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Abstract 

Background:  Both early detection and severity assessment of liver trauma are critical for optimal triage and man-
agement of trauma patients. Current trauma protocols utilize computed tomography (CT) assessment of injuries in 
a subjective and qualitative (v.s. quantitative) fashion, shortcomings which could both be addressed by automated 
computer-aided systems that are capable of generating real-time reproducible and quantitative information. This 
study outlines an end-to-end pipeline to calculate the percentage of the liver parenchyma disrupted by trauma, an 
important component of the American Association for the Surgery of Trauma (AAST) liver injury scale, the primary 
tool to assess liver trauma severity at CT.

Methods:  This framework comprises deep convolutional neural networks that first generate initial masks of both liver 
parenchyma (including normal and affected liver) and regions affected by trauma using three dimensional contrast-
enhanced CT scans. Next, during the post-processing step, human domain knowledge about the location and 
intensity distribution of liver trauma is integrated into the model to avoid false positive regions. After generating the 
liver parenchyma and trauma masks, the corresponding volumes are calculated. Liver parenchymal disruption is then 
computed as the volume of the liver parenchyma that is disrupted by trauma.

Results:  The proposed model was trained and validated on an internal dataset from the University of Michigan 
Health System (UMHS) including 77 CT scans (34 with and 43 without liver parenchymal trauma). The Dice/recall/
precision coefficients of the proposed segmentation models are 96.13/96.00/96.35% and 51.21/53.20/56.76%, 
respectively, in segmenting liver parenchyma and liver trauma regions. In volume-based severity analysis, the pro-
posed model yields a linear regression relation of 0.95 in estimating the percentage of liver parenchyma disrupted by 
trauma. The model shows an accurate performance in avoiding false positives for patients without any liver paren-
chymal trauma. These results indicate that the model is generalizable on patients with pre-existing liver conditions, 
including fatty livers and congestive hepatopathy.

Conclusion:  The proposed algorithms are able to accurately segment the liver and the regions affected by trauma. 
This pipeline demonstrates an accurate performance in estimating the percentage of liver parenchyma that is 
affected by trauma. Such a system can aid critical care medical personnel by providing a reproducible quantitative 
assessment of liver trauma as an alternative to the sometimes subjective AAST grading system that is used currently.
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Introduction
Trauma is the primary cause of mortality for individuals 
younger than 46 years old and the leading cause of years 
of life lost in the United States [1]. Approximately 5% of 
all trauma admissions are attributed to liver trauma [2]. 
Due to its anterior location, large size, and fragile paren-
chyma, the liver is the most frequently injured abdominal 
organ involved in blunt abdominal trauma [2–5]. Early 
detection and severity assessment of liver trauma with 
adequate treatment may result in significant reduction of 
morbidity and mortality [6–8].

Contrast-enhanced computed tomography (CT) is con-
sidered the gold standard technique in evaluating liver 
trauma and monitoring its progression over time [4, 9]. 
The CT-driven American Association for the Surgery 
of Trauma (AAST) liver injury scale is the primary tool 
currently in use to assess the extent of the liver trauma 
and guide management [10, 11]. AAST is a six-point 
scale with grade I signifying a small subcapsular hema-
toma (< 10% surface area) or laceration (< 1 cm paren-
chymal depth) and grade IV signifying larger laceration 
with parenchymal disruption affecting 25–75% of either 
liver lobe or 1–3 liver segments (Couinaud) [12]. How-
ever, the literature suggests significant intra- and inter-
observer variability when visually assessing liver injury 
using the AAST grading system [13, 14]. In addition to 
being error-prone, visual examination might be incapable 
of real-time accurate quantification of the size and sever-
ity of abnormalities. Novel big data analytics and compu-
tational frameworks, however, are keys to solving such 
problems in digital health technology [15].

One of the main CT imaging criterion in determin-
ing AAST grade is the percentage of liver parenchyma 
that has been disrupted by laceration or intraparenchy-
mal hematoma [10]. This measurement is referred to as 
the liver disruption involvement (LDI) in the remainder 
of this paper. Both liver laceration and intraparenchymal 
hematoma typically present as regions of low density as 
compared to adjacent unaffected/normal liver paren-
chyma. However, the size and shape of liver parenchymal 
injuries vary significantly depending on the mechanism 
of injury and severity of the trauma [4].

The primary aim of this study is to develop a fully auto-
mated image processing and deep learning framework 
that provides clinicians with quantitative assessment of 
LDI. This framework can act as a triage tool by rapidly 
assessing liver injury and its severity. To this end, both 
the whole liver parenchyma and liver trauma regions 

are automatically segmented in 3D abdominopelvic CT 
scans. Accordingly, the percentage of liver parenchyma 
that is affected by trauma will be computed.

To the best of our knowledge, except for Drezin et al. 
[16], no published study has proposed an automated 
method to segment liver trauma utilizing CT scans. 
However, since the goal of Drezin et al. is to detect major 
hepatic artery injury, it focuses on more severe cases and 
only includes cases with visible liver trauma (no con-
trol cases with normal liver) for training and validation 
purposes. Thus, it takes advantage of prior knowledge 
that the liver is definitely traumatically injured. Regard-
ing automated liver segmentation, there is a body of lit-
erature that has investigated this task, however, all are 
focused on non-traumatic livers. Those liver segmenta-
tion techniques either implement deep learning methods 
[17–19] or employ classical image processing techniques 
[20–24]. Probabilistic atlases and active shape modeling 
are among the most popular classical approaches for the 
liver segmentation task. Farzaneh et al. [20, 21] proposed 
a hierarchical approach based on location and custom-
ized intensity probabilistic atlases to segment the liver. 
Lebre et al. [22, 23] used a location probabilistic atlas in 
combination with shape modeling. Rafiei et al. [25] also 
employed a location-based probabilistic model to gener-
ate an initial segmentation, which was then refined using 
an adaptive region growing technique. Okada et al. [24] 
and Shi et  al. [26] used a probabilistic atlas to generate 
the initial segmentation mask and then refined it using 
statistical shape modeling.

The proposed framework enables an objective quanti-
tative assessment of liver trauma as opposed to the some-
times subjective AAST grading system used in current 
clinical practice. The output of this study can enhance 
real-time liver trauma diagnostics and be used as a triage 
tool. Moreover, it can quantitatively measure the volu-
metric progression or improvement of traumatic injuries 
at multiple time points, guiding further investigation and 
management [4, 27].

Method
Study cohort
Before the initiation of this research project, Institu-
tional Review Board (IRB) approval (HUM00098656) 
was obtained. Patient informed consent was not 
required given that this was a retrospective investiga-
tion. This study included 77 patients presented to the 
UMHS Department of Radiology for CT imaging for 
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the evaluation of abdominal blunt force trauma between 
01/01/2009 and 8/30/2014, as well as those CTs ordered 
by the Emergency Department. In total, the 77 CT scans 
comprised 8072 axial CT slices. Average patient age 
was 41.43 years, with a range of 18–88 years. Of the 77 
patients included in this investigation, 34 had evidence of 
liver trauma and 43 had no evidence of liver parenchymal 
disruption on contrast-enhanced CT.

All CT scans were acquired in the axial plane using 
either GE Medical Systems (LightSpeed VCT or Dis-
covery CT750 HD models) or SIEMENS (Emotion 16 
model). Trauma protocol CT scans often include both 
an arterial and portal venous phase to evaluate for both 
arterial (e.g., aortic) and solid organ injuries. Only the 
portal venous phase was utilized in this study as this 
phase is optimal for the detection of hepatic parenchymal 
injuries.

To generate ground truth for all 77 patients, livers were 
manually annotated, which meant that the margins of 
the liver itself were outlined. Next, any liver laceration 
or hematomas were manually annotated for 34 CT scans 
with visible liver parenchymal disruption. Each CT scan 
was manually annotated slice by slice to generate binary 
masks (i.e., ground truth) for injury and organ. All anno-
tations were verified by a fellowship-trained abdominal 
radiologist with 5 years of post-training experience (EBS).

Experimental design
The study design for liver trauma segmentation and 
severity assessment is shown in Fig. 1. First, deep learn-
ing-based models were developed to segment both liver 

organ and trauma regions. Then, to assess the severity 
of the liver trauma, the automatically segmented regions 
were processed to measure liver disruption volume and, 
accordingly, calculate the proportion of the liver tissue 
affected by those injuries (i.e., LDI).

Liver segmentation
Fig. 2 demonstrates a high-level overview of the proposed 
liver segmentation method.

With a contrast-enhanced CT scan, we first employed 
a U-net model [28] to generate the initial liver mask (see 
Additional file  1: Method Section for the specifications 
of the U-net model). U-net is the most widely used deep 
convolutional neural networks model for biomedical 
image segmentation tasks and was introduced by Ron-
neberger et  al.[28]. In the proposed model, data aug-
mentation was performed by rotating, re-scaling, and 
translating the images to enhance the training dataset. 
Next, the post-processing module transformed the volu-
metric masks from the U-net model into the final seg-
mentation map. To that end, the initial mask was filtered 
using 3D Gaussian kernel smoothing to achieve spatial 
coherency and smooth binary mask contours according 
to the neighboring pixels. Finally, morphological opera-
tions were used to remove small, sparse regions; fill the 
holes in axial planes; and exclude any region that was not 
connected to the largest 3D connected component.

Liver disruption segmentation
As shown in Fig.  3, a second U-net backbone model 
was trained to segment the liver trauma regions (see 

Fig. 1  A high-level study design for liver trauma segmentation and severity assessment

Fig. 2  A schematic diagram of the proposed liver segmentation method
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Additional file  1: Method Section for the specifications 
of the U-net model). The post-processing module com-
prises the volumetric reconstruction of the U-net out-
put, during which human domain knowledge regarding 
the location and intensity distribution of liver trauma 
was integrated into the model. It is noteworthy that the 
domain knowledge about location and intensity of liver 
trauma is incorporated into the pipeline during the 
model development phase. While testing the model, this 
information is used to automatically post-process the ini-
tial segmented region.

Considering that trauma regions are within the liver 
parenchyma, if more than 50% of the initial segmented 
trauma mask fell outside the segmented liver, the region 
would be excluded.

Pre-existing conditions such as fatty livers (Fig.  4b) 
or congestive hepatopathy (Fig.  4c) lead to the different 
representation of non-trauma liver parenchyma on CT 
scans [29–31]. In theory, these pre-existing conditions 
could cause the U-net model to falsely detect trauma 
given the presence of low-attenuation of the parenchyma 
at baseline (Fig. 4a). To exclude regions falsely segmented 
as trauma (e.g., part of the normal liver parenchymal), 
two intensity distributions were generated, correspond-
ing to: (1) pixels of the CT image segmented as the liver, 
and (2) pixels of the CT image segmented as liver trauma 
(Fig. 4). Next, the means of these two distributions were 
compared using a two- ample t-test. If the test statistic 
value was less than a fixed threshold, we concluded that 
the two intensity distributions were from the same tex-
ture and thus the segmented trauma region was part of 
the non-trauma liver parenchyma. Correspondingly, 
these false positive components were excluded from the 
segmentation using the intensity distribution.

Next, the 3D Chan-Vese active contour model (ACM) 
[32] was used to iteratively evolve the boundary of the 

initial segmentation according to local intensity and 
spatial coherence. The energy function F (s1, s2, S) was 
defined as

where S is the current surface, and s1 and s2 respectively 
correspond to the average intensities inside and outside 
the surface S. I(x, y, z) denotes the intensity value of a 
pixel at the (x, y, z) coordinate. Moreover, A(.) and V (.) 
calculate the area and volume of a surface respectively. 
In Eq. (1), parameters µ, v, λ1, and λ2 are constants. Fol-
lowing the Chan-Vese paper, parameters λ1 and λ2 were 
set to 1. The parameter µ, which specifies the degree of 
smoothness of the segmented region, was set to 0.1 based 
on prior work on an independent medical image process-
ing problem [33]. Finally, the parameter v controls con-
traction bias, which specifies the tendency of the active 
contour to grow outward. This parameter was deter-
mined using a grid search. To evolve the contour, at each 
iteration a Sparse-Field level-set method, similar to the 
one proposed in Whitaker et  al. [34] was implemented. 
After each iteration, the mask was modified to exclude 
the added pixels that fell outside the automatically seg-
mented liver. Finally, morphological operations were 
applied to remove small, sparse regions and fill the holes 
in the axial plane. The effect of the post-processing step is 
analyzed in the result section.

Liver disruption involvement measurement
After segmenting both liver and trauma regions (when 
present) as binary masks, the volumes were estimated 

(1)

F(s1, s2, S) = µ · A(S)+ ν · V (S)

+ �1

∫

inside(S)

|I(x, y, z)− s1|
2 dx dy dz

+ �2

∫

outside(S)

|I(x, y, z)− s2|
2 dx dy dz

Fig. 3  A schematic diagram of the proposed liver trauma segmentation method
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according to respective pixel maps and the unit pixel vol-
umes (i.e., number of pixels from the binary mask × unit 
pixel volume). The unit pixel volume was calculated using 
slice spacing and pixel spacing values extracted from CT 
scan metadata.

LDI was then estimated as

where V̂ ()̇ corresponds to the estimated volume of a seg-
mented region. For patients with no detected traumatic 

(2)LDI(%) =
V̂ (trauma)

V̂ (r)
× 100

Fig. 4  Liver trauma and organ segmentation results as well as ground truth annotations in patients with trauma or pre-existing conditions. (a) 
Axial contrast-enhanced CT image shows an intraparenchymal hematoma in the left liver lobe. (b) Axial contrast-enhanced CT image shows 
diffuse low attenuation of the right liver lobe relative to the spleen, consistent with fat deposition. This is a non-traumatic pre-existing condition. (c) 
Axial contrast-enhanced CT image shows heterogeneous enhancement of the right liver dome due to congestive hepatopathy, a non-traumatic 
pre-existing condition. In (a), (b), and (c), the first column corresponds to the original CT image; the second column corresponds to the ground 
truth annotations; and the third column corresponds to the automated segmentation results before post-processing. In both ground truth 
annotations and segmentation results, the green line shows the liver contour while the red line marks the contour of trauma regions. The fourth 
column compares the pixel intensity distribution inside the segmented liver and the segmented trauma region. As the -test indicated the difference 
between the two means of the aforementioned distributions was small for both examples of (b) and (c), the corresponding segmented injured 
regions were excluded during the post-processing step



Page 6 of 13Farzaneh et al. BMC Medical Imaging           (2022) 22:39 

injury to the liver, the trauma region volume was set to 
zero.

Statistical analysis
A comprehensive evaluation of the segmentation model’s 
performance was performed on the validation sets using 
Dice similarity coefficient, recall, precision, Relative Vol-
ume Difference (RVD), and Volumetric Overlap Error 
(VOE). RVD and VOE error measures were calculated 
according to definition from Heimann et al. [35] as

where GT and S correspond to the ground truth and seg-
mented masks, respectively, while |.| |.| computes the 
number of pixels in the corresponding mask.

To measure the variability in the LDI estimates, linear 
regression analysis was performed in which the com-
puted and reference LDI measurements were plotted 
against each other. The linear regression relation between 
the two measures was then calculated. Moreover, to bet-
ter perceive the algorithm’s agreement with the ground 
truth and potential systematic errors, a Bland-Altman 
analysis was employed [36, 37].

Results
For this investigation, the presence and extent of liver 
trauma were assessed using the percentage of the liver 
affected by traumatic injuries. To compute the percent-
age of liver disruption, both liver and trauma regions 
were segmented using deep learning and image process-
ing techniques.

This is a secondary study of an internal dataset from 
the UMHS that includes 77 patients, among whom 34 
experienced trauma-related liver parenchymal disruption 
and 43 had no evidence of liver parenchymal disruption 

(3)
RVD =

|S| − |GT |

|GT |

VOE = 1−
|S ∩ GT |

|S ∩ GT |
,

at imaging. To train and validate the segmentation mod-
els, patient-wise five-fold cross-validation was imple-
mented. Folds were created to include a roughly balanced 
distribution of the trauma severity in terms of the refer-
ence LDI. The cross-validation folds remained the same 
for both liver and trauma segmentation tasks.

Liver segmentation
The performance of the proposed liver segmentation 
algorithm is shown in Table  1. Our algorithm yielded 
mean Dice, recall, and precision values of 96.13%, 
96.00%, and 96.35%, respectively, when tested on the 
internal UMHS dataset. In order to evaluate our segmen-
tation model, in addition to the UMHS dataset, we used 
the publicly available 3DIRCAD dataset that includes 20 
pathological CT scans with hepatic tumors in 75% of the 
cases [38]. Although the imaging parameters and under-
lying pathology of the internal UMHS and 3DIRCAD 
datasets are different, the 3DIRCAD dataset was only 
employed for testing purposes using the U-net trained 
only on the UMHS dataset. Based on Table 1, it can be 
concluded that the overall performance of the proposed 
algorithm is comparable with the state-of- the-art mod-
els even without tuning the weights of U-net, which indi-
cates the generalizability of the proposed model on an 
unobserved dataset.

Figure 5 shows the average Dice similarity score strati-
fied by severity of trauma. As shown, the performance 
on severe cases with more than 20% of liver disruption 
is slightly lower as compared to smaller injuries (average 
Dice = 94.14%); this could be due to extensive injuries 
distorting the contour of the liver itself.

Liver disruption segmentation
Table 2 and Fig. 6a compare the liver trauma segmenta-
tion results with the ground truth. To investigate the 
generalizability of the algorithm with respect to injury 
severity, the results are stratified based on the reference 
LDI level. These results show that the post-processing 

Table 1  Performance of our proposed liver segmentation approach compared with state-of-the-art methods. Numbers in 
parentheses are standard deviations. For the cited studies, scores are reported as presented in the original papers

Method Dataset Dice (%) Recall (%) Precision (%) RVD (%) VOE (%)

Proposed method Internal UMHS Dataset (n = 77) 96.13 (1.49) 96.00 (2.83) 96.35 (2.09) –0.30 (4.24) 7.40 (2.69)

Proposed method 3DIRCAD (n = 20) 94.64 (2.18) 95.06 (4.07) 94.38 (2.75) 0.83 (5.79) 10.10 (3.85)

Ahmad et. al [17] Subset of 3DIRCAD (n = 5) 91.83 (1.37) – – 5.59 (6.49) –

Lu et. al [18] 3DIRCAD (n = 20) – – – 0.97 (3.26) 9.36 (3.34)

Christ et. al [19] 3DIRCAD (n = 20) 94.3 – – –1.4 10.7

Lebre et. al [22] 3DIRCAD (n = 20) 88 (3) 87(5) 89 (4) – –

Kavur et. al [39] Subset of 3DIRCAD (n = 10) 92.0 – – 6.42 –

Xi et. al [40] LiTS (n = 70) 94.9 – – 2.1 9.5
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step improves the performance in terms of the Dice simi-
larity score. The final model achieved an average Dice of 
51.21% in segmenting liver disruption while this value 

reached 72.45% for considerable liver disruptions that 
involved more than 5% of the liver. Possible etiologies for 
the lower performance measurements for smaller injuries 
with less than 2% of LDI include: (1) those subtle inju-
ries are inherently more challenging to segment, and (2) 
for smaller regions, even small deviations have a greater 
adverse impact on the performance metrics.

Since the performance metrics including Dice, recall, 
and precision are not defined for the cases without any 
liver trauma, to evaluate the non-trauma cases, the com-
puted LDI was used, which, ideally, should be zero for 
non-trauma patients. Figure  6b compares this value for 
non-trauma cases before and after applying the post-
processing step. The average LDI for these cases is 0.27% 
after post-processing, with none over 2.6%. This close to 
zero performance shows the accuracy of the algorithm in 
avoiding false positives. The patient marked by “Patient 
X” in Fig. 6b is the patient with congestive hepatopathy, a 
pre-existing condition shown in Fig. 4c. Figure 4c shows 
the falsely segmented region before post-processing. 
This false positive region was excluded through the post-
processing step with respect to the customized intensity 

Fig. 5  The Dice similarity coefficient for liver segmentation stratified 
based on LDI. Error bars represent ± 1 standard errors, the 68% 
confidence interval

Table 2  Performance of our proposed liver trauma segmentation approach stratified based on the severity of the injury as well as the 
performance of the baseline U-net architecture. Numbers in parentheses are standard deviations

Method % Liver disruption Dice (%) Recall (%) Precision (%) RVD (%) VOE (%)

Proposed method 0–2% (n = 15) 28.06 (23.09) 32.15 (32.90) 35.66 (27.01) 15.83 (113.41) 81.68 (16.01)

Proposed method 2–5% (n = 4) 58.35 (17.91) 54.78 (25.39) 66.21 (6.93) − 19.16 (30.85) 57.05 (18.64)

Proposed method  > 5% (n = 15) 72.45 (11.82) 73.84 (18.60) 75.35 (11.51) 1.86 (36.03) 42.02 (13.64)

Proposed method All (n = 34) 51.21 (27.74) 53.20 (32.56) 56.76 (27.21) 5.55 (78.88) 61.29 (24.07)

U-net (no post-processing) All (n = 34) 47.75 (27.61) 47.32 (31.13) 56.64 (28.97) − 2.71 (63.10) 64.50 (23.80)

Fig. 6  (a) A box plot comparing the Dice similarity coefficients of the proposed injury segmentation algorithm and U-net with respect to the 
percentage of liver disruption. (b) A box plot comparing the computed LDI for cases without liver trauma. The reference LDI is zero
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distribution of the intact liver. As a result, the computed 
LDI of Patient X is reduced to 1.61% from 8.27%.

The results of the proposed liver and trauma seg-
mentation approaches are shown in Fig. 7. The images 

cover various severity levels of liver trauma. These 
results demonstrate that the proposed deep learning-
based framework can accurately assess liver trauma, a 

Fig. 7  Liver trauma and organ segmentation results along with ground truth annotations in three separate patients with different levels of LDI. (a) 
Axial contrast-enhanced CT image from a patient with a very subtle 0.62% liver disruption. (b) Axial contrast-enhanced CT image from a patient 
with 2.25% reference LDI. (c) Axial contrast-enhanced CT image from a patient with 15.26% reference LDI. In (a), (b), and (c), the first column 
corresponds to the original CT image; the second column corresponds to the ground truth annotations; and the third column corresponds to the 
automated segmentation results. In both ground truth annotations and the segmentation results, the green line shows the liver contour while the 
red line marks the contour of trauma regions
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heterogeneous clinical problem, in an automated and 
quantitative fashion.

Liver disruption involvement (LDI) measurement
LDI measures the percentage of the liver parenchyma 
affected by blunt traumatic injuries. Figure 8a compares 
the computed versus reference LDI measures for all 77 
studied patients. The linear regression relation is 0.95 
with p-value < 0.01.

Bland–Altman analysis was also performed to under-
stand the potential systematic errors in computing the 
hepatic disruption involvement. It can be concluded 
from Fig. 8b that there is a negligible bias (-0.13%) with 
95% confidence interval of -4.93 to 4.67%. Moreover, 
the Bland–Altman plot indicates two outliers that are 
marked as “Patient Y” and “Patient Z” in both Fig. 8a and 
b. Patient Y (Fig. 9a) presented with a massive liver dis-
ruption affecting 40% of the liver parenchymal, which is 
over 1.6 times greater than the next largest liver disrup-
tion. Since the model had not seen such a large injury 
in the training phase, it can be concluded that it failed 
to learn such a pattern, and did not segment the whole 
injured region. Patient Y’s recall and precision scores 
are, respectively, 63.68% and 92.24%, indicating the algo-
rithm’s high performance in avoiding false positives. 
Patient Z’s CT scan shows a strong beam hardening arti-
fact [22]. This streaking artifact appeared as a dark band 
and was misdiagnosed by the algorithm. This error might 
have occurred as there were no other similar cases in the 
training folds. These issues can potentially be addressed 
by extending the dataset in the future.

Discussion
The purpose of this study is to develop an end-to-end 
framework that can detect and quantitatively assess the 
severity of liver traumas with respect to the percentage 
of liver parenchyma injured. For this purpose, the per-
centage the liver parenchyma affected by traumatic inju-
ries was automatically computed, as it is an important 
component of the AAST liver injury scale. The proposed 
framework provides real-time quantitative information 
about the injury that was not accessible before due to 
the cumbersome manual process to annotate all images 
included in a 3D CT scan. As a result, we envision that 
this system enables objective, continuous injury severity 
scoring in the future to supplement the current AAST 
grading. Moreover, this system can be used as a tri-
age tool by rapidly assessing liver injury and its sever-
ity as well as for monitoring volumetric progression 
or improvements of the trauma region at multiple time 
points.

The proposed algorithm employed a deep learning 
backbone to segment the initial liver parenchyma and 
trauma masks. These masks were then refined during 
a post-processing step by integrating human domain 
knowledge about the location and intensity of injury 
into the model. The model achieved Dice similarity coef-
ficients of 96.13% and 51.21%, respectively, in segment-
ing liver and trauma regions. The Dice score for liver 
trauma segmentation reached 72.45% for considerable 
injuries with over 5% of LDI. Moreover, of the 43 non-
trauma cases, 40 patients were detected to have < 1% of 
LDI showing high performance of the model in avoid-
ing false positives. With regard to creating the diagnostic 
model, our algorithm achieved a linear regression rela-
tion of 0.95 between the computed versus reference LDI 
measurements. It can be concluded that the proposed 

Fig. 8  (a) Linear regression relation between the computed and reference LDIs. Each point corresponds to one patient. (b) Bland–Altman plot that 
indicates the normality of error
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algorithm can accurately quantify the extent of liver 
parenchymal trauma.

There is no liver trauma-specific benchmark to evaluate 
the liver trauma segmentation performance against; how-
ever, in an independent traumatic brain injury segmen-
tation study [41], it was shown that there is considerable 
inter-physician variability in delineating brain hematoma 
regions. Specifically, for subtle hematoma regions with 
less than 25 cc of blood, it was shown that there is 50.20% 
agreement between two skilled radiologists in delineat-
ing the lesions as measured by the Dice similarity coef-
ficient. This issue is due to the fact that in lesion studies, 
including liver hematoma detection, the border between 
the affected region and the adjacent healthy tissue is not 
necessarily well-separated.

To our knowledge, no prior study has previously 
described automated methods to identify and assess the 
severity of liver trauma using abdominopelvic CT images. 
The mechanism and severity of trauma can lead to signifi-
cant variations in the size and shape of injured regions on 
CT scans. Moreover, non-traumatic pre-existing condi-
tions, such as fatty liver and congestive hepatopathy, may 
significantly affect the liver parenchymal’s attenuation in 
CT scans. Given these sources of variation, developing a 
generalizable algorithm is challenging but necessary. In 
this work, we sought to address these challenges by inte-
grating human domain knowledge about the location and 
intensity distribution of injuries into the model during 
the post-processing step. We also took advantage of clas-
sical image processing techniques, including 3D active 

Fig. 9  Liver trauma and parenchymal segmentation results on two patients who were determined to be outliers based on Bland–Altman analysis. 
(a) Axial contrast-enhanced CT image from Patient Y in Fig. 8. Patient Y has the largest trauma region in our dataset. (b) Axial contrast-enhanced CT 
image from Patient Z in Fig. 8. Patient Z’s CT image is distorted by linear streak artifact, which leads to a large false positive region of segmented 
trauma. In (a) and (b), the first column corresponds to the original CT image; the second column corresponds to the ground truth annotations; and 
the third column corresponds to the automated segmentation results. In both ground truth annotations and the segmentation results, the green 
line shows the liver contour while the red line marks the contour of trauma regions
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contour modeling, to bring spatial coherency and inten-
sity homogeneity to the segmented region.

The present study has a few limitations. First, despite 
a comprehensive process to generate the ground truth, 
the reference labels used to train and evaluate the mod-
els are best estimates rather than a definitive label. This is 
because the edges of the injury and organs are not always 
distinctly visible in CT images. This issue introduces not 
only noise into the training phase but also uncertainty 
into the labels against which the performance is meas-
ured that can adversely affect the performance metrics. 
For example, as shown in Fig.  7a and c, although the 
ground truth and automated segmentation results for 
trauma do not thoroughly overlap, the segmented regions 
do not visually appear to be less accurate than the ground 
truth. The adverse effect of these inconsequential devia-
tions on the performance metrics is greater on smaller 
regions.

In addition to imperfect labels, artifacts introduced 
into CT scans during image collection (Fig.  9b) are 
another source of noise. In this study, the CT scans 
affected by artifacts are not excluded as long as radiolo-
gists can make a diagnosis. While the results on CT scans 
with strong artifacts are not perfect, excluding those 
scans from the study would make the study less repre-
sentative of routine clinical practice. Another limita-
tion involves the lack of enough massively injured cases 
(Fig. 9a) in our dataset to effectively learn their patterns. 
The low representation of massive cases could be because 
those patients went straight to surgery and did not have a 
CT scan prior to intervention. Further improvements can 
be achieved via more extensive studies in which massive 
trauma and non-trivial image artifacts are represented 
adequately.

Regarding the future direction of this investigation, 
other major types of such liver trauma, including sub-
capsular hematoma and active bleeding should also be 
automatically assessed to develop a comprehensive liver 
trauma assessment tool. Automated detection of active 
arterial bleeding would be a critical component of this 
future system as it is a severe injury that requires imme-
diate intervention.

Conclusion
This study is the first to automatically identify and assess 
liver trauma utilizing contrast-enhanced CT without tak-
ing advantage of any prior knowledge about the presence 
of the injury. We developed a fully automated framework 
capable of providing objective and quantitative informa-
tion about the presence and extent of liver trauma using 
deep learning and image processing techniques. This 
model is generalizable to heterogeneous appearing livers 

on CT scans of patients with pre-existing liver condi-
tions, including fatty liver and congestive hepatopathy. 
The accuracy of the model for both blunt trauma and 
non-trauma patients supports this system’s potential to 
enhancing the medical decision-making process.
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