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Abstract 

Objective:  To investigate the value of contrast-enhanced computed tomography (CECT) radiomics features in 
predicting the efficacy of epirubicin combined with ifosfamide in patients with pulmonary metastases from soft tissue 
sarcoma.

Methods:  A retrospective analysis of 51 patients with pulmonary metastases from soft tissue sarcoma who received 
the chemotherapy regimen of epirubicin combined with ifosfamide was performed, and efficacy was evaluated by 
Recist1.1. ROIs (1 or 2) were selected for each patient. Lung metastases were used as target lesions (86 target lesions 
total), and the patients were divided into a progression group (n = 29) and a non-progressive group (n = 57); the latter 
included a stable group (n = 34) and a partial response group (n = 23). Information on lung metastases was extracted 
from CECT images before chemotherapy, and all lesions were delineated by ITK-SNAP software manually or semiauto‑
matically. The decision tree classifier had a better performance in all radiomics models. A receiver operating character‑
istic curve was plotted to evaluate the predictive performance of the radiomics model.

Results:  In total, 851 CECT radiomics features were extracted for each target lesion and finally reduced to 2 radiomics 
features, which were then used to construct a radiomics model. Areas under the curves of the model for predicting 
lesion progression were 0.917 and 0.856 in training and testing groups, respectively.

Conclusion:  The model established based on the radiomics features of CECT before treatment has certain predictive 
value for assessing the efficacy of chemotherapy for patients with soft tissue sarcoma lung metastases.

Keywords:  Radiomics, Soft tissue sarcoma, Lung metastases, Efficacy prediction

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Key points

•	 The CECT-based radiomics signature may help to 
predict the therapeutic efficacy of epirubicin com-
bined with ifosfamide in patients with soft tissue sar-
coma lung metastases.
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•	 Doxorubicin combined with ifosfamide is the stand-
ard first-line treatment for patients with advanced 
unresectable/metastatic STS.

•	 Several radiomics models were established, among 
which the model established by the decision tree 
classifier had a better effect.

Introduction
Soft tissue sarcoma (STS) is a heterogeneous group of 
malignant tumours of mesenchymal origin, account-
ing for less than 1% of all adult tumours, and can be fur-
ther divided into approximately  70  subtypes, each with 
different morphological features [1, 2]. STS can occur 
anywhere in the body, with the extremities (43%), trunk 
(10%), internal organs (19%), retroperitoneal area (15%), 
and head and neck (9%) being the most common pri-
mary sites. Among STS patients, 40 to 50% will develop 
metastases, the most common site of which is the lung, 
and patients with lung metastases have poor prognosis 
[3–6]. According to SEOM  guidelines, chemotherapy 
is the standard systemic treatment for  advanced unre-
sectable/metastatic STS [7]. Anthracycline-based (such 
as doxorubicin, epirubicin, pirarubicin) chemotherapy 
is currently the most effective treatment for STS. At 
present, doxorubicin combined with ifosfamide is  the 
standard first-line treatment for patients with  advanced 
unresectable/metastatic STS [8]. Epirubicin, an isomer 
of doxorubicin, is a member of a new class of anthracy-
cline antibiotics. Compared with doxorubicin, epirubicin 
has the same or slightly higher efficacy but has less car-
diac toxicity. Its mechanism of action is direct intercala-
tion between nucleobase pairs of DNA, interfering with 
the transcription process and preventing the forma-
tion of  mRNA and thereby inhibiting  synthesis of  both 
DNA and RNA [9].

Response Evaluation Criteria in Solid Tumours ver-
sion 1.1 (Recist1.1) is currently the most widely used 
clinical response evaluation standard for solid tumours, 
using complete response (CR), partial remission (PR), 
stable disease (SD), and progressive disease (PD) to judge 
disease response to treatment [10]. In a previous study, 
approximately 77% (2% CR, 25% PR, and 50% SD) of 
patients benefited from the chemotherapy cycle of dox-
orubicin and ifosfamide, but approximately 30% experi-
enced disease progression or even death, with the disease 
progressing rapidly (median overall survival 12.8 months) 
[11]. In general, when lung metastatic lesions enlarge 
and reach the standard of PD during the chemotherapy 
cycle, the clinic will switch to a new regimen or other 
treatment. If we could predict disease progression in 
advance, we could choose or switch to other treatment 
options (such as second-line chemotherapy, localized 

radiotherapy, localized surgery) in a timely manner such 
that patients may have the greatest clinical benefit [7].

CT is the most important imaging modality for evalu-
ating the efficacy of lung metastases in STS. However, 
conventional CT can only assess efficacy based on size 
and Recist1.1 but cannot predict efficacy. Radiomics has 
become a hot research topic in recent years: it can extract 
massive data from medical images with high through-
put and analyse high-level, quantitative image features 
to deeply reflect the spatial heterogeneity of tumour tis-
sue [12]. Contrast-enhanced CT (CECT)-based radiom-
ics has been widely used in the study of various tumour 
efficacy predictions [13–15]. However, there is no previ-
ous study on the prediction of chemotherapy efficacy in 
metastases. The purpose of this study was to construct 
CECT-based radiomics models to predict the efficacy 
of epirubicin combined with ifosfamide in patients with 
lung metastases from STS and to help clinicians choose 
better treatment options.

Materials and methods
General information
A retrospective analysis of  51 patients with pulmonary 
metastases from STS from March 2014 to July 2021 was 
performed. All patients received epirubicin combined 
with ifosfamide chemotherapy (intravenous epiru-
bicin  60  mg/m2,  ifosfamide  3 ~ 5  g/m2); the treatment 
course was determined according to the specific treat-
ment response. The inclusion criteria were as follows: 
① diagnosed with pulmonary metastases from STS; ② 
received the established chemotherapy regimen of epi-
rubicin combined with ifosfamide; ③ underwent an 
enhanced chest CT scan within three weeks before treat-
ment; and ④ complete clinical, imaging and pathological 
data available. The exclusion criteria were as follows: ① 
not receiving a complete set of chemotherapy regimens; 
② incomplete imaging data or enhanced  CT  scans; ③ 
other malignant tumours present; and ④ unclear patho-
logical diagnosis of metastases.

Efficacy evaluation and analysis methods
According to Recist1.1, the clinical efficacy of the 
patient’s whole body was evaluated. PR was defined as 
at least a  30%  reduction in the sum of the diameters of 
the target lesions compared to baseline. PD was defined 
as at least a 20% increase in the sum of the diameters of 
the target lesions over the entire study period, and the 
absolute value of the sum of the diameters of the tar-
get  lesions must have also increased by at least  5  mm. 
In addition,  the appearance of one or more new lesions 
was also considered to be PD. SD was defined as neither a 
decrease to PR nor an increase to PD during the study, as 
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based on the sum of the target lesion diameters according 
to the minimum sum of the target lesion diameters.

The most recent enhanced  CT  scan before chemo-
therapy was selected as the imaging data of our study. 
For patients (n = 16) with a single lung metastasis, this 
metastasis was selected as the target lesion. For patients 
with multiple lung metastases  (n = 35),  2 lung metas-
tases were  selected  as the target lesions. There was a 
total of  86  target lesions, and the patients were divided 
into a progression group (n = 29) and a non-progression 
group (n = 57), with the non-progression group includ-
ing  patients with SD (n = 34) and  patients with PR 
(n = 23). The inclusion and exclusion criteria and a flow 
chart of patient registration are shown in Fig. 1.

Instruments and methods
The  following CT  scanning instruments were used: 
Optima CT660, BrightSpeed CT, Revolution CT, 
Discovery CT750 (GE Medical System, Milwauke, 
WI)  and Toshiba Aquilion 64  -slice spiral  CT. Before 
scanning, the patient performed breathing training. 
The patient was placed in a supine position, with the 
head or feet advanced, and a breath-hold scan was 
performed after deep inhalation. All patients under-
went an enhanced  CT  scan; the tube voltage  was 120 
kVp, the tube current was 200–350 mAs, the generated 
images were 5 mm thick, and some images were recon-
structed  with  1.25  mm layer thickness. The contrast 
agent used for enhanced scanning was iopromide injec-
tion (iodine concentration of 300  mg/ml) at a dose of 
80 to 90 ml and a flow rate of 2.5 to 3.0 ml/s. Standard 

algorithms and high-resolution algorithms were used 
for image reconstruction and parallel multiplane recon-
struction. The lung window (window width  1500 HU, 
window level -550 HU) and mediastinal window (win-
dow width 350 HU, window level 50 HU) were selected 
for image observation.

Image acquisition and segmentation
DICOM images were exported from the picture archiv-
ing and communications system  (PACS), and  the 
images were preprocessed by resampling 1 × 1 × 1 
before region of interest (ROI) delineation to eliminate 
differences between images with different slice thick-
nesses. Each CECT scan of each patient was normal-
ized with Z-scores in order to get a standard normal 
distribution of image intensities. ITK-SANP  software 
[16] was used for ROI segmentation. The  ROI  was 
manually or semiautomatically delineated layer by layer 
on the lung window image  until all lung metastases 
were included. Lesion segmentation was completed by 
an imaging graduate student specializing in thoracic 
diagnosis, and the delineated areas of different target 
lesions were highlighted in the figure with specific col-
ours. The segmentation results were then confirmed by 
a chief physician specializing in thoracic imaging diag-
nosis. In cases of disagreement, consensus was reached 
through consultation. Attempts were made to avoid 
marking beyond the edge of the lesion. Figure 2 shows 
the workflow of radiomics feature analysis.

Fig. 1   Patient Inclusion Process
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Feature selection and model building
AK software (Artificial Intelligence Kit V3.0.0. R, 
GE)  was used to  extract the radiomics features of the 
target lesions, whereby five kinds of features (includ-
ing grey level co-occurrence matrix, grey level size 
zone, histogram, morphological features and run length 
matrix) are extracted and the image data in the seg-
mented region are calculated. The feature calculation 
formula embedded in AK software follows the image 
biomarker standardization initiative (IBSI) standard. 
The calculation formula corresponding to each fea-
ture can be seen on the website [17]. The dimensional-
ity reduction model of imaging radiomics features was 
built on IPMS software (Institute of Precision Medicine 
Statistics v2.5.2. R, GE). The patients were randomly 
divided into a training group (n = 60) and a test group 
(n = 26)  according to a ratio of  7:3, and models were 
constructed with the data of the training group and 
evaluated with the data of the test group. The feature 
parameters were first standardized (standardization). 
Dimensionality reduction was performed by means  of 
variance, multivariate logistic regression and the recur-
sive feature elimination (RFE) strategy. The random 
forest classifier, logistic regression, support vector 
machine, naïve Bayesian classification,  decision tree 
classifier, and K-nearest neighbour methods were used 
to establish radiomics models. The radiomics analysis 
process is provided in the Additional file 1.

Statistical analysis
SPSS 26.0  statistical analysis software was used. An inde-
pendent samples  t test was used to compare age and  the 
χ2 test to compare sex and the curative effect. P < 0.05 was 
considered statistically significant. Model-predicted 
progression probabilities were compared using the 
evaluation results of  Recist1.1. A receiver  operating char-
acteristic (ROC) curve was drawn, and the area under the 
curve  (AUC) was calculated. The point corresponding to 
the maximum value of the Youden index (i.e., the point 
where the sum of sensitivity and specificity is the largest) 
was used as a cut-off to distinguish progression from non-
progression, and the positive predictive value and negative 
predictive value were calculated. The benefit of the model 
was evaluated by decision curve analysis (DCA).

Results
General features
A total of  51  patients were included, 24  males 
and 27 females, ranging in age from 16 to 82 years, with 
an average age of 45.4  (± 14.1) years. There were no 
significant differences in age, sex or efficacy between 
the training group and the test group (P > 0.05). In 
this study, a given patient may have  1  or  2  ROIs, and 
the  ROI  was  used as the grouping; thus, statistical 
descriptive indicators, including age and sex, will be dif-
ferent from the description of the general data. The above 
situation is shown in Table 1.

Fig. 2  Workflow of radiomics feature analysis. DCA, decision curve analysis
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Radiomics features
The decision tree classifier, which had the best effect, 
was selected to establish a radiomics model, and the test 
group was used to verify the feature performance and 
evaluate the data for the training group.

For each ROI, 851 features  were extracted, 
including  18  first-order features,  14  3D  shape fea-
tures,  75  s-order features (GLRLM, GLSZM, GLCM, 
NGTDM, and GLDM),  and 744  wavelet transform fea-
tures (based on the transformation of previous features). 

Through dimensionality reduction, the final number 
of radiomics features was  2 (wavelet-HHH_First Order 
Mean  and  wavelet-LHL_GLRLM Long Run Low Grey 
Level Emphasis).

Model performance
Comparison of the AUC values of various models in 
the training and test groups are illustrated in  Fig.  3. 
According to ROC  curves  (Fig.  4), the  AUC of  the 
decision tree classifier model for predicting lesion 
progression in  the training group was  0.917  (95%  CI 
0.858, 0.969) for the training group and 0.856  (95% CI 
0.726,  0.967)  for the test group. The sensitivity and 
specificity balance point, that is, the probability corre-
sponding to the maximum value of the sum of the two, 
was used as the threshold to determine lesion progres-
sion. The confusion matrix under this balance point 
describes the numbers of true positive, false positive, 
true negative and false negative cases. The sensitivity, 

Table 1   General Information of training and testing groups.

Age Sex (Male/
Female)

PR + SD (n = 57) PD (n = 29)

Training (n = 60) 46.27 ± 12.73 26/34 40 20

Testing (n = 26) 44.15 ± 16.16 15/11 17 9

t/F value − 0.65 1.49 0.23

p value 0.517 0.23 0.91

Fig. 3  AUC Comparison of Multiple Models. The abscissa describes the model’s name. The ordinate represents the AUC value of the model. Blue 
represents the training group. Orange represents the testing group

Fig. 4   ROC Curve of the Training Group and Test Group. a ROC Curve of the Training Group. b ROC Curve of the Test Group
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specificity, accuracy, positive predictive value and 
negative predictive value of predicting lesion progres-
sion were 75.0%, 95.0%, 88.3%, 88.2% and 88.4% in the 
training group and 55.6%, 88.2%, 76.9%, 71.4% and 
78.9% in the test group, respectively. The diagnos-
tic performance of the decision tree classifier in the 
training and test groups is given in Table  2. The DCA 
curve showed that the net benefits of the radiomics 
model in both the training group and the test group 
were better than those of the  treat-none  model and 
the treat-all model over a wide range of risk thresholds 
between 0.1 and 1.0 (Fig. 5).

Discussion
This study aimed to establish a variety of radiomics 
models to predict the treatment effect of chemotherapy 
for STS lung metastases. A total of 6 kinds of radiomics 
models were established, of which the model with the 
best performance in the training and test groups was 
the decision tree classifier. All other indicators showed 

good predictive value (AUC of training group and test-
ing group: 0.917, 0.856). Our results demonstrate that 
CECT-based radiomics features can predict the efficacy 
of epirubicin combined with ifosfamide for treatment of 
pulmonary metastases from STS. In the clinic, epirubicin 
combined with ifosfamide is the first-line chemotherapy 
regimen for STS with lung metastases; however, there are 
still some patients who do not benefit from this approach 
and may rather benefit from other treatments and there 
is no detailed and broad consensus on the selection of 
this first-line chemotherapy regimen. The radiomics 
model established in this study can predict whether met-
astatic lesions are suitable for this treatment (epirubicin 
combined with ifosfamide) based on radiomics features 
of metastatic lesions, which adds a new judgement index 
for clinical regimen selection. If the predictive model 
suggests that there is still a high probability of disease 
progression, other treatment options can be chosen in a 
timely manner.

Radiomics has been widely used for evaluating the 
efficacy of neoadjuvant chemoradiotherapy for STS. 
Crombe  first proposed the application of  delta  -radi-
omics to predict the efficacy of neoadjuvant therapy 
for STS, analysing its value based on  T2-weighted 
sequences in  predicting  pCR  in  65 STS inpatients 
before and after neoadjuvant therapy [18]. In a 
recent study,  Peeken et  al. [19] retrospectively stud-
ied  156  patients treated with neoadjuvant chemora-
diotherapy and established a delta-radiomics model to 
predict its efficacy for STS, which confirmed the advan-
tages of radiomics in evaluating treatment efficacy in 
STS. Nevertheless, radiomics has mostly been used to 
evaluate efficacy in primary lesions of specific diseases, 

Table 2   Diagnostic performance of the decision tree classifier in 
the training and testing groups

Training group Testing group

AUC​ 0.917 0.856

Sensitivity (%) 75 55.6

Specificity (%) 95 88.2

Accuracy (%) 88.3 76.9

Positive predictive value (%) 88.2 71.4

Negative predictive value (%) 88.4 78.9

95% CI 0.858 ~ 0.969 0.726 ~ 0.967

Fig. 5   DCA Curve of the Training Group and Test Group. a DCA Curve of the Training Group. b DCA Curve of the Test Group
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and the evaluation of radiomics for the lung has largely 
been based on lung cancer [20]. Indeed, as there are 
no previous radiomics studies for predicting response 
with intrapulmonary metastases, the present study is 
both pioneering and advanced. Additionally, this study 
helps to fill the gap of efficacy prediction in advanced 
sarcoma.

Recist1.1 criteria were selected as the control criteria 
in this study because they are currently the most widely 
used clinical efficacy evaluation criteria for solid tumours 
[21]. Although Recist1.1 criteria are controversial  in the 
evaluation of neoadjuvant therapy for STS, some STSs 
that respond biologically to radiotherapy/ chemotherapy 
may not shrink due to tumour enlargement due to necro-
sis, intratumoural haemorrhage, and/or cystic degenera-
tion [22]; as the present study involved lung metastases, 
the above situation does not apply. In a previous radi-
omics study of multiple lesions, a single lesion in a given 
patient was usually selected for analysis [23]. However, 
in this study, the delineation of  ROIs differed because 
patients with STS may have a single lung metastasis or 
multiple lung metastases. Therefore, the requirements 
of  Recist1.1 were used in ROI  delineation, and a target 
organ can be delineated two times at most. For each tar-
get lesion, single or multiple lesions can be selected for 
delineation, which not only increases the sample size of 
the  ROI but also makes the research more in line with 
clinical reality.

The two radiomics features ultimately selected in 
this study were wavelet-HHH_First Order Mean and 
wavelet-LHL_ Gray Level Run Length Matrix (GLRLM) 
Long Run Low Grey Level Emphasis (LRLGLRE), 
which are both radiomics features obtained from 
wavelet transform. The first-order  mean is expressed 
as the average value of the signal intensity of all pix-
els in the  ROI, which can reflect the regularity of the 
image  texture. GLRLM is defined as the length of the 
number of pixels, i.e., consecutive pixels with the same 
greyscale value, where LRLGLRE means measuring the 
joint distribution of long-run lengths with lower grey-
scale values, short-run dominance versus long-run 
dominance. The advantage reflects the smoothness and 
roughness of the image. Overall, the greater the advan-
tage of the short run is, the smoother the texture of 
the image is; the greater the advantage of the long run 
is, the rougher the texture of the image is [24]. These 
radiomics features may more deeply reflect the het-
erogeneity of tumours and hence reflect sensitivity to 
chemotherapy regimens to predict efficacy [12].

There are certain limitations in this study. First, this 
was a single-centre, preliminary study with a relatively 
small sample size. Second, ROI  segmentation was per-
formed by manual or semiautomatic delineation, with 

potential errors that may cause a certain deviation. 
Third, some of the clinical data were incomplete because 
the patient was treated in various ways at other hospi-
tals before being treated at our hospital, and such previ-
ous clinical data could not be carefully incorporated. In 
the future, we will conduct a prospective, multicentre, 
large-sample imaging study and include a complete and 
refined analysis of clinical factors.

In conclusion, CECT-based radiomics has certain 
value for noninvasively predicting the therapeutic effi-
cacy of epirubicin combined with ifosfamide in patients 
with STS lung metastases. Our preliminary findings 
suggest that CECT radiomics has the potential to be 
used as a noninvasive biomarker to predict the efficacy 
of epirubicin combined with ifosfamide in the treat-
ment of pulmonary metastases from STS. This study 
can help guide individualized treatment strategies for 
pulmonary metastases from STS.
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