mass index (BMI) in severely obese patients. LEP DNA methylation levels
at CpG7 (A) and CpG11 (B) in blood were associated with BMI. In SAT, ADIPOQ DNA methylation levels at CpGE1 were positively
associated with BMI (C). aAdjusted for age and sex (n = 73).
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Table 2 Pearson correlation coefficients between fasting LDL-C levels and both LEP and ADIPOQ DNA methylation and
mRNA levels in subcutaneous (SAT) and visceral adipose tissues (VAT)

LDL-C levels (mmol/L) Adjusted for age and sex LDL-C levels (mmol/L) Adjusted for age, sex and WG

r P r p

BLOOD

LEP-CpG7 0.133 0.27 0.122 0.31

LEP-CpG11 0.222 0.06 0.206 0.09

LEP-CpG17 0.239 0.04 0.234 0.05

LEP-Mean 0.178 0.138 0.162 0.18

ADIPOQ-CpGE3a 0.161 0.17 0.149 0.22

SAT

LEP-CpG7 0.090 0.46 0.108 0.37

LEP-CpG11 0.215 0.07 0.231 0.06

LEP-CpG17 0.380 0.001 0.391 0.001

LEP-Mean 0.190 0.11 0.218 0.07

LEP mRNA levels −0.113 0.35 −0.098 0.42

ADIPOQ-CpGE1 0.176 0.14 0.236 0.05

ADIPOQ-CpGE3 0.242 0.04 0.292 0.01

ADIPOQ-Mean 0.206 0.08 0.268 0.03

ADIPOQ mRNA levels 0.024 0.85 0.009 0.94

VAT

LEP-CpG7 0.130 0.28 0.131 0.28

LEP-CpG11 0.158 0.19 0.169 0.16

LEP-CpG17 0.114 0.34 0.127 0.30

LEP-Mean 0.256 0.03 0.273 0.02

LEP mRNA levels 0.160 0.18 0.034 0.78

ADIPOQ-CpGE1 0.270 0.02 0.267 0.03

ADIPOQ-CpGE3 0.188 0.12 0.181 0.14

ADIPOQ-Mean 0.250 0.04 0.245 0.04

ADIPOQ mRNA levels −0.111 0.37 −0.121 0.33

WG,waist girth.
aResults obtained after rank transformation of DNA methylation levels.
Values in bold type are statistically significant: p ≤ 0.05.
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LEP mRNA and LDL-C levels was no longer significant
after adjusting Pearson’s correlation coefficient for LEP-
CpG17 DNA methylation levels (r = −0.205; p = 0.21)
(Table 3).
In SAT, DNA methylation levels at ADIPOQ-CpGE3

were negatively correlated with ADIPOQ mRNA levels
(r = 0.257; p = 0.03). ADIPOQ mRNA levels in SAT or VAT
were not associated with BMI, waist girth, hip circumfer-
ence or LDL-C levels (Table 2 and Additional file 5).

Discussion
In the current study, we report that LEP and ADIPOQ
DNA methylation levels, measured in paired adipose tis-
sues and blood samples, are associated with obesity-related
anthropometric variables and fasting LDL-C levels.
We first demonstrated that lower LEP promoter DNA
methylation levels in blood cells are associated with higher
BMI. Several cross-sectional studies have reported lower
LEP DNA methylation levels in blood cells of newborns
and children with higher birth weight and BMI [25], in
obese and insulin resistant adolescents [26] and obese
women [43]. Our findings are also concordant with fetal
metabolic programming studies in humans and rodent
models which have lately shown that lower LEP DNA
methylation levels in blood, placenta, VAT, liver and
muscle are associated with a risk for obesity and metabolic
diseases in the offspring [10,44,23]. It is thus tempting to
speculate on whether the LEP epigenetic profile we are
reporting in blood was established in utero and might
have been involved in the development of obesity in the



Table 3 Pearson correlation coefficients between low-density lipoprotein cholesterol (LDL-C) levels, LEP mRNA and LEP
gene CpG17 DNA methylation levels in subcutaneous adipose tissue (SAT) according to the rs2167270 genotype

LEP mRNA levels LEP-CpG17 DNA methylation levels

ALL GG GA/AA ALL GG GA/AA

n = 73 n = 30 n = 43 n = 73 n = 30 n = 43

LDL-C levels −0.097 0.142 −0.317* 0.370** 0.400* 0.384**

Adjusted for sex and waist girth

LDL-C levels −0.035 0.138 −0.205 - - -

Adjusted for sex, waist girth and LEP-CpG17 DNA methylation levels

LDL-C levels - - - 0.360** 0.399* 0.303†

Adjusted for sex, waist girth and LEP mRNA levels

LEP-CpG17 DNA methylation levels −0.177 0.038 −0.367* - - -

Adjusted for sex

LEP-CpG17 DNA methylation levels −0.152 −0.021 −0.282† - - -

Adjusted for sex and LDL-C levels

Pearson correlations are statistically significant: †p ≤ 0.10; *p ≤ 0.05; **p ≤ 0.01.
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patients of the current study. However, we would have ex-
pected that the LEP epigenetic signature that we are de-
scribing in blood would also have been present in adipose
tissues, if programmed in utero. Because the correlations
between LEP DNA methylation levels and BMI were at-
tenuated after adjusting for CRP levels, we hypothesized
that the obesity-related proinflammatory response per se
contributed to the alteration of LEP epigenetic profile in
blood cells. Leptin is mainly produced by adipose tissues
but is also expressed by peripheral blood mononuclear
cells [45]. It is also recognized that plasma leptin and CRP
levels are upregulated in obesity and proinflammatory
states and closely related [46]. Plasmatic elevation of CRP
levels observed in obese subjects has been associated with
higher plasma concentrations and leptin resistance [46].
Hence, increased CRP levels might, to some extent, regu-
late plasmatic leptin concentrations and leptin resistance
via the modification of LEP DNA methylation levels. Un-
fortunately, because blood cell counts were not available,
we cannot exclude that LEP DNA methylation variability
and the associations reported with CRP and BMI might
be partially attributed to blood cell composition changes
between samples. However, if cellular composition changes
impact the results, this effect is likely modest as highlighted
by Talens et al. [47]. DNA methylation regulation is
(partly) tissue-specific and might explain the discrepancy
between the associations reported in blood and adipose
tissues [48,49]. Also, we cannot exclude that LEP epi-
genetic profile of these “metabolically-healthy” individuals
might have been re-programmed by the post-natal envir-
onmental and stochastic factors.
We also report that ADIPOQ DNA methylation levels

in SAT are positively associated with BMI and waist cir-
cumference. ADIPOQ DNA methylation levels at CpGE3
are also associated with ADIPOQ mRNA levels in SAT.
This suggests that epigenetic modifications at ADIPOQ
gene locus are functional and could potentially be in-
volved in the pathogenesis of impaired glucose tolerance
and insulin resistance associated with obesity. Neverthe-
less, we cannot exclude that higher ADIPOQ DNA methy-
lation levels would have led to higher degree of obesity. In
accordance with this hypothesis, we have lately reported
that placental ADIPOQ DNA methylation levels are im-
paired following exposure to maternal glucose 2 h post-
OGTT at second trimester of pregnancy suggesting that
ADIPOQ epigenetic profile can increase susceptibility to
obesity in the newborn [24]. Whether ADIPOQ epigenetic
profile in SAT is established before or after the onset of
obesity will need to be confirmed, but is clearly of strong
interest.
Interestingly, LEP DNA methylation levels in blood,

SAT and VAT, and ADIPOQ DNA methylation levels in
SAT and VAT were both found to be positively associ-
ated with LDL-C levels suggesting a common epigenetic
regulation independently of their biological roles al-
though these two adipokines are oppositely regulated. In
addition, we report that the association between LDL-C
and LEP mRNA levels are partially dependent on LEP
rs2167270 genotype and DNA methylation levels at CpG17.
In vitro studies have shown that the incubation of endothe-
lial cells with LDL or oxidized-LDL increases DNA methyla-
tion levels at specific gene loci through the induction of
DNA methyltransferase 1 (DNMT1) expression and activ-
ity [50,51]. Interestingly, the use of statins, the most pre-
scribed lipid lowering drugs, is associated with the down
regulation of DNMT activity and demethylation of BMP2
promoter in mice and cell culture models [52]. Whether
the effect of statins is direct (DNMT activity) or mediated
through LDL-C lowering needs to be further investigated.
Still, our results and those from these previous studies
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suggest that LDL-C might be involved in the regulation
of LEP and ADIPOQ gene DNA methylation levels with
possible impacts on mRNA transcription, and that, inde-
pendently of their biological roles. It is recognized that
the treatment of dyslipidemia with statins increases insu-
lin resistance and the risk for type 2 diabetes [53,54]. The
modifications of LDL-C levels and adipokines epigenetic
profile by statins might be one of the mechanisms
contributing to the insulin resistance state. Consequently,
it will be of great clinical interest to confirm the direction-
ality of these associations and to further investigate their
respective mechanisms of regulation through epigenetic
changes.
The identification of DNA methylation surrogate mea-

sures in readily accessible tissue remains an important chal-
lenge in epigenetic epidemiology [55,11]. In the current
study, paired adipose tissues and blood samples were ana-
lysed and tested to assess whether they show DNA methy-
lation profile similarities at adipokine gene loci. DNA
methylation levels at LEP-CpG11 and CpG17 were found
to be associated with LDL-C levels in both SAT and blood
samples. These two CpGs were recently identified by our
group among the most promising CpG sites to be used in
blood as a surrogate for LEP DNA methylation in adipose
tissues [34]. DNA methylation levels at CpG11 and
CpG17 were found to be modestly but significantly corre-
lated between SAT and blood (r = 0.43, p < 0.01; r = 0.58,
p < 0.01 respectively) [34]. These two CpGs are respect-
ively within C/EBP and SP1 transcription factor binding
sites (TFBS), both involved in LEP gene expression regula-
tion [56,35]. The correlations reported between LEP-
CpG11 and -CpG17 DNA methylation and LDL-C levels
in SAT and blood suggesting that DNA methylation regu-
lation by LDL-C at these two CpG sites is common
to both tissues. Moreover, as these associations are simi-
lar in SAT and blood, they are very likely independent of
cellular count. The current results thus support that LEP-
CpG11 and -CpG17 DNA methylation levels in blood are
potential relevant surrogates for SAT DNA methylation
levels.
The strengths of the current study include analyses of

two adipokines central in energy metabolism regulation
in two adipose tissue compartments and in blood. Blood
is the most clinically accessible tissue whereas adipose tis-
sues are those biologically relevant for the study of obesity
and adipokine epigenetic regulation. Access to adipose tis-
sues remains restricted, and this study provides insights
on the use of blood as a potential surrogate tissue in epi-
genetic epidemiology. None of our participants were tak-
ing medication to treat any of the metabolic syndrome
components and were on average metabolically fit. This
metabolically-healthy obese population has a unique obes-
ity phenotype and metabolism, and LEP and ADIPOQ
DNA methylation profiles might be distinct in these
participants. Consequently, the results reported in the
current study need to be validated in normal weight popu-
lations as well as obese populations with cardiometabolic
complications. Moreover, as we are reporting cross-
sectional observations, longitudinal and functional studies
are needed to determine the causality of the relationships
between adipokine DNA methylation, anthropometric
variables and plasma LDL-C levels.

Conclusions
This study provides further evidence that LEP DNA methy-
lation levels in blood cells and ADIPOQ DNA methylation
levels in SAT are associated with obesity-related anthropo-
metric measures. It also suggests that LDL-C, known to
regulate DNA methylation processes, could be involved in
adipokines’ gene expression regulation through epigenetic
changes. Interestingly, similar correlations were observed
between LEP DNA methylation and LDL-C levels in blood
and SAT. This might be of clinical importance considering
that the access to biologically active tissues, such as adipose
tissues is limited.
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