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Abstract

Northern Finland.

determining the pathogenic potential of this variant.

Background: Mutations in the two MT-RNR genes in mitochondrial DNA can cause hearing impairment that
presents with variable severity and age of onset. In order to study the prevalence of mutations in MT-RNRT and
MT-RNR2 genes among Finnish children, we studied a ten-year cohort of hearing impaired children born in

Methods: We studied children, who had been born in Northern Finland in 1993-2002 and who had been
ascertained to have hearing impairment by 31 December 2007. Samples from 103 children were sequenced in
order to find mutations in the MT-RNRT and MT-RNR2 genes.

Results: One child harboured the pathogenic m.1555A > G mutation in MT-RNRT suggesting a frequency of 4.4/
100,000 in the Finnish paediatric population. In addition, eight rare variants and 13 polymorphisms were found in
MT-RNRT and MT-RNR2 genes. Five of the rare variants were deemed to be haplogroup-specific polymorphisms
rather than putative pathogenic mutations, while the remaining three variants have been reported in various
haplogroups. Among them m.990 T > C occurs at a conserved site.

Conclusions: The presence of m.990 T > C variant in various haplogroups and the rather high degree of
conservation at this site suggest that this transition is a pathogenic rather than homoplasic neutral variant.
Identification of further patients with m.990 T > C and segregation analysis in their families should help in
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Background

Mutations in mitochondrial DNA (mtDNA) can cause
hearing impairment (HI). The most prevalent of these
mutations are m.3243A > G in the MT-TLI gene and
m.1555A > G in the MT-RNRI gene. Among adult
patients with possible matrilineal sensorineural HI, the
frequency of m.3243A > G in Finland is 4.3% and that of
m.1555A > G is 2.6% [1]. A population prevalence of
16-18/100,000 has been obtained for the m.3243A > G
mutation by screening various patient groups in a de-
fined population in Northern Finland [2,3]. Interestingly,
the population prevalence of both m.1555A > G and
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m.3243A > G is approximately 1/500 in Caucasian
population samples [4-6] suggesting that most subjects
with the mutation remain unaffected. In addition to
m.1555A > G and m.3243A > G, many other point muta-
tions causing HI have been reported in mtDNA including
those in MT-TSI encoding transfer RNAS" (VSN and
MT-RNRI encoding ribosomal 12S RNA and [7].
Mutations in MT-RNRI gene can cause HI with or
without aminoglycoside exposure [8], whereas no muta-
tions have been reported in the MT-RNR2 gene in pa-
tients with HI. HI associated with mtDNA mutations
can be syndromic or non-syndromic. It is most com-
monly sensorineural and progressive affecting mainly
the high frequencies [7]. More variable patterns also
occur and in these patients HI affects all frequencies, is
not always progressive and can be of the conductive or
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mixed type [9]. Auditory neuropathy spectrum disorder
(ANSD) is a clinical syndrome characterized by evidence
of cochlear function in conjunction with an aberrant
auditory neural system. The molecular causes of ANSD
are not well known but several cases have been linked to
mitochondrial disorders [10].

Specific polymorphisms and sequence variation in
the D-loop define ten European mtDNA haplogroups.
Mitochondrial DNA haplogroups have been shown to
modulate the risk of visual failure in Leber hereditary optic
neuropathy [11] and they may modulate the phenotype
also in HI [12]. In addition, mtDNA haplogroups have
been shown to be associated with age-related HI [13] and
with hereditary HI [14].

The epidemiology of childhood HIs has previously
been studied in Northern Finland in the birth cohorts of
1973-82 and 1983-92 [15]. In these studies the possible
contribution of mtDNA mutations to childhood HI was
not studied. In order to study the prevalence of mtDNA
mutations among Finnish children with HI, we studied
the next ten-year cohort of children born in Northern
Finland between the years 1993-2002 and ascertained
with HI before 31 December 2007. We screened 103 chil-
dren with sensorineural, mild to profound, syndromic or
non-syndromic HI for mutations in the MT-RNRI and
MT-RNR2 genes. In addition, mtDNA haplogroups were
determined in order to study their contribution to child-
hood HI.

Methods
Subjects
The study population consisted of children born in
Northern Finland between the years 1993-2002 and
whose HI had been ascertained before 31 December 2007
(the prevalence date) at the Oulu University Hospital
(OUH). OUH is responsible for the diagnostics of all
HIs of children in a population of about 730,000 within
an area geographically covering the northern half of
Finland. Review of records at OUH revealed 240 chil-
dren with HI and among them 143 children had HI with
unknown aetiology. Samples were obtained from 103
unrelated children with mild to profound sensorineural
HI that was deemed to be syndromic or presumably
syndromic HI (N = 36) or nonsyndromic. The most
common additional disability associated with HI was
intellectual disability or developmental delay. In 37
children, one or more first degree relative had HI. All
children with non-syndromic HI were negative for mu-
tations in the GJB2 gene. In addition, all children were
negative for the m.3243A > G mutation and mutations
in the MT-TSI gene. Eighteen children had received
aminoglycoside antibiotics during perinatal period.
Controls consisted of 99 blood donors from the prov-
ince of Northern Ostrobothnia. The donors and their
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mothers were required to be free of the common mani-
festations of mitochondrial diseases, such as diabetes
mellitus, HI and neurological ailments. In addition, it
was required that the donors and their mothers had
been born in the same province.

The study protocol was approved by the Ethics Com-
mittee, OUH. Written informed consent was obtained
from the parents.

Molecular methods

A blood sample was obtained from the ascertained chil-
dren and genomic DNA was extracted using the QIAamp
Blood Kit (Qiagen, Hilden, Germany). Template DNA was
first amplified in the presence of **S-dATP and the ampli-
fied fragments were screened for m.1555A > G [16] by
restriction fragment analysis with Alw26l (Fermentas, St.
Leon-Roth, Germany). The digested samples were electro-
phoresed through a 6% nondenaturing polyacrylamide gel.

The MT-RNR1 and MT-RNR2 genes were screened for
polymorphisms and mutations by using conformation
sensitive gel electrophoresis (CSGE) [17] and subsequent
sequencing in 88 samples or by direct sequencing in 15
samples. For CSGE, 12 pairs of primers were used to amp-
lify the mtDNA fragments. Fragment size ranged from 202
base pairs (bp) to 397 bp. Samples forming heteroduplexes
with a control strand were analyzed by automated sequen-
cing if the heteroduplex differed in mobility on CSGE from
a wild-type homoduplex. Sequencing was carried out using
the BigDye Terminator v1.1 Cycle Sequencing Kit and the
ABI PRISM 3130x] Genetic Analyzer (Applied Biosystems,
Life Technologies Corporation, Carlsbad, CA, U.S.A.). The
primers used for sequencing were the same as those used
in the amplification reactions for CSGE.

The D-loop was amplified in one fragment spanning the
nucleotides m.15975-m.725. The sequence was deter-
mined by use of forward primers with their 5’ nucleotides
at positions m.15975 and m.16449, respectively. The se-
quences in some samples were also determined by use of
reverse primers with the 3" nucleotide at positions m.107
and m.457, respectively. The mean length of the D-loop
sequence analyzed was 1109 bp (range, 884—1123 bp) and,
on average, 98.8% of the entire fragment was covered.

A phylogenetic network based on the D-loop sequences
was constructed by use of a reduced-median algorithm
[18]. MtDNA haplogroups were identified on the basis of
informative variants [19]. Frequencies of mtDNA hap-
logroups among children with HI and among the controls
were compared using an exact test of population differen-
tiation as implemented in Arlequin version 3.5.1.3. [20].

Data analysis

MtDNA variants were identified by comparing the ob-
tained sequences with the revised Cambridge reference
sequence (Genbank NC_012920). MITOMAP database
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Figure 1 Phylogenetic network of mtDNA. The network was constructed on the basis of variation in the D-loop sequence of 103 Finnish children
with HI. Fast-evolving sites, m.303, m.311 and m.16519 were not included in the network. The frequencies (%) of mtDNA haplogroups are shown.
Numbers inside the nodes denote samples. The polymorphic variants shown on the lines connecting the nodes are transitions unless marked
otherwise. ins = insertion, del = deletion, @ = back mutation. The outgroup is mtDNA from an African individual [GenBank:AF346980].

(www.mitomap.org/MITOMAP) and Human Mitochon-
drial database (HmtDB; www.hmtdb.uniba.it) were used
to evaluate variant frequencies and to compare the fre-
quencies in different haplogroups. A variant was defined
rare if its frequency was < 0.2% in either of the databases
and those with frequencies > 0.2% were regarded as
common polymorphisms [21].

The conservation of the nucleotides at variant
sites located in the MT-RNR-1 and MT-RNR-2 genes
was assessed. The alignments were performed by
using Clustal Omega-Multiple Sequence Alignment
tool (http://www.ebi.ac.uk/Tools/msa/clustalo/). For
this alignment, the species and reference sequences
were chosen according to the proposed consensus
panel of 10 organisms [22]. It was defined that a pos-
ition was rather highly conserved if nine variants were
identical among the 10 organisms.

Results

The D-loop sequences were used to infer mtDNA hap-
logroups and haplotypes in the 103 children with HI.
The frequencies of mtDNA haplogroups did not differ
from those in the general population of the province of
Northern Ostrobothnia (p = 0.78, exact test of popula-
tion differentiation; Figure 1). The 103 patients belonged
to 66 haplotypes, 24 of which were present in the phylo-
genetic network of Finnish mtDNA [19], while the
remaining 42 differed from the nearest neighbour by at
least one substitution (Figure 1).

One child with sensorineural HI ascertained at age 4.8
years was found to harbour the m.1555A > G mutation.
Her HI progressed to be severe by age 10.2 years and
she received a cochlear implant at age 11.3 years. Her
mother and five of her eight siblings had HI [23]. In this
pedigree we were able to ascertain four children with
HI, who harboured m.1555A > G and who had been
born between the years 1993—-2002 in Northern Finland.
The 10-year birth cohort was 91,022 suggesting a mini-
mum prevalence of 4.4/100 000 for the mutation (95%
confidence interval, 1.2; 11.2). In 2007 there were 81 539
nuclear families with children in Northern Finland (Sta-
tistics Finland) suggesting that the frequency of families
with a child harbouring m.1555A > G is 2.5/100 000.

Analysis of MT-RNRI and MT-RNR2 sequences re-
vealed 21 variants in addition to m.1555A > G. A variant
was defined rare if its frequency was < 0.2% in the Mitomap
or HmtDB database and those with frequencies > 0.2%
were regarded as common polymorphisms [21]. Conse-
quently, we identified eight rare variants and 13 polymor-
phisms (Table 1). Among the 13 polymorphisms, five were
at a frequency greater than 5%, four were at a frequency 1-
5% and four were at a frequency > 0.2% and < 1% (Table 1).

The eight rare variants were present among the se-
quences in Mitomap, HmtDB or our own files and com-
parison of the sequences indicated that m.740G > A,
m.896A > G, m.1341C > T and m.2405C-CC are strictly
haplogroup-specific (Table 2). The remaining four rare
variants (m.958C > T, m.990 T > C, m.2098G > A,

Table 1 Frequencies of rare variants in MT-RNR1 (positions 648-1601) and MT-RNR2 (positions 1671-3229) among

children with HI and in database sequences

Children with HI HmtDB Mitomap’s GenBank set

(N =103) Europeans (N = 4535) All continents (N = 16,231) (N = 26,851)
Variant (N) (%) (N) (%) (N) (%) (N) (%)
740G > A 1 0.97 15 0.33 22 0.14 25 0.09
896A > G 1 0.97 14 0.31 20 0.12 31 0.12
958C>T 1 097 1 0.02 5 0.03 8 0.03
990 T>C 1 0.97 3 0.07 1 0.07 17 0.06
1341C>T 1 0.97 5 0.1 7 0.04 18 0.07
2098G > A 1 097 18 040 33 020 47 0.18
2405¢c-cc 2 1.94 2 0.04 3 0.02 27 0.10
24457 > C 2 1.94 4 0.09 6 0.04 9 0.03

Common polymorphisms in MT-RNR1, frequency in Genbank (26,851 complete or near-complete sequences in Mitomap’s GenBank Set): m.709G > A (13.1%),
m.930G > A (2.1%), m.961 T > G (0.4%), m.1243 T > C (1.9%). Common polymorphisms in MT-RNR2: m.1719G > A (5.0%), m.1721C > T (0.7%), m.1811A > G (8.0%),
m.1888G > A (5.7%), m.2259C > T (0.7%), m.2706A > G (76.1%), m.3010G > A (16.9%), m.3116C > T (0.3%), m.3197 T > C (4.4%). HmtDB: Human Mitochondrial

Database, http://www.hmtdb.uniba.it.
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Table 2 Clinical features of children with hearing impairment and with rare variants in MT-RNR1 and MT-RNR2

Variant Sex Degree Other symptoms Age at Family history Haplogroup Haplogroup in HmtDB
of SNHI diagnosis (years) or Mitomap
740G > A Girl  Severe Non-syndromic 5 Negative Zla Zla
740G > A Boy Moderate Intellectual disability, short 10 Negative Zla Zla
stature, renal dysplasia
896A > G Girl  Mild Intellectual disability cleft palate, 8 Negative Usb USb
congenital hypothyreosis
958C > T USb,M5a,M5b,M7d
24457 > C U5a,U5b,D1,H1,L2
990 T >C Girl  Profound*  Non-syndromic 5 Negative V2 3,D4,V2,H1,H3,H4
1341C>T Gl Mild Non-syndromic 11 Negative Usb USb
2098G > A Girl  Severe Intellectual disability, 3 Negative H1 H1,K2,J2
hydrocephalus, spastic triplegia
2405¢-cc Boy Mild Non-syndromic 7 Negative U4d U4d
2405¢c-cc Girl  Moderate  Non-syndromic 5 Positive dominant  U4d U4ad
2445T>C Boy Severe Non-syndromic 3 Negative U5a U5a,U5b,D1,H1,L2

SNHI = sensorineural hearing impairment, *= mild conductive HI on one side.

m.2445 T > C) have been found in various haplogroups.
The positions m.958 and m.2445 were not evolutionary
conserved (Table 3) and children harbouring these variants
belonged to haplogroups U5b and Uba that have previously
been assigned to these variants. The position m.2098 was
rather conserved. However, the child with m.2098G > A
belonged to haplogroup H1, which was the case also in 29
out of 33 sequences in databases suggesting that m.2098G
> A is a haplogroup H1 associated variant. Finally, the
m990 T > C variant occurred in subhaplogroup V2 and
the position m.990 was rather highly conserved (Table 3).

Discussion

We found one child with the m.1555A > G mutation among
103 children with HI. The prevalence of m.1555A > G is gen-
erally 04 - 2.6% among European patients with HI [24-26],

Table 3 Conservation of the nucleotide positions of four
rare variants in MT-RNR-1 and MT-RNR-2 genes

m.958 m.990 m.2098 m.2445

Taxonomic
classification

Species

Primates Homo sapiens C T G T
Pan troglodytes ~ C T G C
Pan paniscus C T G C
Hylobates lar C C G @
Mammals Mus musculus A T G A
Rattus norvegicus C T G T
Bos taurus T T G T
Vertebrates Gallus gallus C T G C
Gadus morhua G T A A
Invertebrates  Drosophila — T T C

melanogaster

but prevalence figures higher than these have been reported
among Spanish and Asian patients [27-29]. Among adult
Finnish patients with possible matrilineal sensorineural HI, the
frequency of m.1555A > G is 2.6% [1]. In the present study,
we could estimate that the minimum frequency of m.1555A >
G was 4:4/100 000 in the Finnish paediatric population and
2.5/100 000 in families with children. Population studies have
suggested that m.1555A > G is common among Caucasians
occurring at a frequency of about 1 in 500 [4,6]. Many muta-
tion carriers have normal hearing levels [4,30] suggesting that
the penetrance of m.1555A > G is low in the population.

Mitochondrial DNA haplogroups have been suggested
to increase the risk in certain neurodegenerative diseases
including age-related HI. The prevalence of age-related
HI is higher in subjects belonging to haplogroups U and
K [13]. Furthermore, possible excess of haplogroup clus-
ter HV has been reported among European patients with
postlingual, nonsyndromic HI [31] and the frequency of
subhaplogroup D4b2 is higher in Japanese patients with
HI than that in controls [14]. We did not find differ-
ences in mtDNA haplogroup frequencies between chil-
dren with HI and the general population.

We attempted to detect new pathogenic mutations or
rare variants that could be the cause of HI in children.
We found eight rare variants, one of which, m.990 T >
C, has been reported in association with HI [32]. Our
patient with m.990 T > C had profound, sensorineural
HI on one side and mild, conductive HI on the other
side. Her mtDNA belonged to haplogroup V2, while the
17 sequences with m.990 T > C deposited in the Mito-
map database belong to four haplogroups or eight sub-
haplogroups suggesting that this variant has emerged
several times in human history. The nucleotide position
m.990 is located in stem 20 of 12SrRNA and,
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interestingly, it is rather highly conserved [32]. These
two pieces of information point to the possibility that
990 T > C is a pathogenic rather than homoplasic variant.
Unfortunately, the detailed clinical features or mtDNA hap-
logroup data were not reported on the previous patient
with HI and m.990 T > C [32].

In addition to the eight rare variants we found m.961
T > G, which has previously been reported in association
with HI [33,34]. The mtDNA of our patient belonged to
haplogroup H11l and this was also the case for 62
sequences in Mitomap. These data and previous consid-
erations [35] suggest that m.961 T > G is a haplogroup-
specific variant rather than a pathogenic mutation.

An increased number of rare polymorphisms have been re-
ported among Finnish adult patients with sensorineural HI
[36] and, furthermore, it has been proposed that increased
sequence variation in mtDNA may be a genetic risk factor
for HI Interestingly, among the 103 children with HI we
found one patient with three rare variants including m.896A
> G, m.958C > T and m.2445 T > C and belonging to hap-
logroup U5b. This girl had a mild sensorineural HI ascer-
tained at age 8 years. She had also congenital hypothyreosis,
cleft palate and intellectual disability. A search in the HmtDB
database revealed that a motif consisting of m.896A > G,
m.958C > T and m2445 T > C is found in only one se-
quence that is of Finnish origin [GenBank:EU784076]. The
phenotype of this subject is not known and thus we cannot
determine whether the motif is a rare haplogroup U5b signa-
ture or whether it contributes to syndromic HI.

Conclusions

We found that the m.1555A > G mutation was present
at a frequency of 0.97% among Finnish children with
HI and our data further suggest that its frequency is
4.4/100 000 in the Finnish paediatric population or 2.5/
100 000 in families with children. We detected eight
rare mtDNA variants among the children with HI. Five
of these variants (m.740G > A, m.896A > G, m.1341C > T,
m.2098G > A, m.2405c-cc) were deemed to be haplogroup-
specific polymorphisms rather than pathogenic mutations.
The remaining three variants (m.958C > T, m.990 T > C,
m.2445 T > C) were present in more than one haplogroup.
Occurrence of a variant in different haplogroups sug-
gests that the mutation has arisen more than once
during evolution. Evolutionary conservation at such a
variant site supports pathogenic potential, while non-
conservation at the site suggests that the variant is a
homoplasy. Hence, m.958C > T and m.2445 T > C were
considered homoplasic variants, while m.990 T > C was
deemed to be unclassified in terms of its pathogenic
potential. Identification of further patients with m.990
T > C and segregation analysis in families with m.990
T > C should help in determining the pathogenic
potential of the variant.
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