
Fernández et al. BMC Medical Imaging          (2022) 22:129  
https://doi.org/10.1186/s12880-022-00849-8

SOFTWARE

SAFARI: shape analysis for AI‑segmented 
images
Esteban Fernández1, Shengjie Yang2, Sy Han Chiou1, Chul Moon3, Cong Zhang1, Bo Yao2, Guanghua Xiao2* and 
Qiwei Li1*    

Abstract 

Background:  Recent developments to segment and characterize the regions of interest (ROI) within medical images 
have led to promising shape analysis studies. However, the procedures to analyze the ROI are arbitrary and vary by 
study. A tool to translate the ROI to analyzable shape representations and features is greatly needed.

Results:  We developed SAFARI (shape analysis for AI-segmented images), an open-source R package with a user-
friendly online tool kit for ROI labelling and shape feature extraction of segmented maps, provided by AI-algorithms 
or manual segmentation. We demonstrated that half of the shape features extracted by SAFARI were significantly 
associated with survival outcomes in a case study on 143 consecutive patients with stage I–IV lung cancer and 
another case study on 61 glioblastoma patients.

Conclusions:  SAFARI is an efficient and easy-to-use toolkit for segmenting and analyzing ROI in medical images. It 
can be downloaded from the comprehensive R archive network (CRAN) and accessed at https://​lce.​biohpc.​swmed.​
edu/​safari/.
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Background
Medical images are produced from different modalities 
such as X-ray, computational tomography (CT), mag-
netic resonance imaging (MRI), whole-slide imaging 
(WSI). These procedures produce massive imaging data, 
which capture the anatomy and physiological processes 
of the body or histological details in high spatial resolu-
tion. Recent developments in deep-learning methods 
have enabled the automatic detection of regions of inter-
est (ROI), such as tumor regions, in medical images [1]. 

These newly developed methods and other standard 
image processing algorithms produce pixel-based rep-
resentations of the medical images, known as artificial 
intelligence (AI)-segmented images. These segmented 
images facilitate the identification and analysis of the ROI 
within the raw images.

Analyses of these ROIs can produce clinically meaning-
ful information that characterizes conditions or diseases 
and predict patient outcomes. Multiple studies in brain, 
breast, and lung cancer have used tumor shape to pre-
dict patient prognosis [1–7]. A recent study in lung can-
cer used digital hematoxylin and eosin (H &E)-stained 
pathology images to associate certain shape character-
istics with patient survival outcomes  [1]. These stud-
ies generally rely on shape features such as boundary 
descriptors  [2, 3], geometric descriptors  [1], landmark-
based descriptors  [7], and topological summaries  [6, 
8]. Such shape features are computed by various shape 
representations that characterize the ROI in one or two 

Open Access

*Correspondence:  guanghua.xiao@utsouthwestern.edu; qiwei.li@utdallas.
edu

1 Department of Mathematical Sciences, The University of Texas at Dallas, 
Richardson, TX, USA
2 Quantitative Biomedical Research Center, Department of Population 
and Data Sciences, The University of Texas Southwestern Medical Center, 
Dallas, TX, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1020-3050
https://lce.biohpc.swmed.edu/safari/
https://lce.biohpc.swmed.edu/safari/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-022-00849-8&domain=pdf


Page 2 of 7Fernández et al. BMC Medical Imaging          (2022) 22:129 

dimensions. For the shape features to be meaningful, 
they should (1) quantify the shape, geometry, and topol-
ogy of the regions; (2) be translation, rotation, and scale-
invariant; and (3) be application-dependent with a low 
computational complexity [9, 10].

While these studies have relied on raw or segmented 
images, the data processing and quality control steps 
are usually arbitrary, study-dependent, and rely on some 
software tool or programming script. As a result, there 
lacks an open-source implementation that can trans-
late different shape representations, extract quantitative 
shape features from the ROI, and summarize the results. 
To meet the increasing demand for such a tool, we devel-
oped an open-source R package, SAFARI (Shape Analysis 
for AI-segmented Images), for ROI labelling, represen-
tation, feature extraction, and visualization. These pro-
cedures and the preliminary steps to prepare images for 
SAFARI are shown in Fig.  1. Additionally, we provide a 
user-friendly online analytic tool.

Implementation
SAFARI is an open-source R package with a user-friendly 
online tool. The graphical interface offers a demonstra-
tion of the package’s capabilities. Given a valid segmented 
image, SAFARI can automatically detect, segment, and 
quantify the ROI. The main deliverables of the SAFARI 
package are listed in Additional file  1: Table  S1. When 
using the online tool, the resulting segments will be dis-
played on the website alongside a table corresponding 
to the shape features of each segment (Fig. 2). While the 
current version of our R package supports up to three-
class segmented images, the online tool only accepts 
binary images (PNG/GIF < 3 MB). The latest develop-
ment and released versions of the R package are available 
on GitHub [11] and CRAN [12], respectively.

We implemented a processing procedure to (1) seg-
ment the ROI from an AI-segmented image, (2) trans-
late to different shape representations, and (3) extract a 
variety of shape features based on those representations. 
The development of this pipeline is motivated by the 

“AI-segmented image” case study in [1], but we note that 
our tool can be used for the analysis of any binary and 
three-class image.

ROI labelling
Standard image processing methods, including newly-
developed deep-learning techniques [1], generate 
pixel-based image representations that are easy to 
manipulate, process, and store. These methods map the 
regions within the image to integer codings, referred 
to as categories. In X-rays, these categories represent 
the empty and skeletal structures. In pathology images, 
they represent the empty, malignant, and non-malignant 
regions. We show an example of an H &E-stained pathol-
ogy image, converted to a three-class segmented image 
in Additional file  1: Fig.  S1. We can easily identify ROI 
made up of these categories through this process, such as 
tumors tissues.

Individual ROI are identified and segmentedby stand-
ard morphological operations, based on a 4-connectiv-
ity  [13]. To reduce the influence of smaller regions, two 
filtering methods are available based on a user specify-
ing a minimum net area or the largest n regions to keep. 
The resulting ROI, stored in a single integer matrix, are 
labeled from largest to smallest in area.

Shape representations
Shape objects are then created from the segmentedROI; 
specifically, for each region, a binary matrix that indicates 
the object and a polygonal chain of its boundary (see 
an example in Additional file  1: Fig.  S2). We can derive 
further shape representations, such as the (normalized) 
radial lengths and (curvature) chain codes from the 
polygonal chain. These are one-dimensional and are able 
to quantify the contour and directional changes in the 
boundary. Additional properties can be computed from 
the polygonal chain, which are the convex hull and mini-
mum bounding box. For more details, regarding the six 
primary and derived shape objects, see Additional file 1: 
Section S1 and Table S2.

Fig. 1  SAFARI package workflow: (1) whole-slide image is processed by an Automated Tumor Recognition System (ATRS) and converted into 
a binary format, (2) ROI are identified and segmentedfrom the input binary image, (3) shape features are simultaneously computed for the 
downstream analysis
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Feature extraction
The resulting shape objects provide a heterogene-
ous feature extraction that is able to quantify differ-
ent information about the ROI. Various measurements 
that quantify the shape, geometry, and topology of the 
regions are computed, and categorized as geometric, 

boundary, and topological shape features. About 30 
shape features, properly categorized, are shown in 
Table  1 and detailed in Additional file  1: Table  S3 
by their formulae and properties. The dependen-
cies between shape representations and features are 
shown in Additional file  1: Fig.  S3, respectively. These 

Fig. 2  SAFARI online analysis interface, instructions, and results page



Page 4 of 7Fernández et al. BMC Medical Imaging          (2022) 22:129 

region-level shape features can be used in supervised 
and unsupervised applications. More importantly, 
they can further serve to characterize patients and the 
underlying condition or disease of interest.

Results
We studied the relationship between tumor shape and 
survival outcomes in lung and brain cancer patients, 
extending the work in [1] and following a similar meth-
odological approach as in [8], respectively. All analyses 
were performed with the R software, version 4.0.3, and 
R packages survival (version 3.2-7) and glmnet 
(version 4.1) [14–16].

Dataset A
We used 246 pathology images from 143 consecutive 
patients with stage I–IV non-small-cell lung cancer in the 
National Lung Screening Trial (NLST)  [17]. The patient 
characteristics are summarized in Additional file  1: 
Table S4. All patients had undergone surgical procedures 
as treatment. The survival time was defined as the period 
from the time of the surgery until death or the final date 
of the study (December 31, 2009). Forty-five patients 
had died during this time period, and the remaining 98 
were still alive at the final date of the study. As a result, 
the survival time of the alive patients was censored. There 
were multiple tissue slides scanned at 40× magnifica-
tion for each patient. The median size of the slides was 
24, 244 × 19, 261 pixels. Based on a convolutional neural 
network, the automated tumor recognition system devel-
oped by [1] created a segmentedthree-class image of each 
slide. A binary version of the three-class image was cre-
ated, where the holes within the tumors represent the 
empty and non-malignant regions.

Downstream analysis I: association study
Before starting the downstream analyses, we first 
implemented a quality control step. Any ROIs with 
a net area less than one-fourth of the largest ROI of 
each slide were removed. The 29 tumor-level features 
extracted by SAFARI were then average at the slide 
level.

To investigate the association with overall survival, 
we fit a separate univariate Cox proportional-hazards 
(CoxPH) model to each shape feature at the slide level. 
We summarize the results in Additional file 1: Table S5, 
where the shape features were centered and scaled, and 
patients with multiple slide images were accounted for 
by clustering. Notably, 14 of the 29 features were sta-
tistically significant (p value ≤ 0.05). Out of the 14 fea-
tures, 12 were geometric, and two were topological. 
Additionally, all significant features had negative effects 
to a poor survival outcome (hazard ratio > 1 ). Finally, 
the major axis angle served as a negative control and 
was not statistically significant, as expected, with a p 
value of approximately 0.86 (Additional file 1: Table S5). 
Since our methodology is an extension to [1], we com-
pare their results to ours where 4 shape features were 
statistically significant (p value ≤ 0.05) and not included 
in the original study (Additional file 1: Table S6).

Downstream analysis II: predictive performance
We choose a small subset of features by fitting a regu-
larized CoxPH model with a LASSO penalty to prevent 
overfitting. The tuning parameter � was selected by ten-
fold cross-validation [1, 15]. The selected features were 
the major axis length, circularity, and eccentricity. We 
show the cross-validation results and the importance 
of each selected feature in Additional file 1: Fig. S4. To 
evaluate the prognostic performance of the selected 
shape features, we predicted the risk scores using leave-
one-out cross-validation. Within each cross-validation 
fold, a single sample was chosen where we predicted its 
risk score by training a CoxPH model on the remain-
ing 245 samples. The predicted risk scores, based on 
the relative risk of the fitted models, were averaged for 
each patient. Subsequently, the patients were dichoto-
mized into high and low-risk groups, using the median 
patient-wise risk score and resulting in two groups with 
71 and 72 samples, respectively. A Kaplan–Meier plot 
of the high and low-risk groups is shown in Fig. 3. The 
p value of the log-rank test was 0.0035, demonstrating 
a separation between the two groups. Additionally, the 
prognostic performance of the shape-based risk scores 
was validated by a multivariable CoxPH model. After 
adjusting for clinical variables, including age, gender, 
smoking status, and stage, the predicted risk groups 

Table 1  Overview of the 29 shape features in three categories

For a full table and a diagram, refer to Additional file 1: Table S3 and Fig. S3, 
respectively

Category Features

Geometric Net area, thickness, elongation, filled area, perim-
eter, circularity, fibre length, fibre width, convex 
area, convex perimeter, roundness, convexity, 
solidity, major axis length, major axis angle, minor 
axis length, bounding box area, eccentricity, and 
curl

Boundary Bending energy, total absolute curvature, radial 
mean, radial standard deviation, entropy, area 
ratio, zero crossing count, and normalized 
moment classifier

Topological Number of holes and number of protrusions
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independently predicted prognosis (high-risk vs. low-
risk, hazard ratio = 2.32, p value = 0.0134, see Table 2).

Dataset B
We used the MRI scans of 61 patients with Glioblas-
toma (GBM), the most common malignant grade IV 
brain tumor, obtained from The Cancer Imaging Archive 
(TCIA) [18, 19] and their clinical data retrieved from The 
Cancer Genome Atlas (TCGA) [20]. The patient charac-
teristics are summarized in Additional file 1: Table S4. All 
MRI images were segmented into tumor and non-tumor 
regions using the Medical Imaging Interaction Toolkit 
(MITK) with augmented tools for segmentation [21]. The 
size of the scans are either 256× 256 or 512× 512 , and 
each patient has approximately 23–25  MRI images. We 
followed the data pre-processing steps in [8].

Downstream analysis III: association study
We followed a similar procedure as in the first case study. 
A quality control step was first implemented, followed by 
investigating the association with overall survival. Since 
brain tumor images are represented by two-dimensional 
slices, some of which do not contain any region of the 
tumor, we chose the slice level with the largest tumor 
size. As a result, we obtained 29 shape features for each 
patient.

To investigate the association with overall survival, 
we fit a separate univariate Cox proportional-hazards 
model (CoxPH) to each shape feature at the patient level. 
We summarize the results in Additional file 1: Table S7, 
where the shape features were centered and scaled. Nota-
bly, 11 of the 29 features were statistically significant (p 
value ≤  0.05). Out of the 11 features, 10 were geomet-
ric, and one was topological. Additionally, all significant 
features had negative effects to a poor survival outcome 
(hazard ratio > 1).

Discussion
The methodology used in the previous section is similar 
to the one used in [1], but we extend the study to high-
light the capabilities of our tool. We increased and diver-
sified the potential predictors of prognosis in lung cancer, 
by computing shape features on various shape represen-
tations, such as the chain codes, polygonal chain, radial 
lengths, etc. By clustering at the patient-level, we cor-
rect the standard errors and capture the heterogeneity of 
the tumors. This provides a different approach from [1] 
where they summarize the shape features at the patient-
level, potentially, affecting the results due to outliers. We 
also applied our software to an additional case study. The 
results shown in the association study were promising. 
This evidence suggests that the shape features provided 
could work for a variety of datasets, especially if we con-
sider the topological differences between lung and brain 
tumors.

Shape analysis has been widely studied and its use-
fulness has already been demonstrated in many 
different problems, such as lesion detection  [22], clas-
sification  [22–24], survival analysis  [1, 25], and tissue 
segmentation  [1, 7, 8], but the lack of complete shape 
analysis tools in the R environment motives our work. 
Although there are tools available in CRAN and Biocon-
ductor, none have a full pipeline  [26], support as many 
shape features and representations  [27], or have appli-
cations to medical imaging  [28] as our tool. Additional 
file 1: Table S8 compares a sample of the shape analysis 
tools available in the R environment to SAFARI.

While our proposed tool provides a complete, easy-
to-use, and open-source shape analysis pipeline, it still 
has some limitations. First, the pipeline does not include 
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Fig. 3  Survival curves, estimated using the Kaplan-Meier method, for 
both high-risk and low-risk groups

Table 2  Multivariable analysis of the predicted risk group

A Cox proportional-hazards (CoxPH) model was fitted to test the predictive 
performance of the predicted risk score, adjusted for clinical variables and based 
on the leave-one-out cross-validation results

*Bolding signifies features with p value ≤ 0.05.

Hazard Ratio (HR) with 95% 
confidence interval (CI)

p value*

High-risk versus low-risk 2.32 (1.19–4.52) 0.0134
Age 1.09 (1.03–1.16) 0.0040
Male versus female 0.92 (0.49-1.74) 0.7964

Smoker versus non-smoker 0.94 (0.51–1.72) 0.8429

Stage II versus stage I 1.30 (0.44–3.88) 0.6323

Stage III versus stage I 3.79 (1.93–7.45) ≤ 0.001
Stage IV versus stage I 4.26 (1.67–10.83) 0.0024
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the image segmentation step and heavily depends on the 
quality of the original segmentation. While the goodness 
of the segmentation stage will influence the final results, 
the contribution of our tool is its (1) diverse set of shape 
features to benchmark novel approaches, (2) simplicity 
for clinicians and pathologists, and (3) offline and online 
access. Additionally, we intend to integrate automatic 
segmentation in the future for specific applications. Sec-
ond, we need to include more novel shape features such 
as boundary features proposed in [7] and topological 
features proposed in [8]. Since we incorporate stand-
ard shape features found in older literature, it would be 
best to adapt to new methods for quantifying the shape, 
boundary, and topology of shapes.

A final detail that needs to be considered is the case of 
multi-label segmentation outputs, which result in heat-
maps for different classes that will be represented along 
channels. For this scenario, we encourage users to treat 
each channel separately, equivalent to the binary image 
consideration, when using our tool for ROI labelling and 
feature extraction. Since this output type is necessary for 
most AI-algorithms, we will consider adding functional-
ity for segmented maps with multiple channels in a future 
update.

Conclusion
We developed SAFARI, an open-source R package with 
its accompanying user-friendly online tool, to segment 
ROIs and characterize their shapes from AI-segmented 
images. Our lung cancer case study demonstrated how 
tumor shape features could predict patients’ survival out-
comes. The results of this study provide new biomark-
ers for prognosis and further evidence of the underlying 
association between shape and disease progression. To 
our knowledge, SAFARI is one of the few tools in the R 
environment with such capabilities. We believe that this 
tool will facilitate the analysis of ROI in a plethora of 
applications and boost methodological research in shape 
analysis.
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