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Abstract 

Background:  There is an annual increase in the incidence of invasive fungal disease (IFD) of the lung worldwide, but 
it is always a challenge for physicians to make an early diagnosis of IFD of the lung. Computed tomography (CT) may 
play a certain role in the diagnosis of IFD of the lung, however, there are no specific imaging signs for differentiating 
IFD of lung from bacterial pneumonia (BP).

Methods:  A total of 214 patients with IFD of the lung or clinically confirmed BP were retrospectively enrolled from 
two institutions (171 patients from one institution in the training set and 43 patients from another institution in the 
test set). The features of thoracic CT images of the 214 patients were analyzed on the picture archiving and communi-
cation system by two radiologists, and these CT images were imported into RadCloud to perform radiomics analysis. 
A clinical model from radiologic analysis, a radiomics model from radiomics analysis and a combined model from 
integrating radiologic and radiomics analysis were constructed in the training set, and a nomogram based on the 
combined model was further developed. The area under the ROC curve (AUC) of the receiver operating characteristic 
(ROC) curve was calculated to assess the diagnostic performance of the three models. Decision curve analysis (DCA) 
was conducted to evaluate the clinical utility of the three models by estimating the net benefit at a range of threshold 
probabilities.

Results:  The AUCs of the clinical model for differentiating IFD of lung from BP in the training set and test sets were 
0.820 and 0.827. The AUCs of the radiomics model in the training set and test sets were 0.895 and 0.857. The AUCs of 
the combined model in the training set and test setswere 0.944 and 0.911. The combined model for differentiating 
IFD of lung from BP obtained the greatest net benefit among the three models by DCA.

Conclusion:  Our proposed nomogram, based on a combined model integrating radiologic and radiomics analysis, 
has a powerful predictive capability for differentiating IFD from BP. A good clinical outcome could be obtained using 
our nomogram.
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Introduction
The increase in the incidence of hematological malig-
nancies, clinically invasive operations, and use of cor-
ticosteroids and immunosuppressants has led to an 
annual increase in the incidence of invasive fungal dis-
ease (IFD) of the lung, a condition with a high mortality 
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in patients with hematological malignancies and organ 
transplantation [1] worldwide. Early detection of the 
disease and timely clinical drug intervention can sig-
nificantly improve patient prognosis and reduce mor-
tality. However, early diagnosis is challenging because 
the clinical symptoms of IFD of the lung show no obvi-
ous specificity. Puncture biopsy is an invasive examina-
tion and thus difficult for some patients to accept. The 
serum 1,3-β-D-glucan test and galactomannan (GM) 
test are helpful in obtaining a diagnosis but have low 
sensitivity and an undesirable false-positive rate. High-
resolution chest computed tomography (CT) plays an 
important role in the diagnosis of lung diseases. The 
European Organization for Research and Treatment of 
Cancer and the Mycoses Study Group Education and 
Research Consortium (EORTC/MSGERC) consensus 
definitions of IFDs include the key role of CT scans [2], 
indicating that it is the most important tool for early 
management of IFD. However, the CT features of IFD 
are nonspecific, as other diseases of the lung have simi-
lar CT manifestations, especially the most common 
infectious disease, bacterial pneumonia (BP). Thus, 
radiologists have difficulty accurately diagnosing IFD in 
practice.

In recent years, newly emerging radiomics meth-
ods have emphasized that radiological images contain 
not only visual data that can be observed by the naked 
eye but also implicitly abundant genetic information 
[3]. High-throughput extraction and analysis of quan-
titative features from medical images by sophisticated 
machine learning tools are used to transform medical 
images into minable data; these techniques have been 
mainly applied in tumor research. However, research 
on nontumor lesions using radiomics methods is rela-
tively limited. Wang Yanling [4] studied the CT differ-
ential diagnosis of pneumonia and pulmonary paraquat 
poisoning with radiomics methods, demonstrating that 
the resulting predictive model had high differential 
diagnostic performance. In the present study, we aimed 
to distinguish IFD from BP by combining radiologic 
and radiomics analysis to achieve the early diagnosis of 
IFD.

Methods
Patients
The Ethics Committee of the First Affiliated Hospital of 
Army Medical University approved this retrospective 
study and waived informed consent from the patients 
due to the retrospective nature of the study. All methods 
in the study were performed in accordance with the 2002 
Declaration of Helsinki.

A total of 80 patients with IFD of the lung and 91 
patients with clinically confirmed BP admitted to the 
First Affiliated Hospital of Army Medical University from 
October 2014 to September 2015 were enrolled retro-
spectively and considered the training set. An additional 
20 patients with IFD of the lung and 23 patients with 
BP confirmed clinically admitted to the First Affiliated 
Hospital of ChongQing Medical University from Janu-
ary 2018 to June 2018 were enrolled retrospectively and 
considered the test set in this study. The pathogen cat-
egories and numbers of patients with each pathogen are 
shown in Table 1. The inclusion criteria were as follows: 
(1) patients with proven or probable IFD according to the 
EORTC/MSGERC criteria [2, 5]: Proven IFD was defined 
by histopathological evidence of tissue invasion. Probable 
IFD was defined based on the presence of host factors, 
clinical findings such as a halo sign, air-crescent sign, 
cavity or consolidation on CT, and mycological evidence 
of fungal infection from culture, cytological analysis of 
bronchoalveolar lavage (BAL) fluid, or galactomannan 
measurement in the serum or BAL. (2) patients with a 
diagnosis of BP based on symptoms of respiratory infec-
tion, and consolidation on thoracic CT, in addition to 
positive sputum, bronchoscopic aspirate, blood or pleural 
fluid cultures. The exclusion criteria were as follows: (1) 
patients underwent treatment with antibiotics or anti-
fungal agents before CT scanning; and (2) unclear lesion 
visualization on CT images. The flow chart of enrolling 
patient in the study is shown in Fig. 1.

CT image acquisition
The entire thorax of the patient was examined at the 
end of inspiration during a single breath-hold with a 
dual-source CT scanner (Somatom Definition, Siemens, 

Table 1  The pathogen categories and numbers of patients with each pathogen in the training set and test set

IFD BP

Training set 
(n = 171)

Aspergillus Candida Others Total Gram-positive 
bacterium

Gram-negative 
bacterium

Total

62 10 8 80 49 42 91

Test set (n = 43) 13 4 3 20 13 10 23
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Germany) at both institutions. The scanning parame-
ters are shown in Table 2. Unenhanced CT images were 
acquired.

Construction of models
Construction of the clinical model
Radiologic analysis of CT images  The CT images were 
interpreted using the picture archiving and commu-
nication system (PACS) of each institution. Blinded to 
the clinical information, two radiologists (reader 1 with 
8 years of thoracic imaging experience and reader 2 with 
10  years of thoracic imaging experience) analyzed the 
CT images and made decisions about the CT features by 
consensus, including lesion patterns, halos or the reverse 
halo sign (RHS), cavities, pleural effusion and lymph node 

enlargement. The lesion pattern was classified on CT 
as consolidation, nodules, ground glass opacity (GGO) 
or combinations thereof [6]. A nodule was considered a 
round or round-like lesion regardless of diameter (includ-
ing tree-in-bud). Lymph node enlargement was defined as 
a short diameter of more than 1 cm along the short axis.

Construction of  the  clinical model  Univariable analysis 
was conducted to assess the differences in the above CT 
features between IFD of the lung and BP in the training 
set, and stepwise multivariable logistic regression analy-
sis was performed on those CT features with statistically 
significant differences in the univariable analysis. Features 
with statistically significant differences in the multivari-
able analysis were considered independent risk factors 

Fig. 1  Flow chart of enrolling patients in the study

Table 2  The CT protocol of the two institutions

Tube voltage
(kVp)

Tube current
(mAs)

Beam pitch Detector 
collimation
(mm)

Routine
(matrix)

Slice thick
(mm)

Slice interval
(mm)

Training set 120 100–120 1 1.25 512 × 512 1.25 1

Test set 140 80–120 1 0.6 512 × 512 1.0 0.8
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related to the differential diagnosis of IFD of the lung and 
BP and were applied to build a model (named the clinical 
model). The odds ratio (OR) was obtained for each risk 
factor, and the area under the receiver operating charac-
teristic (ROC) curve (AUC) was used to assess the diag-
nostic performance of the model with both the training 
and test sets.

Construction of the radiomics model
The workflow of the radiomics analysis of pneumonia is 
shown in Fig. 2.

CT image resample and segmentation  To minimize the 
discrepancies in the different image acquisition param-
eters and improve the reproducibility, we resampled all 
voxels into 1.0  mm × 1.0  mm × 1.0  mm with B-Spline 
interpolation from the raw data before image analysis, and 
normalized voxel values by subtracting its mean value and 
dividing by its standard deviation value.

CT images of all the patients from the PACS were 
imported into Dr. Turing AI-assisted diagnosis platform 
V3.0 (Huiying Medical Technology Co., Ltd., Beijing, 
China) to automatically segment pulmonary lesions pre-
sumed to be pneumonia (e.g., GGO, nodules, tree-in-
bud and consolidation), and these segmentations were 
reviewed and corrected mannually (delineating around 
the edge of the lesions, avoiding vessels, bronchia, fibro-
sis and calcification) slice by slice by the same two radi-
ologists to obtaine the volumes of interest (VOIs) based 
on entire lesions. AI-assisted automatic segmentation is 
an open source pneumonia deep learning segmentation 
model trained by Huiying on the platform. This model 

was trained from thousands of pneumonia cases by pro-
fessional doctors who annotated the lesions, and the 
model adopts the Unet framework.

Radiomics feature extraction and  selection  The seg-
mented CT images were imported into the RadCloud 
platform (Huiying Medical Technology Co., Ltd., Beijing, 
China) to extract radiomics features. High-throughput 
data features were extracted from VOIs on the platform. 
These features were grouped into four groups. Group 1 
(first-order statistics features) consisted of descriptors that 
quantitatively delineated the distribution of voxel inten-
sities within the CT image through commonly used and 
basic metrics. Group 2 (shape- and size-based features) 
consisted of three-dimensional features that reflected the 
shape and size of the region. Group 3 (texture features) 
contained gray-level co-occurrence matrix (GLCM), 
gray-level size zone matrix (GLSZM), gray-level depend-
ence matrix (GLDM), neighborhood gray-level depend-
ence matrix (NGLDM) and gray-level run length matrix 
(GLRLM) that quantified regional heterogeneity differ-
ences. Group 4 (higher-order statistical features) included 
the first-order statistics and texture features derived from 
wavelet transformation of the original image. All radiom-
ics features were standardized using the StandardScaler 
function by removing the mean and dividing by its stand-
ard deviation, and each set of feature values was converted 
to a mean of 0 with a variance of 1.

The inter-class and intra-class correlation coeffi-
cients (ICCs) were calculated to evaluate the reliabil-
ity and reproducibility of features extracted from VOIs. 
CT images of 40 patients (20 IFDs and 20BPs) were 

Fig. 2  The workflow of the radiomics analysis of pneumonia
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chosen randomly, which were segmented automatically 
by AI-assisted diagnosis platform. Reader 1 and Reader 
2 reviewed and corrected mannually VOIs indepen-
dently, then Reader 1 repeated it a week later to evaluate 
the agreement of extracted features. Features with good 
agreement (ICCs > 0.75) were selected for further analy-
ses. The VOIs reviewing and correcting of remaining 
image were conducted by Reader 1.

To reduce the redundant features, the variance thresh-
old algorithm (variance threshold = 0.8) and Select-
K-Best algorithm were adopted. The Select-K-Best 
algorithm used P < 0.05 to determine optimal features. 
To guarantee image feature robustness, the optimal fea-
tures were selected by the least absolute shrinkage and 
selection operator (LASSO) method to best predict IFD 
of the lung and BP. In the LASSO method, the opti-
mal alpha which is the coefficient of regularization was 
selected using inner tenfold cross-validation in the train-
ing set with the maximum iteration of 5000 via mini-
mum average mean square error (MSE). Subsequently, 
the radiomics features with non-zero coefficients in the 
LASSO model generated by the whole training set with 
the optimal alpha were selected, which were used to build 
the radiomics model and calculate the radiomics score 
(Rad-score).

Construction of the radiomics model  A widely used sup-
port vector machine (SVM) machine learning algorithm 
was applied to construct the radiomics model by combin-
ing the selected radiomics features for the training set. 
The Rad-score was calculated as a linear combination of 
selected features weighted by LASSO coefficients. The 
AUC was used to assess the diagnostic performance of 
the radiomics model.

Construction of the combined model
A combined model was constructed by integrating radi-
ologic and radiomics analysis of the training set, and a 
nomogram was further developed. The probability of 
detecting IFD of the lung for each patient was calculated 
using a nomogram-defined score for the training and test 
sets. The diagnostic performance of the nomogram in 
differentiating IFD of the lung from BP was assessed by 
the AUC with both the training and test sets. The cali-
bration curve, along with a Hosmer–Lemeshow test, was 
constructed to assess the agreement of the nomogram-
predicted probability and the real outcomes for IFD of 
the lung in both the training and test sets. The diagnostic 
performance of the three models was compared. Deci-
sion curve analysis (DCA) was conducted to estimate the 
clinical utility of the three models by calculating the net 
benefit at a range of threshold probabilities for both the 
training and test sets.

Statistical analysis
We used RadCloud (Huiying Medical Technology Co., 
Ltd., Beijing, China) to perform radiomics statistical anal-
ysis. The radiologic analyses for images were performed 
with SPSS 23.0 and MedCalc15.2.2. The nomogram anal-
ysis was conducted with R software (version 3.3.1). The 
t test or Mann–Whitney U test was used for analysis of 
quantitative data, and the chi-square test or Fisher’s exact 
test was performed for analysis of qualitative data. The 
Delong test was applied to compare the diagnostic per-
formance of the three models. A P value < 0.05 was con-
sidered statistically significant.

Results
Patient characteristics
There were no significant differences in age, sex or clini-
cal diagnosis between the training and test sets (Table 3).

Construction of the clinical model
The comparison of CT features analyzed by the two radi-
ologists between the IFD of the lung and BP groups in 
the training and test sets is shown in Table 4. There was 
a significant difference in the presence of patterns, halos 
or RHS and pleural effusion (P < 0.05) between the two 
groups, while there was no significant difference in the 
presence of lymph node enlargement and cavities, patient 
age or sex (P > 0.05) between the two groups in the train-
ing set. Multiple logistic regression analysis showed that 
only the pattern [odds ratio (OR) 3.157; 95% confidence 
interval (CI) 2.094–4.759; P < 0.001] and halo or RHS (OR 
0.256; 95% CI 0.087–0.752; P = 0.013) remained inde-
pendent predictors in the clinical model. The clinical 
model yielded AUC values of 0.820 in the training set and 
0.827 in the test set (Fig. 3 and Table 6).

Construction of the radiomics model
A total of 1409 radiomics features were extracted from 
the Radcloud platform, containing 18 first-order statis-
tics features, 14 shape- and size-based features, 75 tex-
ture features and 1302 higher-order statistics features, 
29 optimal features of which were selected from the 

Table 3  Comparison of the training set and test set in terms of 
age, sex and clinical diagnosis

Clinical information Training set Test set t/χ2 value P value

Age (years) 50.3 + 19.4 49.6 + 21.5 0.227 0.821

Sex Male 89 22 0.011 0.917

Female 82 21

Clinical diag-
nosis

BP 91 23 0.001 0.975

IFD 80 20
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training set to construct the radiomics model, the coef-
ficients of which are shown in Fig. 4 and Table 5.

The radiomics model achieved satisfactory predictive 
performance, with AUC values of 0.895 in the training 
set and 0.857 in the test set (Fig. 3 and Table 6).

The Rad-score showed significant differences between 
the IFD (0.399 ± 0.195) and BP groups (0.649 ± 0.114) 
in the training set (P < 0.001, Z = 10.074) and in the 
test set (IFD, 0.404 ± 0.238; BP 0.663 ± 0.077; P < 0.001, 
Z = 4.66).

Construction of the combined model
A nomogram was developed based on the combined 
model by integrating radiologic and radiomics analy-
sis of the training set. The nomogram achieved optimal 
predictive performance, with AUC values of 0.944 in 
the training set and 0.911 in the test set. The calibration 
curve showed that there was great agreement between 
the nomogram-predicted probability and the real out-
comes for IFD of the lung in both the training and test 
sets (Fig.  5 and Table  6). The Delong test showed that 
the combined model and the radiomics model had a sig-
nificantly higher diagnostic performance than the clini-
cal model (p = 0.025 and P < 0.001), whereas there was 
no significant difference between the combined model 
and the radiomics model (P = 0.087) in the training set, 
and no significant difference was found among the three 
models (radiomics model vs. clinical model, P = 0.792; 
combined model vs. clinical model, P = 0.107; radiom-
ics model vs. combined model p = 0.280) in the test set. 
DCA showed that the nomogram based on the combined 
model provided higher net benefits than the clinical 
model and the radiomics model, which had the greatest 
clinical utility in differentiating IFD of the lung from BP 
among the three models (Fig. 6).

Discussion
To improve the survival of patients with IFD of the lung 
and reduce their financial burden, early identification of 
IFD is essential, but this remains challenging for physi-
cians. As revealed by our study, CT can help achieve 
this goal. The present study built a predictive diagnostic 
nomogram based on lung C T by integrating radiologic 
analysis with radiomics analysis for differentiating IFD of 
the lung from BP.

Table 4  Comparison of clinical factors in the training set

LNE* lymph node enlargement

CT factor Classification IFD BP t/χ2 value P value

Age (year) 53.1 + 18.2 47.9 + 20.2 1.776 0.077

Gender Male
Female

42
38

47
44

0.012 0.911

Pattern Consolidation
Nodule
Combination
GGO

7
3
67
3

56
3
29
3

57.248  < 0.001

Halo or RHS Present
Absent

25
55

5
86

19.5 0.001

Cavitation Present
Absent

24
56

27
64

0.002 0.962

Pleural effusion Present
Absent

16
64

41
50

12.0 0.001

LNE* Present
Absent

16
64

18
73

0.001 0.971

Fig. 3  ROC curves of the clinical model for differentiating IFD of the 
lung from BP in the training and test sets
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In the present study, the following five CT features of 
IFD of the lung and BP were analyzed by two radiologists: 
lesion pattern; halo sign or RHS; cavitation; pleural effu-
sion; and lymph node enlargement. We found that the 
presence of a lesion pattern, halo sign or RHS and pleu-
ral effusion were significantly different between the two 
disease groups; thus, these CT features were subjected to 
multiple logistic regression analysis to establish a clini-
cal model. Moreover, radiomics analysis was also used 
to build the radiomics signature. A combined model was 
further constructed by integrating the results of radio-
logic analysis and radiomic analysis of the training set, 
and a nomogram for differentiating IFD of the lung from 
BP was developed.

Among the CT features, significant differences were 
found between IFD and BP in terms of the lesion pattern, 
halo sign or RHS and pleural effusion, which is not com-
pletely consistent with a previous study [7] that showed 
that the halo sign was highly specific for invasive asper-
gillosis and that the presence of consolidation was not 

significantly different between IFD of the lung and BP. 
The halo sign is considered characteristic of angioinva-
sive aspergillosis [8–10], reflecting the presence of hem-
orrhagic microinfarcts, and is more common in the early 
phase. The RHS is also associated with IFD [11]. In the 
present study, 66 of the 137 patients with BP had pleu-
ral effusion, which is not consistent with a previous study 
reporting a frequency of 10% [12]. Because of these con-
tradictory results, differentiating IFD of the lung from 
BP remains challenging for radiologists. Moreover, our 
established clinical model yields a sensitivity of 0.9 but a 
specificity of 0.65 in the training set, which is unreliable 
for wide use in clinical practice.

Radiomics analysis provides a quantitative measurement 
of heterogeneity through high-throughput extraction of 
image features, and it is not affected by subjective analysis. 
Radiomics analysis has been widely applied and demon-
strated to be useful for studying tumor diagnosis and stag-
ing and evaluating prognosis [13–15]. According to these 
previous studies, tumor heterogeneity produces different 

Fig. 4  Coefficients of features in the radiomics model and ROC curves of the radiomics model for differentiating IFD of the lung from BP. a 
Coefficients in the LASSO model in the training set. b ROC curve of the radiomics model in the training set. c ROC curve of the radiomics model in 
the test set
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texture features in radiologic images. In the present study, 
the radiomics method was used to establish a radiomics 
model for differentiating IFD of the lung from BP, which 

performed well in both the training set (AUC, 0.895) and 
the test set (AUC, 0.857). The potential reason for this 
good performance may be related to the heterogeneity of 
the two types of diseases; because they are caused by dis-
tinctly different pathogens, the image textures of these two 
diseases are different. Previous studies using CT radiomics 
[16, 17] predictive models have demonstrated great accu-
racy in the predictive diagnosis of COVID-19 pneumonia.

To explore the clinical usefulness of our findings, we 
established a nomogram based on the combined model as 
an individualized tool for predicting the risk of IFD for each 
pneumonia patient. Although there were differences in CT 
image acquisition protocol between the training and valida-
tion sets of the two institutions, the nomogram had an opti-
mal capacity for prediction and generalization of the model, 
with a great diagnostic performance (AUC values of 0.944 
in the training set and 0.911 in the test set). In addition to its 
great diagnostic performance, the nomogram demonstrated 
great net benefits for the majority of the threshold prob-
abilities according to decision curve analysis, indicating that 
the use of our predictive nomogram for determining thera-
peutic strategies would obtain a better clinical outcome. 
Our nomogram provides a promising tool for assisting radi-
ologists and physicians in the diagnosis of IFD of the lung, 
which will allow patients with IFD to undergo proper treat-
ment as early as possible. A recent study [18] similar to our 
object proposed a clinical-radiomic nomogram with a great 
predictive ability to differentiate IFD from BP in patients 
with hematologic malignancies. The difference from ours is 
that their model was only applicable for patients with hema-
tologic malignancies, whereas our model is applicable for a 
wider range of patients, and many clinical factors have been 
taken into their study, which is what we are going to do for 
further study in the future.

There were several limitations in our study. First, the 
number of patients in the test set was relatively small, 
and more patients from different centers will be needed 
to validate the accuracy of the model in the future. Sec-
ond, the retrospective design of the study may have intro-
duced potential biases in enrolling the participants. Third, 

Table 5  Features and coefficients of features in radiomics mode

Feature Coefficient

Wavelet-HHH_glszm_SmallAreaLowGrayLevelEm-
phasis

− 0.0436137

Wavelet-HLL_glcm_ClusterShade − 0.03231882

Wavelet-HLH_glszm_GrayLevelVariance − 0.030891294

Exponential_glrlm_RunEntropy − 0.023351974

Wavelet-HHH_glszm_GrayLevelNonUniformity − 0.02186289

Wavelet-HLL_firstorder_Variance − 0.011402046

Wavelet-LLL_glszm_GrayLevelNonUniformity − 0.010425661

Square_glrlm_RunEntropy − 0.008676379

Wavelet-HLH_firstorder_Skewness − 0.002468136

Wavelet-LHL_firstorder_Kurtosis − 0.00214606

Wavelet-HLH_glrlm_RunVariance − 0.001889215

Wavelet-HHH_glszm_LowGrayLevelZoneEmphasis − 0.001064299

Gradient_glrlm_RunEntropy − 0.000995591

Ibp-2D_glrlm_RunEntropy − 0.000411688

Original_glszm_GrayLevelNonUniformityNormalized − 0.00000000599

Squareroot_glszm_GrayLevelNonUniformityNormal-
ized

− 0.0000000013

Logarithm_glszm_GrayLevelNonUniformityNormal-
ized

− 0.0000001918

Squareroot_glszm_GrayLevelVariance 0.00000195

Wavelet-LLH_glrlm_GrayLevelVariance 0.000633175

Wavelet-HHH_glszm_HighGrayLevelZoneEmphasis 0.007441552

Wavelet-HHH_glszm_GrayLevelVariance 0.008337091

Wavelet-HHL_glcm_Autocorrelation 0.013836544

Wavelet-LHL_firstorder_Mean 0.014166634

Wavelet-HHH_gldm_GrayLevelVariance 0.023156664

Wavelet-LHL_glcm_MCC 0.029071883

Original_glszm_GrayLevelVariance 0.033603816

Wavelet-HHH_firstorder_Skewness 0.033906287

Wavelet-LLH_firstorder_Minimum 0.037375992

Wavelet-HLL_firstorder_Mean 0.10444296

Intercept(non-feature) 0.532163743

Table 6  The diagnostic performance of the clinical model, radiomics model and combined model

CD* clinical model, RD* radiomics model, CBD* combined model

Model Training set Test set

AUC(95%CI) Cutoff Accuracy Sensitivity Specificity AUC (95%CI) Cutoff Accuracy Sensitivity Specificity

CD* 0.820
(0.754–0.874)

0.512 0.766 0.9 0.648 0.827
(0.681–0.925)

0.598 0.837 0.850 0.826

RD* 0.895
(0.839–0.936)

0.465 0.825 0.901 0.738 0.857
(0.716–0.945)

0.5 0.814 0.87 0.75

CBD* 0.944
(0.898–0.973)

0.481 0.883 0.9 0.868 0.911
(0.784–0.976)

0.205 0.837 0.95 0.739
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the most recent patients enrolled in the training set were 
from several years ago; due to the lack of complete data 
from the First Affiliated Hospital of Army Medical Uni-
versity in recent years, newer patients were not available.

In conclusion, our proposed nomogram may provide a 
solution for the challenge that physicians face in identify-
ing IFD at an early stage.

Fig. 5  The nomogram of the combined model and its ROC curves and calibration curves. a The nomogram based on the combined model 
by integrating artificial analysis and the radiomic analysis in the training set. Pattern 0, 1, 3 and 2 represent consolidation, noddle, GGO and 
combinations thereof. Halo or RHS 0 and 1 represent absence and presence of Halo or RHS. Prediction probability is the estimated probability of IFD 
of the lung. b ROC curves of the combined model for differentiating IFD of the lung from BP in the training and test sets. c Calibration curves of the 
combined model for the training set and d calibration curves of the combined model for the test set. The y-axis represents the actual rate of IFD of 
the lung in the patients; the x-axis represents the nomogram-predicted probability of IFD of the lung. The Hosmer–Lemeshow test shows a good 
agreement of the nomogram with the perfect model represented by the black diagonal dashed line in both the training and test sets
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