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Abstract

Background: Single nucleotide polymorphisms (SNPs) within the 9p21.3 genomic region have been consistently
associated with coronary heart disease (CHD), myocardial infarction, and quantity of coronary artery calcification
(CAC), a marker of subclinical atherosclerosis. Prior studies have established an association between blood pressure
measures and CAC. To examine mechanisms by which the 9p21.3 genomic region may influence CHD risk, we
investigated whether SNPs in 9p21.3 modified associations between blood pressure and CAC quantity.

Methods: As part of the Genetic Epidemiology Network of Arteriopathy (GENOA) Study, 974 participants
underwent non-invasive computed tomography (CT) to measure CAC quantity. Linear mixed effects models were
used to investigate whether seven SNPs in the 9p21.3 region modified the association between blood pressure
levels and CAC quantity. Four SNPs of at least marginal significance in GENOA for a SNP-by-diastolic blood pressure
(DBP) interaction were then tested for replication in the Framingham Heart Study’s Offspring Cohort (N = 1,140).

Results: We found replicated evidence that one SNP, rs2069416, in CDKN2B-AS1, significantly modified the
association between DBP and CAC quantity (combined P = 0.0065; Bonferroni-corrected combined P = 0.0455).

Conclusions: Our results represent a novel finding that the relationship between DBP and CAC is dependent on
genetic variation in the 9p21.3 region. Thus, variation in 9p21.3 may not only be an independent genetic risk factor
for CHD, but also may modify the association between DBP levels and the extent of subclinical coronary
atherosclerosis.
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Background
Coronary heart disease (CHD) is the leading cause of
morbidity and mortality in the United States and other
Western countries, and accounts for approximately one-
third of all deaths in adults over age 35 [1]. The vast major-
ity of CHD cases arise from pathologic processes (usually
atherosclerotic plaque) in the coronary arteries. The ex-
tent of atherosclerosis in the coronary arteries can be
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assessed non-invasively by measurement of coronary ar-
tery calcification (CAC) quantity via computed tomog-
raphy (CT) [2]. CAC quantity is heritable [3], correlates
with increased burden of atherosclerotic plaque in the cor-
onary arteries [4], and is a predictor of incident CHD in
multiple ethnic populations after adjustment for estab-
lished risk factors (RFs) [2,5], such has age, sex, cigarette
smoking [6], hypertension [7], hyperlipidemia [8], and dia-
betes [9].
A region on chromosome 9p21.3, within the CDKN2B

anti-sense RNA (CDKN2B-AS1), nearby the CDKN2A
and CDKN2B genes, has been found to be strongly asso-
ciated with CHD and myocardial infarction [10-14].
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Single nucleotide polymorphisms (SNPs) in this region
also have been associated with CAC, a subclinical meas-
ure of CHD [15]. Little is known about the underlying
mechanisms of action. To date, no studies have consid-
ered whether variations in this genomic region modify
the association between blood pressure and CAC
quantity.
The Genetic Epidemiology Network of Arteriopathy

(GENOA) and the Framingham Heart Study (FHS) par-
ticipated in the Cohorts for Heart and Aging Research
in Genetic Epidemiology (CHARGE) effort to identify
genetic regions for CAC quantity [15] using a genome
wide association study (GWAS). GENOA is a study of
sibships and is unique among CHARGE cohorts in that
participants were ascertained based on a history of
hypertension in their sibship and thus are at high risk
for sequelae of hypertension [16]. Interestingly, there
were no significant associations between SNPs in the
9p21.3 region and CAC in GENOA that were found in
the other cohorts in CHARGE [15]. The background
of a strong personal and/or family history of early on-
set hypertension, a risk factor for CAC, may have contrib-
uted, in part, to the differences at 9p21.3 for GENOA
compared to other cohorts. Given GENOA’s study design,
we investigated whether there was any evidence of SNP-
blood pressure interactions on CAC quantity in GENOA
that replicated in the Framingham Heart Study (FHS) after
consideration of other established RFs, to better under-
stand the potential influence of genetic variation in the
9p21.3 region on the pathogenesis of CHD.

Methods
Subjects
Both the GENOA and FHS cohorts were comprised of
European Americans, who provided written informed
consent. The use of GENOA data and dbGaP FHS data
for the purpose of this study was approved by the Univer-
sity of Michigan Health Sciences and Behavioral Sciences
Institutional Review Board.
The GENOA study is a longitudinal community-based

study of sibships to identify genes influencing blood pres-
sure (BP) and its target organ damage sequelae [16,17].
Sibships with at least two adults with clinically diagnosed
essential hypertension before age 60 were recruited. All
other members of the sibship were invited to participate
regardless of their hypertension status. During the first
exam (1995–2000), 1,583 individuals were examined in
the Rochester, MN field center. During the second exam
(2000–2004), 1,241 participants were re-examined to meas-
ure RFs, including systolic blood pressure (SBP), diastolic
blood pressure (DBP), and CAC quantity. Exclusion criteria
were secondary hypertension, alcoholism, drug abuse, preg-
nancy, or active malignancy. Of these 1,241 participants,
974 had RFs, genotypes, and CAC measures and comprised
the GENOA discovery cohort. The GENOA participants
were from 435 sibships, with an average size of approxi-
mately 2.25 siblings per sibship.
The FHS was initiated in 1948 by systemically enrol-

ling two-thirds of the households in Framingham, MA.
In 1972, the Framingham Offspring cohort study was
initiated, and included 5,124 offspring of the original
cohort and offspring spouses [18]. Utilizing the dbGaP
mechanism (http://www.ncbi.nlm.nih.gov/gap) to request
data, we downloaded version 3 data of the FHS genotype
and phenotype files. The replication sample for this study
was comprised of 1,140 FHS Offspring cohort members
who attended a baseline clinic visit in 1998–2001 (exam 7),
underwent a CT examination an average of 4 years later
(2002–2005), and had available genotype data. FHS partici-
pants were from 450 sibships, with an average sibship size
of approximately 2.53 siblings.

Risk factor measures
Detailed information on measurement of RFs is provided
in the Additional file 1: Materials.

CAC measurement
CAC was measured in GENOA participants with an
Imatron C-150 electron beam CT (EBCT) scanner
(Imatron Inc., South San Francisco, CA) using a previ-
ously described protocol [19] to assess CAC quantity
using dual scan runs. FHS utilized an 8-slice Multi De-
tector CT (MDCT) scanner (Lightspeed Ultra; General
Electric Medical Systems, Milwaukee, WI) to measure
CAC quantity [20]. CAC was defined as hyperattenuating
foci in a coronary artery that was at least 1.0 mm2 in size,
with a radiograph attenuation coefficient (CT number)
above 130 Hounsfield Units throughout the focus. Total
CAC score in the heart was quantified by summing the
CAC scores across the four main epicardial arteries using
the Agatston method [21]. Detectable CAC was defined
as a CAC score at least 1.0. In GENOA, the average
CAC score of two sequential CAC scans was used for
all analyses. The CAC score was natural log-transformed
(ln(CAC score + 1)) to reduce skewness. Prior studies have
established a significant correlation between CAC mea-
sures from EBCT and MDCT scanners [22,23].

Genotyping/Imputation
In the GENOA Study, SNPs were measured using the
Affymetrix Genome-Wide Human SNP Array 6.0 plat-
form (Santa Clara, CA). In the FHS, SNPs were mea-
sured using the Affymetrix Human Mapping 500 K Array
Set and 50 K Human Gene Focused Panel (Santa Clara,
CA). Participants were excluded if they had an overall
SNP call rate < 95% or sex mismatch between genotypic
and phenotypic measurement. SNPs were excluded if they
had unknown chromosomal location, a call rate < 95% or
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a minor allele frequency (MAF) less than 0.01. From the
remaining SNPs, imputation was performed using data
from HapMap release 22, build 36, CEU population via
MACH version 1.0.16 (http://www.sph.umich.edu/csg/
abecasis/MaCH). Only SNPs with an imputation quality
(RSQ) ≥ 0.8, MAF > 0.01, and Hardy Weinberg Equilibrium
(HWE) P-Value > 1.0 × 10−6 were included in the analyses.
In the CHARGE CAC GWAS, 75 imputed SNPs in

the 9p21.3 region had a p-value < 10−6 for association
with CAC quantity [15]. Due to the high degree of linkage
disequilibrium (LD) between the SNPs, we reduced the
number of SNPs in the analysis by utilizing LDSelect,
which created seven tagSNPs based on an LD threshold of
0.60 [24]. The seven SNPs studied and their pairwise LD
r2 are presented in Additional file 1: Figure S1.

Statistical Analysis
Means and standard deviations were computed for con-
tinuous variables, and percentages were calculated for
discrete variables. Linear mixed effects models with fam-
ily as a random intercept were used to examine differences
in characteristics between GENOA and Framingham par-
ticipants. To examine the associations between RFs and
CAC score in each cohort, a linear mixed effects model
was fit with ln(CAC score + 1) as the outcome and the
following RFs as covariates: age, sex, SBP, DBP, anti-
hypertensive medication use, diabetes status, fasting
glucose levels, ln(pack years + 1), the ratio of low dens-
ity lipoprotein cholesterol to high density lipoprotein
cholesterol (LDL:HDL), and statin drug use. Residuals
from this model were then used as the outcome vari-
able in linear mixed effects models to examine the asso-
ciation between each of the 9p21.3 SNPs and CAC
score. Linear mixed effects modeling with family as a
random intercept was used to properly account for sibship
structure among the participants in each cohort while
retaining a valid type I error rate [25].
SNP-by-BP interactions were investigated by first obtain-

ing the residuals from a linear mixed effects model that in-
cluded all the covariates except the specific BP measure of
interest. Linear mixed effects models were used to assess
whether a SNP-by-BP measure interaction predicted the
residuals adjusting for the SNP and the BP measure of
interest. For all analyses, the residual of ln(CAC score +1)
from regression of selected RFs was the outcome variable.
From this point onward, the term “CAC quantity” is used
to refer to residual ln(CAC score + 1).
Imputed SNP genotype dosages were used in an addi-

tive genetic model for all analyses. SNPs with marginally
significant (P ≤ 0.10) interaction terms in the GENOA
cohort were tested in the FHS cohort.
Statistical significance was defined as having P ≤ 0.05 in

both GENOA and FHS and the coefficient for interaction
being different from zero. All tests were two-sided.
Combined P-Value Tests were performed using MetaP
(http://compute1.lsrc.duke.edu/softwares/MetaP/metap.
php) and the reported statistic reflects Stouffer’s z, which
considers both P-values and sample sizes [26]. Combined
P-values were corrected using the Bonferroni method in
order to account for testing seven SNPs. Replication was
declared when P-values for the interaction term were at
least marginally significant in both cohorts and the effects
for the SNP, BP measure, and interaction terms were con-
sistent between cohorts based on genotype-specific plots
of the relationship between BP and CAC quantity.
Statistical analyses were conducted using the R statis-

tical language (http://www.r-project.org/). The statistical
methodology for the creation of the LD plot in Additional
file 1: Figure S1 and the plotting of the predicted values of
adjusted CAC quantity presented in Figure 1 are described
in Additional file 1: Materials.
Results
Descriptive characteristics for the GENOA and FHS
cohorts are presented in Table 1. The percentage of
participants with detectable CAC, CAC score > 100,
and CAC score >300 was 68.6%, 31.2%, and 17.1%, re-
spectively, in GENOA and 68.39%, 37.1%, and 21.1%, re-
spectively, in FHS (data not shown). Significantly more
GENOA than FHS participants were women (59.0% vs.
54.3%, respectively; P = 0.03). GENOA participants had
significantly lower mean age, SBP, and ln(pack years + 1)
than FHS participants. GENOA participants had a signifi-
cantly higher prevalence of hypertension, anti-hypertensive
medication use, diabetes, and statin use but lower past
or active tobacco use than FHS participants. The asso-
ciation between RFs and CAC quantity are presented in
Additional file 1: Table S1. As expected, many but not
all RFs were associated with CAC quantity in each cohort.
The pairwise LD relationships between the seven

SNPs studied in the 9p21.3 region are presented in
Additional file 1: Figure S1. The associations between
the seven SNPs and CAC quantity are presented in
Additional file 1: Table S2. In GENOA, only rs3731239,
a CDKN2A intronic SNP, was significantly associated
with adjusted CAC quantity. In contrast, three SNPs
within or nearby CDKN2B-AS1 (rs1333049, rs1333050,
and rs1333040), were significantly associated with adjusted
CAC quantity in FHS.
Of the seven SNP-by-DBP interactions tested, four were at

least marginally significant in the GENOA discovery cohort
(rs2069416, rs1333040, rs1333049, and rs1333050) and
tested for replication in FHS (Table 2). Only the rs2069416-
by-DBP interaction was significant in both cohorts (GENOA:
P = 0.04; FHS: P = 0.033; combined P = 6.50 × 10−3). This
interaction remained significant after Bonferroni correction
(Bonferroni-corrected combined P = 0.0455). Although
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Table 1 Baseline characteristics of GENOA and FHS

GENOA FHS P‡

N = 974 N = 1,140

Age, years 58.41 (±10.17) 59.28 (±8.98) 0.67

Women, % 59.02% 54.35% 0.03

Participants with detectable CAC, % 68.60% 68.39% 0.92

ln(CAC score + 1) 2.88 (±2.56) 3.15 (±2.66) 0.16

Hypertension, % 72.17% 37.84% <0.0001

Anti-hypertensive medication use, % 67.58% 27.83% <0.0001

Systolic blood pressure, mmHg 131.20 (±16.87) 125.04 (±17.59) <0.0001

Diastolic blood pressure, mmHg 74.26 (±9.16) 74.56 (±9.37) 0.60

Diabetes, % 13.96% 7.46% <0.0001

Fasting glucose, mg/dL* 97.27 (±10.71) 96.66 (±9.78) 0.43

Past or Active tobacco use, % 45.26% 56.19% 0.0001

ln(Pack years + 1) 1.28 (±1.58) 2.56 (±1.01) 0.03

Statin Use, % † 24.57% 15.59% <0.0001

LDL:HDL ratio 2.55 (±1.04) 2.56 (±1.01) 0.71

GENOA = Genetic Epidemiology Network of Arteriopathy; FHS = Framingham Heart Study Offspring cohort; CAC = coronary artery calcification; HDL = high density
lipoprotein; LDL = low density lipoprotein; ln = natural logarithm; Statin = HMG-CoA Reductase Inhibitor.
*Fasting glucose mean and standard deviation calculated in subset of non-diabetics (GENOA: N = 844, FHS: N = 1054).
†Statin use was missing for 5 FHS participants.
‡P-value from a linear mixed effects model to test the difference between the two cohorts’means (quantitative traits) or the difference between the two cohorts’ frequencies
(qualitative traits), accounting for sibship structure.
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rs1333040 and rs1333049 were not at least marginally
significant for a SNP-by-DBP interaction term in FHS, in
the combined analyses using Stouffer’s z-test, the SNP-by-
DBP interaction term had P < 0.05 for each SNP
(rs1333040 combined P = 0.0246; rs1333049 combined
P = 0.0291). However, neither of these interactions were
significant after Bonferroni correction (rs1333040
Bonferroni-corrected combined P = 0.1722; rs1333049
Bonferroni-corrected combined P = 0.2037). No SNP-by-
SBP interaction terms were at least marginally significant
in GENOA, and therefore none were tested for replication
in FHS.
Table 2 SNP-by-DBP interactions on CAC quantity*

SNP Closest reference
gene†

Coded
allele

GENOA
CAF

FHS
CAF

GENOA
interact

rs2069416 CDKN2B-AS1 A 0.3666 0.3351 0.047

rs1333040 CDKN2B-AS1 C 0.5829 0.6031 0.012

rs1333049 (CDKN2B-AS1) C 0.5107 0.5089 0.014

rs1333050 (CDKN2B-AS1) C 0.6652 0.7009 0.069

rs2069418 CDKN2B-AS1 C 0.5447 - 0.289

rs3218009 CDKN2B-AS1 C 0.8106 - 0.370

rs3731239 CDKN2A C 0.3766 - 0.711

SNP = single nucleotide polymorphism; DBP = diastolic blood pressure; CAF = coded
FHS = Framingham Heart Study Offspring cohort.
*Adjusted for age, sex, systolic blood pressure, anti-hypertensive medication use, diabete
†Intergenic SNPs are represented in parentheses naming the nearest gene, e.g. (CD
‡Combined P was achieved through Stouffer’s z-test, which considers both p-values
§Bonferroni-corrected for testing 7 SNPs.
Rs2069416-by-DBP interaction plots are presented in
Figure 1a and 1b for GENOA and FHS, respectively. The
interaction plots demonstrate a decrease in predicted
CAC quantity with increasing DBP for participants with
one or two copies of the T allele in each cohort.

Discussion
The current, clinically applicable understanding of the
pathogenesis of CHD is generally limited to RF exposures
and basic genetics in the form of the family history. Yet this
base of knowledge alone does not begin to explain the
ion P
FHS
Interaction P

Combined
P‡

Bonferroni-corrected
combined P§

0.033 6.50 × 10−3 0.0455

0.250 0.0246 0.1722

0.273 0.0291 0.2037

0.565 0.2008 1

- - -

- - -

- - -

allele frequency; GENOA = Genetic Epidemiology Network of Arteriopathy;

s status, fasting glucose levels, ln(pack years + 1), LDL:HDL ratio, and statin drug use.
KN2B-AS1).
and sample sizes.



Figure 1 rs2069416 genotype dependent interaction with diastolic blood pressure (DBP, mmHg) on estimated ln(CAC + 1) adjusted for
age, sex, systolic blood pressure, anti-hypertensive medication use, diabetes status, fasting glucose levels, ln(pack years + 1), LDL:HDL,
and statin drug use. Panel (a) shows the rs2069416 genotype-specific relationship between DBP and the estimated adjusted ln(CAC + 1) for
GENOA participants. Panel (b) shows the rs2069416 genotype-specific relationship between DBP and the estimated adjusted ln(CAC score + 1)
for FHS participants. Dashed lines represent the mean value of ln(CAC score + 1) for each cohort. The black circle and accompanying line represent
the mean and standard deviation, respectively, for DBP. Colored circles represent the predicted value of ln(CAC score + 1) for each study participant,
according to their genotype.
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complex etiology of CHD. Recent GWAS have identified
more than 30 genetic loci associated with CHD [10,11]
and other loci (both overlapping and novel) associated
with CAC quantity [15]. However, these identified vari-
ants have small effect sizes, which have raised the
question of what accounts for the missing heritability
of CHD. There are multiple theories to account for the
missing heritability of CHD. These include, but are not
limited to, unscreened control data [27], biased sample
collection [28], non-additive genetic effects, and that
unidentified variants, rare and common, account for a
majority of the risk for CHD and other common dis-
eases [29]. These theories, though, do not account for
the possibility of gene-by-environment interactions and
how they could contribute to missing heritability for traits
such as CAC quantity. Accordingly, we have demonstrated
a novel, replicated finding for a SNP in the 9p21.3 region:
that a specific common variant on chromosome 9 provides
a context for gene-by-BP interactions, thus defining the
range of influence that blood pressure can have in athero-
genesis and plaque deposition.
Specifically, we have extended accumulated empirical

evidence regarding the 9p21.3 region and CHD and
present significant and replicated evidence that rs2069416
interacts with DBP to exacerbate the extent of CAC in a
genotype dependent manner. While in the CAC GWAS,
that ignored any interactions, GENOA and FHS had dis-
cordant results for the 9p21.3 region, once the interaction
with DBP was considered, inferences for a specific SNP
became concordant. Moreover, no SNPs considered were
significant for primary association with CAC in both co-
horts; it was only in the context of a SNP-by-DBP
interaction that the association with CAC was identified
and replicated.
The lack of evidence for significant SNP-by-SBP inter-

actions in the GENOA discovery cohort may reflect the
high (67.6%) use of anti-hypertensive medications that
specifically lower SBP, while largely leaving DBP levels
unaffected. Moreover, our findings of CAC quantity be-
ing higher with lower DBP likely reflects pulse pressure
due to the inclusion of both SBP and DBP (and the
control for one measure of BP when the other is being
tested for interaction). Pulse pressure has been dem-
onstrated to increase with age due to increases in SBP
and decreases in DBP [30]. While tests for interactions
between SNPs in 9p21.3 and pulse pressure were not
significant in GENOA (data not shown), there remains
the possibility that pulse pressure is contributing to
the observations in this study. There is a complex rela-
tionship between pulse pressure and quantity of CAC:
at younger ages (<50 years of age), SBP and DBP have
been shown to be positively associated with quantity
of CAC and likely act as surrogates of arterial resistance;
however, quantity of CAC is more closely associated
with pulse pressure in subjects older than 50 years,
which likely reflects large-artery stiffness [31]. Similar
age-related effects of pulse pressure have also been re-
ported in the FHS, with an increase in pulse pressure
after 50–60 years of age [30] and pulse pressure be-
coming the strongest predictor of CHD risk after
59 years of age in FHS [32]. In GENOA, as pulse pres-
sure increased, CAC quantity also increased, regardless of
genotype at rs2069416 (Additional file 1: Figure S2). How-
ever, both cohorts included participants younger than age
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50 and older than age 50. Moreover, there was not suffi-
cient power to consider a SNP-by-pulse pressure inter-
action in age specific strata or to consider three-way
interactions that included age, SNP and pulse pressure.
A recent large GWAS for blood pressure identified 28

loci that, to the best of our knowledge, do not overlap
with GWAS loci identified for CAC quantity or CHD
[33]. Our novel finding of a replicated interaction be-
tween a 9p21.3 SNP and DBP suggests a new genetic
pathway through which BP variation contributes to
variation in CAC quantity and thereby the potential
pathogenesis of CHD. Specifically, it suggests that the
CDKN2B-AS1 region, which is critical for numerous
atherosclerotic phenotypes [15,34,35], but not associ-
ated with blood pressure phenotypes [33], may confer
genetic risk through differential atherosclerotic plaque
development for a given level of blood pressure. This
mechanism may also be shared with other genomic re-
gions associated with CHD and other atherosclerotic
phenotypes, but not with blood pressure.
Despite findings of a replicated SNP-by-DBP inter-

action in the 9p21.3 region, knowledge is still lacking
about the specific mechanisms by which genetic vari-
ants in the 9p21.3 region contribute to CAC extent
and subsequent CHD pathogenesis. The 9p21.3 region
has previously been consistently associated with CHD
and related phenotypes, such as familial, premature
CAD [36], abdominal aortic aneurysms [14], vascular
wall stiffness [37], increased platelet reactivity [34],
subclinical carotid artery disease [38], and ankle-
brachial index [39]. The implicated SNP within the
9p21.3 region is near protein-coding genes and also
overlaps with an antisense non-coding RNA (also
known as ANRIL or DQ485453) [40]. Our top SNP-
by-DBP interaction occurred with a non-coding vari-
ant, rs2069416, which is not in LD with any coding or
obvious regulatory variants. Additionally, Visel et al.
found that deletion of the mouse-analogue of the
9p21.3 non-codingregion resulted in a severe decrease
in cardiac CDKN2A/B expression [35], suggesting that
the presence of risk alleles in the 9p21.3 region may
affect development of CHD through alteration of vascular
cell proliferation.
Strengths of the present study include data from large

community-based studies, similarity in CAC measure-
ments from the different CT scanners used in the two
cohorts, and similarity in imputation strategies and
statistical methods. In addition, we utilized strict im-
putation quality control (only using SNPs with an im-
putation RSQ ≥ 0.8), which likely decreased the potential
for false positive results from poor imputation quality of
genotypes. As well, the minor allele frequency of our sig-
nificant and replicated SNP, rs2069416 (0.37 and 0.33 for
GENOA and FHS, respectively), closely matches the
reported frequency of 0.36 for a European population in
the 1000 Genomes Project data (http://browser.1000gen-
omes.org). Finally, multiple RFs were included in the asso-
ciation and interaction analyses in contrast to most other
studies that have included just age and sex [15].
Limitations include the differences in cohort inclusion

criteria. The cohorts were entirely of European descent,
thus limiting generalizations that can be drawn from
these findings. More work is needed to replicate that the
9p21.3 region is involved in gene-BP interactions in
other racial and ethnic groups. In addition, this investi-
gation examined a restricted number of SNPs that had
first been identified in the CHARGE CAC GWAS [15].
This limited the inferences, as there are likely other loci
that contribute to gene-BP interactions in the extent of
CAC. Finally, multiple testing is an issue in all genetic
association studies and must be accounted for in the re-
sults. We have applied Bonferroni correction for the num-
ber of SNPs tested to the final meta-analysis results, even
though this approach is likely too conservative since the
seven SNPs considered here are not completely independ-
ent of one another. As well, there is limited statistical
power to detect gene-by-environment interactions. Due to
these considerations, we used P < 0.05 in both cohorts as a
cut-off for declaring significance. One SNP, rs2069416,
had significant interactions with DBP under these criteria.

Conclusions
Our study identified a novel and replicated SNP-by-DBP
interaction for rs2069416 that extends our knowledge of
the contributions to variation in CAC quantity. This
finding may also implicate a genetic pathway through
which BP (for which the genetic loci identified for asso-
ciation with BP so far do not overlap with those for cor-
onary atherosclerotic traits) affects CHD pathogenesis.
Given the public health importance of morbidity and
mortality of CHD, further study of gene-BP interactions
will be important as a potential pathway for prevention
and therapy.

Additional file

Additional file 1: Contains additional details about the
measurement and statistical methods used in this study, results
from association analyses between the risk factors and CAC
quantity and between SNPs and CAC quantity, the linkage
disequilibrium plot for GENOA, and a plot of the relationship
between rs2069416 genotype, pulse pressure, and CAC quantity.
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