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A new tool for assessing Pectus Excavatum 
by a semi‑automatic image processing pipeline 
calculating the classical severity indexes 
and a new marker: the Volumetric Correction 
Index
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Abstract 

Background:  In clinical assessment of Pectus Excavatum (PE), the indication to surgery is based not only on symp-
toms but also on quantitative markers calculated from Computed Tomography (CT) or Magnetic Resonance Imaging 
(MRI) scans. According to clinical routine, these indexes are measured manually by radiologists with limited computer 
support. This process is time consuming and potentially subjected to inaccuracy and individual variability in measure-
ments. Moreover, the existing indexes have limitations, since they are based on linear measurements performed on 
single slices rather than on volumetric data derived from all the thoracic scans.

Results:  In this paper we present an image processing pipeline aimed at providing radiologists with a computer-aid 
tool in support of diagnosis of PE patients developed in MATLAB® and conceived for MRI images. This framework has 
a dual purpose: (i) to automatize computation of clinical indexes with a view to ease and standardize pre-operative 
evaluation; (ii) to propose a new marker of pathological severity based on volumetric analysis and overcoming the 
limitations of existing axial slice-based indexes. Final designed framework is semi-automatic, requiring some user 
interventions at crucial steps: this is realized through a Graphical User Interface (GUI) that simplifies the interaction 
between the user and the tools. We tested our pipeline on 50 pediatric patients from Gaslini Children’s Hospital and 
performed manual computation of indexes, comparing the results between the proposed tool and gold-standard 
clinical practice. Automatic indexes provided by our algorithm have shown good agreement with manual measure-
ments by two independent readers. Moreover, the new proposed Volumetric Correction Index (VCI) has exhibited 
good correlation with standardized markers of pathological severity, proving to be a potential innovative tool for 
diagnosis, treatment, and follow-up.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  trorosella@gmail.com
1 Department of Informatics, Bioengineering Robotics and System 
Engineering (DIBRIS), University of Genoa, Viale Causa 13, 16143 Genova, 
Italy
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4915-5295
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-022-00754-0&domain=pdf


Page 2 of 16Trò et al. BMC Medical Imaging           (2022) 22:30 

Background
Pectus Excavatum (PE) is the most common congenital 
chest-wall deformity in children [1]. It is characterized by 
a sunken deformity of the anterior chest wall, involving 
both sternum and costal cartilages. The deformity wors-
ens during adolescence and is primarily male-dominated, 
with a male/female ratio of 5:1 [2]. Although originally 
considered an aesthetic condition without clinical impli-
cations, several studies conducted in the past decades 
have demonstrated that PE has a substantial psychosocial 
impact among developing children [3] and may also lead 
to disabling cardiopulmonary manifestations in worst 
cases [4–6]. Indeed, when the deformity is moderate to 
severe, it can reduce the volume of the chest, restrict the 
pulmonary movement, and force the heart into a rotated 
position [7]. These important cardiopulmonary implica-
tions can be substantially improved with surgical correc-
tion [5, 6, 8, 9].

In order to assess the severity of the malformation and 
determine treatment options, including surgical repair, 
patients with PE are evaluated through thoracic imaging, 
particularly Computed Tomography (CT) and Magnetic 
Resonance Imaging (MRI). These imaging modalities 
allow to extract several indexes used as markers to quan-
tify the degree of severity [10]. For years, CT has been the 
gold standard for preoperative evaluation of PE, provid-
ing bone details, anatomic relations, and an option for 3D 
reconstruction [11–16]. However, considering the young 
age of PE patients, the efforts to avoid unnecessary radia-
tion exposure should be maximized [11, 17]. Additionally, 
CT provides static results, which do not allow to know 
the changes in chest compression during the breathing 
cycle. A dynamic measurement during the normal res-
piratory cycle is only possible with a high radiation dose, 
that should be avoided in such young patients [18, 19].

For these reasons, in the last decade MRI has acquired 
an important role in the assessment of this pathology. 
Several studies have validated this modality as an alter-
native radiation-free diagnostic tool for the assessment of 
malformation indexes [19–23].

Despite the variety of MRI sequences adopted, all 
aforementioned works agreed to prove reliability, fea-
sibility, and image quality  of fast chest MRI protocols 
for preoperative evaluation of PE. Indeed, they showed 
that severity indexes of chest deformity collected from 
CT scan and fast MRI were comparable. They also 

highlighted the ability of chest MRI to detail anatomi-
cal information such as displacement and rotation of 
the heart or great vessels anomalies, promoting the 
adoption of this modality in pre operative workup for 
patients with PE.

A particular MRI technique, the Cardiac Magnetic 
Resonance Imaging (CMRI) [24], represents an added 
value in the evaluation of the influence of sternum 
impingement on cardiac function [25, 26]. Specifically, 
CMRI allows for a careful surgical evaluation and pre-
operative cardiac function assessment, overcoming 
technical difficulty as well as subjectivity inherent to 
cardiac ultrasound imaging [27]. Despite being the gold 
standard to evaluate the cardiac function for all cardi-
opathies, the use of CMRI in patients with PE dates to 
recent times.

The first study which propelled momentum for CMRI 
to be used in preoperative assessment of PE dates to 
2010. Saleh et al. [28] showed how CMRI could unravel 
findings associated with severe PE condition not 
detectable with cardiac ultrasound, corresponding to a 
significant reduction of the Right Ventricular Ejection 
Fraction (RVEF) along with a distortion in the right 
ventricle geometry. Similar findings were confirmed in 
a more recent study by Dore et al. [18].

In 2013, Humphries et  al. [29] employed CMRI for 
perioperative evaluation of sternal eversion technique 
used for PE repair. They found improvement of anatom-
ical chest wall contour and cardiac function, suggesting 
once again CMRI as a promising tool for delineating 
the anatomical and physiological components of PE as 
well as measuring the results of surgical repair.

More recently, Deviggiano et  al. [25] combined CT 
and CMRI modalities to evaluate the impact of the 
malformation severity on both morphological and 
functional cardiac parameters, respectively. Patients 
affected by PE showed significant alterations of car-
diac morphology and function that were related to the 
severity of the deformation and that manifested as an 
exaggerated interventricular dependence.

In 2019, Vina et  al. [26] demonstrated an excel-
lent agreement between chest CT and standard CMR 
for the evaluatiom of chest wall malformations, thus 
potentially enabling preoperative assessment of PE 
severity and cardiac involvement with a single non-
invasive diagnostic tool.

Conclusions:  Our pipeline represents an innovative image processing in PE evaluation, based on MRI images 
(radiation-free) and providing the clinician with a quick and accurate tool for automatically calculating the classical PE 
severity indexes and a new more comprehensive marker: the Volumetric Correction Index.

Keywords:  Pectus Excavatum, Magnetic resonance imaging, Image processing pipeline
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In the same year, Lai et  al. [30] showed that, in 
patients with mild PE deformity and minimal symp-
toms at rest, cardiac MRI might reveal additional 
functional information than echocardiography, able to 
explain exertional symptoms. They also demonstrated 
resolution of cardiac dysfunction with surgical repair of 
PE.

In 2021, Stagnaro et  al. [31] analyzed cardiovascular 
effects beside of thoracic indexes with multiparametric 
CMR, using a simple noninvasive device mimicking the 
immediate, temporary effect of surgical correction with 
the Vacuum Bell (VB).

If some attempts to automatize image processing of CT 
scans of PE patients have been made very recently [15, 
32], in all existing MRI studies, to the best of or knowl-
edge, the chest-wall malformation indices are manually 
computed by radiologists. According to a commonly 
adopted standard procedure, the latter measure specific 
thoracic distances with a ruler on axial images of the 
patient’s chest on a standard DICOM viewer for medical 
images. These thoracic measures are then used to calcu-
late clinical indexes according to their specific formula 
[33]]. The critical points of this working method are long 
processing time, low reliability and low reproducibility in 
measurements [14].

The aim of our work is to develop an image process-
ing framework for evaluation of PE using Magnetic Reso-
nance Imaging (MRI), which can support, standardize 
and accelerate the diagnostic assessment of patients. 
Firstly, we want to automatize the computation of exist-
ing indexes on MRI images, given the lack of automatic 
procedures for MRI modality. The other purpose is to 
introduce an innovative marker of pathological sever-
ity, based on a volumetric analysis to quantify chest 
depression. Indeed, most of the existing clinical indexes 
are calculated on a single slice, usually corresponding 
to maximum sternal depression [26]. Thus, accuracy of 
these indexes largely depends on which images are cho-
sen and how measurements are performed from them. 
This fact could determine a high degree of variability of 
measured indexes. Specifically, we want to elaborate an 
image processing method that first corrects the depres-
sion, by simulating the normal morphology of the chest, 
and then obtains the amount of depression by comparing 
the images of thorax before and after the image correc-
tion. The ratio between the depression volume and the 
chest volume post-correction gives the portion of chest 
that must be repaired. This new measure, that we named 
Volumetric Correction Index (VCI), could represent a 
more comprehensive marker, complementary to existing 
clinical indices, of effective patient pre-treatment condi-
tion, assisting physicians in diagnosis process and proper 
treatment choice.

Implementation
Current framework is organized in four interconnected 
modules summarized in Fig.  1: Pre-processing, Depres-
sion quantification, Inner chest contour segmentation 
and Thoracic indexes computation. The software code 
has been developed in MATLAB® 2020a (https://​it.​
mathw​orks.​com/), running in Windows 10.

As a preliminary step for subsequent analyses, a range 
of slices of interest must be selected, including the slice 
of maximal sternal depression, on which measurements 
for PE indices are usually performed in clinic. Indeed, 
not all axial images acquired are useful for our analysis, 
but only the ones in which the chest depression and the 
lungs are clearly visible and thus could be quantified. Of 
course, this excludes marginal slices at the beginning and 
at the end of the scan, where the amount of depression is 
negligible.

This step has been implemented through a Graphical 
User Interface for selecting range of slices, slice for PE 
indexes computation, as well as patient’s sex (Additional 
file 1: Fig. 1).

Pre‑processing
In order to improve low contrast inherent to MR images, 
firstly we perform a contrast adjustment by remapping 
the values of the input intensity to fill the entire inten-
sity range. Then, we focus exclusively on chest district 
by excluding arms placed at the borders of images, due 
to the small dimension of chest in pediatric patients. This 
is obtained by defining a proper mask, based on subject’s 
thorax morphology (Additional file 1: Fig. 2).

Depression quantification
This module has the goal to quantify the depression, 
based on a volumetric study. Indeed, rather than evaluat-
ing the depression on a single slice, as traditional radio-
logical indices commonly adopted in clinical practice do, 
we propose to analyze multiple slices in order to meas-
ure the depression volume. The idea is to identify the 
two maximum and the minimum points of the outer 
chest contour for each slice considered and thus define 
an elliptic curve between the two maximum points to 
correct the depression and simulate the normal chest, in 
absence of PE malformation. The difference between the 
chest image before and after image correction gives the 
amount of the depression.

Analysis of outer chest contour
First of all, the algorithm turns the grey-scale image into 
a binary image, by applying a manual threshold (T = 0.1) 
to separate the foreground from the background pixels. 
Indeed, this value proves to apply for all examined sub-
jects. Then, we get exterior boundaries of chest in terms 

https://it.mathworks.com/
https://it.mathworks.com/
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of Cartesian  x  and  y  coordinates through morphological 
gradient operators in order to identify the two maximum 
and the minimum points of outer chest contour. This is 
just a rough detection of maximum points, since binariza-
tion may alter upper profile of images. We thus resort to 
morphological operators of closing to correct upper image 
boundaries. By only considering the upper half of outer 
chest boundary, the algorithm exploits the spatial discon-
tinuities of boundary pixels along y direction in order to 
identify the two maximum points (Fig. 2a,b). As regards the 
minimum point, we use boundary pixel locations before 
morphological operations and find it as lowest peak in the 
range of y coordinates between the two already identified 
maximum points (Fig. 2c–e).

Depression volume
By analyzing MR images of chest in normal patients, we 
have noticed that the best curve, representing the chest 
morphology between the two maximum points of outer 
chest contour, could be a roto-translated ellipse, whose 
points are calculated as follow:

x =
x1 + x2

2
+ a ∗ cos(t) ∗ cos(α)− b ∗ sin(t) ∗ sin(α)

y =
y1 + y2

2
+ a ∗ cos(t) ∗ sin(α)− b ∗ sin(t) ∗ cos(α)

where:

•	 (x, y): coordinates of ellipse points
•	 (x1, y1): coordinates of right vertex of major axis
•	 (x2, y2): coordinates of left vertex of major axis
•	 a: semi-major axis
•	 b: semi-minor axis, found as b = a ∗

√
1− e2

•	 e: ellipse eccentricity
•	 t: variation angle of ellipse points, defined between 0 

and π (half ellipse)
•	 α: rotation angle, defined as the angle between the 

horizontal line and major axis

Eccentricity (e) and positions of right and left vertices 
of major axis ((x1, y1) and (x2, y2)) represent the param-
eters we have modified in order to simulate the profile 
of outer chest contour in normal patients. After several 
tests, e has been set to 0.99.

Regarding the position of major axis vertices, we have 
separated patients based on their sex. Indeed, anatomi-
cal differences between male and female forced us to 
deal with the depression issue in a distinct way. By ana-
lyzing normal chest images of male subjects, we were 
able to find a unique method to define the position of 
major axis vertices. Specifically, the algorithm identi-
fies y coordinates (y1 and y2) by lowering the position of 

Fig. 1  Image analysis framework is composed of four interconnected elements. a First module consists in pre-processing of selected slices, that 
is contrast stretching and cropping on the area of interest. Outcome of this step is a binary mask, used as input for subsequent pipeline. b Second 
module is represented by quantification of the chest depression. Outer chest contour detection serves as a preliminary step for depression 
computation, quantified as the portion between an elliptic profile and external contour. c The latter is exploited for next phase, which is inner chest 
contour segmentation. This is performed through consecutive sub-steps, which include lung segmentation and similarity between inner and outer 
wall contour. d Final outcome of this pipeline allows to obtain thoracic indexes on the reference slice as well as new volumetric marker. All these 
measures are saved in a Microsoft Excel® file per each subject
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two maximum points of outer chest contour by a con-
stant value, while the x coordinates (× 1 and × 2) are 
found by searching the most extreme points at the same 
y coordinates (Fig. 3a).

This correction method does not work in female 
patients, because the presence of breast rises the posi-
tion of major axis vertices by causing a wrong depres-
sion correction. As among female subjects there is 
a high variability in chest shape due both to age and 
differentiated anatomical growth, it is impossible 
to define a single correction method for the depres-
sion. For these reasons, we decided to exclude female 
patients from depression quantification analysis, while 

including them in the automatic computation of stand-
ard indexes.

After the ellipse has been obtained, the algorithm finds 
the indices corresponding to x and y ellipse coordinates 
in the image matrix and adds pixels to the binary image 
of chest in these specific locations. Consequently, the 
depression is filled by applying a morphological opera-
tion of closing using a disk as structural element (Fig. 3b).

The depression area is thus calculated as the difference 
between the image before application of morphological 
operators and the one after correction with the ellipti-
cal curve. Finally, the depression volume is computed by 
summing the volumes obtained for each slice, resulting 

Fig. 2  Outer chest contour detection. a Plot of upper half of outer chest boundary pixel coordinates after morphological operations, among which 
research of the two maximum points, shown with light blue arrows, is performed. b Binary image with the two maximum points in red, identified 
after morphological operations. The image shows as the latter modifies the minimum position. c Plot of upper half of outer chest boundary pixel 
coordinate before morphological operations. Between the two already identified maximum points (dashed gray vertical lines), minimum point 
research is performed. d Binary image with the minimum point in red, identified before morphological operations. e Grey-scale image with the two 
maximum and the minimum points in red
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from the product of depression areas by ‘slice thickness’ 
image DICOM attribute. After repeating this operation 
for each slice, the algorithm is able to represent on grey-
scale images how the normal morphology of chest should 
be (Fig. 3c).

New pathological marker computation
The absolute value of depression volume cannot be used 
as a pathological marker since it is strongly dependent on 
chest dimension and on the number of slices considered 
for its computation, which is different from patient to 
patient. Thus, we decided to normalize it on the thorax 
volume after the correction, as it simulates the ‘normal’ 
condition of the chest. Specifically, the algorithm quan-
tifies the correct chest volume in the same way as for 
depression volume by considering the binary image after 
depression correction. The new pathological marker, that 
we named Volumetric Correction Index, is defined as 
follow:

Therefore, the new index proposed represents the 
percentage of depression that must be corrected in PE 
patients.

Inner chest contour segmentation
This module aims at detecting the inner contour of the 
chest, fundamental for PE indexes calculation. If this task 
is difficult in CT images, where the attenuation coeffi-
cients of the heart and the chest-wall are quite close, it 
is even more challenging in MR images, where different 
chest regions often have a high similarity in terms of grey 
levels.

Therefore, in order to simplify the segmentation pro-
cess, we designed this module by subdividing it in con-
secutive steps, as described in the following sections.

Volumetric Correction Index =
depression volume

correct chest volume
∗ 100

Firstly, the algorithm isolates the inner chest portion by 
exploiting lung segmentation and similarity between the 
inner and outer wall contour. Then, it excludes the verte-
bral body by thresholding method. Finally, it corrects the 
errors in the detection of inner chest contours through 
a comparison among consecutive slices. For this analy-
sis step, we opted for working on a limited number of 
slices, by excluding the ones preceding the slice selected 
for index computation. Indeed, the remaining range of 
slices ensures an easily implementable segmentation of 
inner chest region thanks to an optimal lung-background 
contrast.

Lung segmentation
In view of performing segmentation of the lungs, we 
used histogram analysis for identification of the cor-
rect threshold. The grey-level histogram of a MR image 
is characterized by a high variability, both across sub-
jects and across slices within the same patients, in peaks’ 
shapes corresponding to the lungs and to cardiac struc-
tures and thorax tissue, respectively. For this reason, 
Otsu thresholding technique [34], the standard approach 
for histogram partitioning, does not perform well due 
to its inability to correctly separate bimodal histograms 
when the two classes are very different in size. There-
fore, we developed a method to automatically partition a 
grey-level histogram, by adapting an algorithm presented 
by [35]. The idea proposed by this study, that we applied 
to our problem, is to locate the concavity between the 
two principal peaks in the curve representing the image 
histogram by maximizing divergence between the histo-
gram and a Gaussian fit.

After computing the histogram of the grey-scale image 
in continuous form, the algorithm defines an auxiliary 
curve P(x) on the same grey-level range of the histogram 
H(x). We assumed P(x) as a normal distribution, with 
mean given by µ, the average gray-level of H(x), and the 
corresponding variance given by σ2. We also considered 

Fig. 3  Automatic procedure for depression area filling. a Binary image with two maximum points of outer chest contour in blue and two vertices 
of ellipse major axis in red, after operation of lowering. b Grey-scale image with elliptical curve of correction. c Grey-scale image with missing chest 
area, caused by PE malformation, in white
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P(x) and H(x) to have an identical area α under their 
curves. Given that xmin ≤ x ≤ xmax, P(x) is defined 
as:P(x) = α

z G(x)where:

•	 G(x) = 1√
2πσ 2

exp
(

−(x−µ)2

2σ 2

)

•	 z(x) =
∑xmax

x=xmin
G(x)

•	 α =
∑xmax

x=xmin
H(x)

•	 µ = 1

α

∑x=xmax
x=xmin

xH(x)

•	 σ 2 = 1

α

∑x=xmax
x=xmin

(x − µ)2H(x)

As a normal distribution, P(x) presents its largest value 
at x = µ and has a convex part that goes from µ − σ to 
µ + σ. The oddity is that the highest peaks of H(x) are 
close to µ, the average grey level, such that the concavi-
ties surrounded by the highest peaks in H(x) are often in 
contrast with the convex part of P(x). Hence, the line (l) 
that divides the main peaks in H(x) can be easily found by 
maximizing the difference between P(x) and H(x), or for-
mally: l = arg max

x
(P(x) − H(x)) , with 

µ− σ ≤ x ≤ µ+ σ.
The l value corresponds to the threshold separating the 

two main peaks in image histogram. We implemented 
this histogram partitioning method in MATLAB and 
applied it twice in our analysis. First, it is used to sepa-
rate the chest area from the background. Thus, it analyzes 
the lower part of histogram, by considering as input the 
range of x values in the low grey-level region. Once found 
the threshold (lbg) that removes the background from 
the image, a new grey-level histogram H’(x) is generated, 
considering only the pixels related to the chest. Hence, 
the method is reapplied to the new data to estimate the 
correct threshold for the lung segmentation (llung). Spe-
cifically, in order to enhance the threshold search, the 
algorithm focuses the analysis on the lower part of H’(x), 
since it corresponds to grey values belonging to lungs 
(Additional file 1: Fig. 3).

After finding appropriate thresholds for each slice with 
this strategy, these are used to segment lungs from chest 
region. Specifically, a mask is created where pixels with 
intensity above the llung are set as white and the remain-
ing ones are set as black. Other segmented elements 
besides the lungs are removed and morphological opera-
tion of closing are applied to smooth edges and fill holes 
inside the lungs.

Selection of appropriate slice for indices computation
Finally, before proceeding to inner contour detection, we 
created an automatic technique to exclusively select the 
slices where lungs are clearly visible. Indeed, we wanted 
to exclude from further analysis those slices where inner 
chest region segmentation could be complex, due to the 

absence of lungs. Specifically, the algorithm computes the 
lung area and relates it to the entire chest area. Then, it 
selects only the slices in which the ratio is greater than 
20%. Therefore, if the slice selected for indices calculation 
shows high similarity in grey values between different 
chest areas, the algorithm automatically picks the first 
following slice, where inner chest contour detection can 
be performed properly.

Inner chest contour detection
In order to isolate the inner thoracic region, we adapted 
an algorithm proposed by [36], for the inner curvature 
detection of CT images. Specifically, they proposed a 
recursive algorithm that exploits outer wall contour as a 
starter point for inner contour segmentation, due to sim-
ilarity in morphology between them.

We identified as algorithm inputs, obtained from pre-
vious module, the matrices composed of pixel locations 
of each lung and the matrix containing pixel locations of 
outer curvature.

The algorithm goes through steps along the outer 
curvature in clockwise direction until the start point 
is found again. Every 12 steps the actual point and the 
point 12 steps before are connected and a perpendicular 
line in the mid-point of their connection is generated. 
Then the algorithm finds the intersection point between 
the perpendicular line and the first point crossed by it 
on the two lungs. In the area of the binary image where 
the perpendicular lines do not cross any lungs, a correc-
tion of the invalid points generated is necessary. Thus, it 
calculates for each line the distances between the mid-
point and the intersection point and computes their 
mean value (µd) and the standard deviation (σd). We have 
designed a length filter by defining as invalid the inter-
section points whose distances from the mid-points are 
longer than a specific threshold that we identified as 2* 
µd − σd. All points, corresponding to longer distances 
than this value, are deleted and replaced by new ones 
located at the same distances as the previous valid point 
(Fig.  4a). Once all intersection points have been found, 
the inner curvature is calculated by an interpolating pro-
cess. Initially, the algorithm prepares intersection points 
by separating them in two subsets: the ones related to the 
upper half of the inner contour and those belonging to 
the lower part. Additionally, it performs an initial correc-
tion, by deleting points whose y locations are in discon-
tinuity with y positions of neighboring points, in order 
to avoid the eventual errors made by previous opera-
tions. Then it applies a shape-preserving piecewise cubic 
interpolation method (‘pchip’) with a high sampling rate. 
Finally, we obtain a group of closely spaced points both 
for superior and inferior half of inner contour. After re-
combining them in a unique set of points, we can define 
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the boundary of a mask that isolates the inner thoracic 
region (Fig.  4b). However, this mask also includes the 
vertebral body and is not accurate in all the slices, mostly 
due to bad lung segmentation. For these reasons, it is 
necessary to improve the inner chest segmentation with 
further processing.

Inner chest contour correction
The first step of inner chest contour correction consists 
in excluding the vertebral body. For doing so, the algo-
rithm applies a thresholding method by using the inner 
mask found in previous section as a tool to improve seg-
mentation. After masking out the external chest area, a 
slice-wise threshold is defined to exclude out heart and 
other cardiac elements through histogram partitioning 
method presented in previous section. Indeed, correction 
is not possible without masking out cardiac district, due 
to high similarity in grey values between heart and tho-
racic tissue. Thus, the algorithm returns to original chest 
image, before the application of inner mask, and assigns 
to background the just segmented pixels belonging to 
cardiac structures (Fig. 5a). Then, it is able to separate the 
inner chest region from the outer chest one, by applying 
as threshold the same value found for lung segmentation 
(llung). To have the inner region as foreground, the com-
plementary image is computed, and some morphological 
operations are applied to smooth the edges and fill the 

holes. Finally, we obtain a binary image representing the 
inner chest region from which to extract boundary pixel 
locations for each slice.

However, a further correction may be necessary both 
around the vertebral body, having grey values close both 
to lungs and to cardiac structure intensities, and around 
inferior lung area, being often difficult separating pixels 
belonging to lungs and to thoracic tissue ones (Fig. 5b).

We thus designed a method to correct the inner chest 
contour by comparing consecutive slices thanks to high 
similarity in boundary pixel positions belonging to the 
lower half of inner contour of our interest. At this step, 
user intervention is required such that correction pro-
cess starts from a slice where inner contour detection 
does not present errors. Once first slice is selected, the 
algorithm starts the pair-wise comparison among adja-
cent slices in both directions, by taking as reference the 
points belonging to the contour of slice selected. Thus, 
the algorithm computes the distance among them and all 
the points belonging to the contour of the adjacent slice, 
which is assumed as incorrect. Then it creates a vector 
that, for each point belonging to the contour to correct, 
only keeps the minimum distance among all those just 
computed. It also calculates the maximum value (dmax) 
and the standard deviation (σd) of all minimum distances. 
After several tests, we established that the algorithm 
must continue only if σd is greater than 1.8. Additionally, 
we identified dmax -2* σd as threshold value that sepa-
rates correct points from incorrect ones. Thus, for each 
incorrect point, the algorithm finds the range that must 
be deleted, by identifying its extremities in the near-
est points to the correct curve. Then, it replaces them 
with the points belonging to the correct curve by using 
a shape-preserving piecewise cubic interpolation method 
(‘pchip’) (Fig. 5c). Once a new curve is obtained, the algo-
rithm proceeds to the next slice, by taking as reference 
the just corrected contour. Such an algorithm allows to 
satisfactorily correct errors in segmentations (Fig. 5d).

Thoracic indexes computation
This module aims at computing PE indices used by phy-
sicians to classify the severity of patients’ malformation. 
As mentioned above, among multiple thoracic markers, 
we focused on the severity (Haller index and Correc-
tion index) (Fig. 6a, b) and deformity (Asymmetry index 

Fig. 4  Algorithm for preliminary inner wall contour a Binary 
image representing lung region. Yellow line represents outer chest 
curvature. In blue there are the perpendicular lines, generated 
every 12th step. In red there are the intersection points resulting 
from recursive algorithm. b Gray-scale image on which inner mask 
boundary points are indicated in green, while intersection points 
found by recursive algorithm in red. This is clearly a rough contour of 
inner chest, including vertebral body, and thus further corrections are 
required

(See figure on next page.)
Fig. 5  Algorithm for inner wall contour correction. a Grey-scale image after masking out cardiac structures in order to create a mask of inner 
thoracic area. b Grey-scale image with inner chest boundary pixel locations in red. The error appears around inferior lung area, that has grey values 
close to thoracic tissue ones. c Plot of x and y coordinates corresponding to inner chest boundary pixels. In red there is the reference curve used 
for correction, while in green the curve that need to be corrected by algorithm. Between two blue arrows there are the points resulting from 
interpolation process that substitute incorrect ones. d Inner chest boundary pixel locations after correction are represented in red while those 
before correction in green; in blue there is inner contour of the reference curve, belonging to previous slice
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Fig. 5  (See legend on previous page.)
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and Flatness index) ones (Fig. 6c, d). The algorithm only 
works on the first slice of images processed in the previ-
ous module. Indeed, it corresponds to the slice selected 
by the user or to the first following one where inner chest 
contour can be detected.

Once inner distances and thoracic indices are com-
puted, the framework saves their results along with the 
new pathological marker obtained in Depression quan-
tification module in an Excel® file, located in the same 
folder as patient’s images. Each quantified distance in fol-
lowing computations has been multiplied by ‘pixel spac-
ing’ attribute to have measures in mm.

Haller index
Haller index (iHaller) is calculated by dividing the trans-
verse diameter, i.e., the widest horizontal distance of the 
inside of the ribcage, to the minimum anteroposterior 
diameter (min APd), i.e., the shorter distance between 
the vertebral body and the sternum [12].

As regards transverse diameter, the algorithm identifies 
its first extremity as the point on inner chest contour with 

iHaller =
transverse diameter

minAPd

minimum x coordinate and the second one as the point 
at its same y coordinate. Conversely, the first extremity 
for measuring min APd corresponds to sternum position. 
We approximate it as the point with maximum y coordi-
nate (y values decrease toward the bottom of image) by 
only considering the range of inner chest contour points 
between x coordinate positions of two maximum points 
of outer chest contour upper half. Second extremity cor-
responds to the vertebral body position. It is taken as the 
point with minimum y coordinate by only considering 
the range of inner chest contour points between position 
of x coordinates of two maximum points of outer chest 
contour lower half.

Correction index
Correction index (iCorrection) is calculated by dividing 
the amount of defect, measured as the difference between 
the maximum anteroposterior distance, i.e. the maxi-
mum distance between the anterior spine and the anterior 
portion of the chest (max APd) and the minimum anter-
oposterior diameter (min APd), to the maximum anter-
oposterior distance (max APd), multiplied by 100 [37].

For max APd computation, firstly, the algorithm draws 
a horizontal line at the same y coordinate of vertebral 
body position, that is assumed as the anterior spine posi-
tion. Then, it identifies two points on inner chest contour 
at the same x coordinate of two maximum points of outer 
chest contour. The latter are assumed as the positions of 
right and left anterior portion of the chest. Thus, for each 
point it computes the distances between them and the 
horizontal line and gets the maximum diameter between 
the two distances.

Asymmetry index
Asymmetry index (iAsymmetry) is calculated by divid-
ing the longest anteroposterior distance of the right chest 
wall (right hemithorax APd) to the longest anteroposte-
rior distance of the left chest wall (left hemithorax APd), 
multiplied by 100 [38].

Right hemithorax APd’s extremities are identified as 
the points on inner chest contour at the same x coor-
dinate of first maximum point, as it is located in right 
hemithorax. Right hemithorax APd’s bounds are identi-
fied as the points on inner chest contour at the same x 
coordinate of second maximum point, as it is situated in 
left hemithorax.

iCorrection =
(maxAPd −minAPd)

minAPd
∗ 100

iAsymmetry =
right hemithorax APd

left hemithorax APd
∗ 100

Fig. 6  Inner thoracic distances overlaid on slice of maximal sternal 
depression. a Distances useful for iHaller computation: transverse 
diameter in red, min APd in yellow. In cyan there is the horizontal 
line at same y position of vertebral body. b Distances useful for 
iCorrection computation: min APd in yellow, max APd in green. In 
cyan there is the horizontal line at same y position of vertebral body. 
c Distances useful for iAsymmetry computation: right hemithorax 
APd in blue and left hemithorax APd in magenta. d Distances 
useful for iFlatness computation: right hemithorax APd in blue and 
transverse diameter in red
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Flatness index
Flatness index (iFlatness) is computed by dividing 
the transverse diameter of the thorax to the longer of 
the two maximum anteroposterior diameters of the 
right (right hemithorax APd) and left hemithorax (left 
hemithorax APd) [13]. As all the distances have been 
already found, the algorithm can proceed with Flatness 
index computation, as follow:

User’s correction
As mentioned above, the algorithm does not always 
perform indices computation on the same slice selected 
by user, due to its inability to segment images where 
different chest areas have similar grey values. In these 
cases, it selects the first following slice, where inner 
chest contour detection can be performed. We noticed 
that by going through consecutive slices some inner 
distances maintain their value constant, while others, 
specifically min APd and max APd are more likely to 
vary. For this reason, in the algorithm we add the pos-
sibility of user’s intervention when the slice is different 
from the one selected. Specifically, the user is asked 
to insert two points on the image, useful for min APd 
and max APd calculation: sternum position and verte-
bral body position. Thus, the algorithm recomputes the 
indices by considering the modifications on these two 
inner distances. Finally, two sets of results are obtained: 
the ones calculated on the slice picked by the algorithm 
and those obtained on the same slice selected after cor-
rection of sternum and vertebral body points.

Modules validation
Current methodological framework has been devel-
oped from a small subset counting 5 subjects. In order 
to test the overall quality of our algorithm, we extended 
its application to other 45 pediatric patients affected by 
Pectus Excavatum from Gaslini Children’s Hospital, in 
Genoa, for a total of 50-subjects dataset.

Additionally, two expert radiologists manually per-
formed double-blind thoracic indices computation, 
as they routinely do in the clinical setting. The group 
of patients consisted in 41 males and 9 females aged 
13.5 ± 2.78 (mean ± SD), age range 5–18 years. Each of 
them underwent MRI examination, in order to estab-
lish the severity of malformation and thus the best 
treatment strategies. MRI examinations were per-
formed on a 1.5 Tesla MR scanner (Achieva, Philips 
Healthcare, Cleveland, OH, USA), equipped with 66 
mT/m gradients (maximum), a slew rate of 180 mT/m/

iFlatness =
transverse diameter

max
(

righthemithoraxAPd; lefthemithoraxAPd
)

msec (maximum) and a 32-element cardiac phased-
array coil for signal reception and cardiac synchroniza-
tion (with “retrospective gating” technique). Our MRI 
protocol borrowed cardiac gating and breath-holding 
techniques as well as specific sequences from CMRI, 
in order to overcome motion-related artifacts and to 
inspect with further detail cardiovascular morphology. 
The MR acquisition setting thus included scout images 
and Steady State Free Precession (SSFP) images in 
axial, coronal and sagittal planes, acquired at the end of 
expiratory phases. Specifically, the SSFP sequence was a 
Gradient-Echo sequence, named Balanced Turbo Field 
Echo-Breath Hold (BTFE-BH). Total scanning time was 
5–8 min approximately.

Results
Out of 50, just three subjects (2 male and 1 female) have 
been excluded from our analysis since characterized by 
extremely low contrast images that the algorithm could 
not process. We can thus conclude that, provided suffi-
cient contrast in the input raw image, proposed method 
mantains its reliability and accuracy for the whole cohort 
ander analysis.

Our image processing pipeline has then been quan-
titatively evaluated through comparison with manual 
procedure. As mentioned in previous section, the slice 
selected by user for indices computation is often dif-
ficult to segment due to similar grey values of different 
thoracic regions, so that algorithm automatically picks 
the first following slice, where inner chest contour detec-
tion can be performed. Specifically, out of the 47 patients 
processed by algorithm, the latter was able to use the 
same slice as the one selected in 24 patients, while in the 
remaining it selected another scan. We thus separated 
the patients in two groups, depending on whether the 
indices computation was performed on the same slice 
selected by user (group 1) or it was executed on a differ-
ent slice picked by the algorithm (group 2).

Automatic framework agrees with manual procedure 
for indexes computation
In the absence of a ground truth to test performance 
against, the accuracy of the thoracic indices resulting 
from algorithm was evaluated by comparing them to 
results obtained by manual measures performed by two 
expert radiologists (through a double-blind analysis).

Table  1 shows the results of patients belonging to 
group 1. Results of inner thoracic distances show a good 
agreement between measures obtained by the 2 read-
ers and the algorithm. Naturally, the difference is higher 
by comparing manual results to automatic ones, as it is 
shown by a greater mean standard deviation. We can 
notice that transverse diameter, min APd and max APd 
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are computed by the algorithm in a comparable way as 
results obtained manually. Contrariwise, right hemitho-
rax APd and left hemithorax APd are characterized by a 
higher variability that, however, is stronger also between 
the 2 readers. Obviously, inner distances affect the results 
of thoracic indices. Specifically, we notice that Haller 
index and Flatness index results are comparable, whereas 
the differences between manual and automatic computa-
tion increase by considering Correction index and Asym-
metry index.

Inner thoracic distances and thoracic indices in case 
of matching slice selection
Regarding the results belonging to group 2, the measure-
ments obtained from the algorithm were performed on 
a different slice compared to the one analyzed by the 2 

readers. As we mentioned above, we noticed that some 
distances remained almost constant by measuring them 
on consecutive slices. Contrariwise, two distances, spe-
cifically min APd and max APd, showed more variability 
among consecutive slices. Consequently, we decided to 
apply a correction factor to these measurements, to be 
able to compare the algorithm results to the ones com-
puted by the readers. Specifically, as we observed that 
algorithm tends to overestimate both min APd and max 
APd, we subtracted to them a corrective factor that we 
identified as the mean standard deviation between read-
ers and algorithm (0.50 in both cases). Table  2 shows 
the results of patients belonging to group 2, after the 
just mentioned correction of the two inner distances. 
The same considerations made for inner thoracic dis-
tances results belonging to group 1 apply also in this case. 

Table 1  Average inner thoracic distances and thoracic indices along with relative mean standard deviation between 2 readers and 
mean standard deviation (std) among readers and algorithm in case of appropriate user selection of main slice for indices computation

Reader 1 Reader 2 Algorithm Std between 2 
readers

Std among 
readers and 
algorithm

Thoracic distances (cm)

 Transverse diameter 24.1 ± 2.6 24.2 ± 2.6 24.4 ± 2.9 0.17 0.30

 Min APd 4.9 ± 1.3 5.0 ± 1.4 5.1 ± 1.4 0.18 0.30

 Max APd 7.2 ± 0.94 7.6 ± 0.93 7.5 ± 0.95 0.31 0.34

 Right hemithorax APd 12.4 ± 1.2 12.6 ± 1.3 12.2 ± 1.2 0.24 0.37

 Left hemithorax APd 12.3 ± 1.2 12.6 ± 1.1 11.9 ± 1.2 0.30 0.47

Thoracic indices

 Haller index 5.3 ± 1.9 5.3 ± 1.9 5.1 ± 1.6 0.31 0.34

 Correction index (%) 32.5 ± 13.9 35.2 ± 14.1 32.6 ± 13.6 2.7 3.6

 Asymmetry index (%) 101.7 ± 6.7 99.8 ± 5.2 102.8 ± 8.2 2.2 3.2

 Flatness index 1.9 ± 0.19 1.9 ± 0.17 2.0 ± 0.20 0.038 0.057

Table 2  Average inner thoracic distances and thoracic indices along with relative mean standard deviation (std) between 2 readers 
and mean standard deviation among readers and algorithm in case of failed user selection of main slice for indices computation

Reader 1 Reader 2 Algorithm Std between 2 
readers

Std among 
readers and 
algorithm

Thoracic distances (cm)

 Transverse diameter 23.2 ± 1.6 23.3 ± 1.6 23.5 ± 1.7 0.06 0.26

 Min APd 3.9 ± 1.4 4.0 ± 1.6 4.2 ± 1.6 0.16 0.36

 Max APd 6.5 ± 0.85 6.9 ± 0.83 6.8 ± 0.94 0.25 0.35

 Right hemithorax APd 11.3 ± 1.1 11.5 ± 1.2 11.2 ± 1.4 0.17 0.39

 Left hemithorax APd 11.9 ± 0.96 12.0 ± 1.0 11.7 ± 1.1 0.14 0.33

Thoracic indices

 Haller index 7.2 ± 4.0 7.2 ± 4.3 7.0 ± 4.6 0.23 0.63

 Correction index (%) 42.1 ± 17.9 42.5 ± 19.9 39.1 ± 18.8 2.5 4.7

 Asymmetry index (%) 95.1 ± 5.5 96.0 ± 6.8 96.5 ± 8.1 1.4 4.0

 Flatness index 2.0 ± 0.16 1.9 ± 0.17 2.0 ± 0.16 0.023 0.050
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However, by observing thoracic indices results, we notice 
a higher variability among readers and algorithm than the 
one found in Table 1. The reason is mainly due to the use 
of a different slice for indices computation. Furthermore, 
there are more severe cases of PE among patients belong-
ing to this group. This aspect could be another cause for 
the higher variability in indices, specifically Haller index. 
Indeed, we noticed that differences among reader and 
algorithm results increase when the min APd assumes 
low values, as it is placed at the denominator in the index 
calculation formula. Thus, variability is higher for high 
Haller indices rather than lower ones.

Inner thoracic distances and thoracic indices in case 
of not matching slice selection
Additional file 1: Fig.  4 displays scatter charts represent-
ing comparison among results obtained by readers and 
algorithm for each thoracic index, belonging to patients 
of group 1.

Finally, the average time necessary to perform tra-
ditional indices computation on a single patient was 
50  s and 3  min 45  s for automatic (on a standard Win-
dows workstation with i7-core and 8  GB RAM) and 
manual processing, respectively. However, if radiologists 
are beginners, the time could significatively increase, 
even rising to twice the value indicated for manual 
computation.

New volumetric index as a promising marker of PE severity
Finally, the new index calculated by our algorithm exclu-
sively on male subjects (n = 39), named VCI, was com-
pared to all the thoracic indices, in order to evaluate its 
feasibility for quantitative evaluation of PE. Specifically, 
we calculated statistical Pearson correlation between VCI 
and other traditional indices, as shown in Table  3. Fur-
thermore, scatter plot analysis between new pathological 
marker and other indices are shown in Fig. 7.

The results of correlation show a very low correlation 
between VCI marker and Asymmetry index and Flatness 
index (Fig. 7a, b). We expected this behavior since both 
indices do not quantify the severity of depression but the 
degree of chest asymmetry and flatness. Contrariwise, 

the correlation increases with severity indices, i.e. Haller 
index, and slightly more with Correction index, that are 
the most used by physicians to assess the PE malforma-
tion in a quantitative way. As it is shown in Fig. 7c, small 
depressions (low VCI) correspond to low Haller indices. 
However, if Haller index begins to increase the linear 
relation tends to disappear, as the same iHaller corre-
sponds to different degrees of depression. Same behavior 
is visible in Fig.  7d that shows the correlation between 
VCI and iCorrection. However, it should be noted that 
severe cases of PE with high iHaller and iCorrection are 
few among all the patients analyzed. Thus, the lack of 
linear tendency could be caused by a limited number of 
cases with high degree of PE severity.

Person correlation between Volumetric Correction Index 
and other traditional indices
See Table 3.

Discussion
We introduce a set of tools to aid the pre- and post-sur-
gery assessment of PE patients. We opted for developing 
this algorithm within an existing software rather than a 
new stand-alone tool in order to ensure later extensibility 
across different centers.

The set of algorithms have been tested both qualita-
tively and quantitatively through a cohort of 50 pediat-
ric patients with varying age, sex and disease severity. In 
our study, we were able to show that automatic results 
obtained by our algorithm are comparable with the ones 
manually computed by expert radiologist. The proposed 
algorithm offers different advantages First of all, it gives 
physicians an accurate tool not subjected to individual 
interpretation or errors and represents a useful sup-
port in establishing proper treatment decision, includ-
ing the need for surgical correction of malformation. 
Moreover, it ensures a faster processing time compared 
to manual measurements, which gets relevant in case of 
large datasets and radiologists with limited experience. 
Furthermore, for now limited to the male subset of our 
cohort, we suggested a new pathological marker to better 
quantify the depression caused by PE: the VCI. Indeed, 
indexes used so far are based on linear measurements of 
chest diameters, but they do not evaluate the chest in the 
tridimensional aspect of the deformity, which has clinical 
implications. A patient with a deep but very localized PE 
could have a worse Haller index or Correction index than 
another patient with a less severe but more extended PE, 
even if the real impact of the deformity and the compres-
sion on lung and heart could be globally worse in the sec-
ond patient, due to the diffuse PE. Therefore, an index 
which considers all the missing volume of the thorax 
and not only measures the severity of PE at a single level 

Table 3  Result of Pearson correlation between traditional 
indices and new pathological marker computed by algorithm

Indices comparison Pearson 
correlation 
coefficient

iHaller – VCI (%) 0.79

iCorrection (%) – VCI (%) 0.81

iAsymmetry (%) – VCI (%) 0.062

iFlatness – VCI (%) 0.22



Page 14 of 16Trò et al. BMC Medical Imaging           (2022) 22:30 

could overcome the limits of traditional thoracic indices, 
such as the dependence on the slice selected for measure-
ments or chest shape. Theoretically, it could also have a 
better clinical correlation than the current indexes. Nev-
ertheless, further investigations are required to prove the 
clinical relevance of VCI and incorporate it among the 
clinical and radiological parameters considered in the 
decision regarding surgical indication.

Our work has made a relevant contribution to the lit-
erature. Indeed, the other studies focused on automatic 
or semi-automatic quantification of the markers of chest-
wall deformity are exclusively limited to CT scans [14, 15, 
36, 39, 40].

The peculiarity of our algorithm is that it works on MR 
images. The adoption of MRI in the evaluation of this 
condition is relatively recent since, despite their non-
invasiveness, MRI scans are more complex to process 
with automatic segmentation methods than standard CT 
ones [21, 23, 29, 30].

By analyzing patient-wise results, we could notice that 
accuracy of algorithm outcomes is strongly dependent 
on quality of MR images acquired. Thus, optimization of 
acquisition setting would lead to higher-quality images 
and thus improve pipeline’s performance without the 
need of further corrections beside main modules. This 
improvement may also allow to properly handle with the 
quantification of depression volume for female patients.

Indeed, one current limitation of this study is exclu-
sion of female patients from computation of newly pro-
posed VCI marker, given the higher variability in chest 
shape caused by differential breast growth. A similar 
situation may apply for overweight patients with rel-
evant gynecomastia. However, both target patients 
substantially represent outliers for this kind of condi-
tion, mainly affecting under- or normal-weight male 
adolescents [41–43]. As a result, current algorithm 
already performs successfully for most PE candidates, 

Fig. 7  Linear relationship of new volumetric index with existing clinical markers a Linear Regression between VCI and iHaller. b VCI and iCorrection. 
c VCI and iFlatness. d VCI and iAsymmetry. Estimates for the slope and intercept of the linear equation as well as R2 are reported for each measure
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being other cathegories statistically negligible in their 
amount.

Another possible limitation to the accuracy in calcu-
lation of VCI is the thickness of subcutaneous fat tis-
sue in pectoral region. However, as anticipated, the vast 
majority of PE patients are very slim so the influence of 
the subcutaneous tissue is in our opinion neglectable in 
most patients. Calculating VCI at the level of cartilage 
and bones instead of the inner skin level could potentally 
overcome this limitation.

One last potential future development of present algo-
rithm may include the computation of cardiac indices. 
Specifically, it may be useful to develop a new method for 
quantification of cardiac compression caused by PE mal-
formation, in order to compare it with the new pathologi-
cal marker proposed.

Conclusions
In this work we present a piece of software specifically 
designed to support radiologists in diagnosis and best 
personalized treatment choice for patients affected by 
PE condition. Indeed, our study proved its reliability and 
robustness in processing a discrete number of MR images 
ranging across different degrees of PE severity. Our tool 
significantly eases assessment of pathology by improving 
accuracy of thoracic distances and subsequent clinical 
indexes beyond subjectivity inherent to manual interven-
tion, and by reducing the time required for computation 
of these markers as well.

Given the relatively high incidence of this disease 
(1:400 live births), disposing of a novel semi-automatic 
supportive tool enriched with an easily extensible, user-
friendly interface may have a substantial clinical impact. 
Finally, formulation of a new relevant marker for PE scor-
ing paves the way for exploring new strategies for PE 
assessment.

Availability and requirements
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•	 Project home page: https://​github.​com/​rosel​la1234/​

PE_​pipel​ine/
•	 Operating system(s): Platform independent
•	 Programming language: MATLAB®
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