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Abstract 

Background:  Renal cell carcinoma (RCC) is a heterogeneous group of kidney cancers. Renal capsule invasion is an 
essential factor for RCC staging. To develop radiomics models from CT images for the preoperative prediction of cap-
sule invasion in RCC patients.

Methods:  This retrospective study included patients with RCC admitted to the Chongqing University Cancer Hospital 
(01/2011–05/2019). We built a radiomics model to distinguish patients grouped as capsule invasion versus non-
capsule invasion, using preoperative CT scans. We evaluated effects of three imaging phases, i.e., unenhanced phases 
(UP), corticomedullary phases (CMP), and nephrographic phases (NP). Five different machine learning classifiers were 
compared. The effects of tumor and tumor margins are also compared. Five-fold cross-validation and the area under 
the receiver operating characteristic curve (AUC) are used to evaluate model performance.

Results:  This study included 126 RCC patients, including 46 (36.5%) with capsule invasion. CMP exhibited the high-
est AUC (AUC = 0.81) compared to UP and NP, when using the forward neural network (FNN) classifier. The AUCs 
using features extracted from the tumor region were generally higher than those of the marginal regions in the 
CMP (0.81 vs. 0.73) and NP phase (AUC = 0.77 vs. 0.76). For UP, the best result was obtained from the marginal region 
(AUC = 0.80). The robustness analysis on the UP, CMP, and NP achieved the AUC of 0.76, 0.79, and 0.77, respectively.

Conclusions:  Radiomics features in renal CT imaging are associated with the renal capsule invasion in RCC patients. 
Further evaluation of the models is warranted.

Keywords:  Renal cell carcinoma, Capsule invasion, Computed tomography, Radiomics; machine learning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Renal cell carcinoma (RCC) is a heterogeneous group 
of kidney cancers comprising many histologic subtypes, 
with clear cell histology being the most common subtype 
[1, 2]. RCC is the seventh most common cancer leading 
to death of 140,000 patients worldwide every year [3–5]. 
According to the tumor-node-metastasis (TNM) stag-
ing criteria for RCC in the eighth edition American Joint 

Committee on Cancer (AJCC) guideline [6], renal cap-
sule invasion is an essential factor distinguishing the T2 
and T3 stages.

The renal capsule is a firm fibrous layer surrounding 
the kidney and is covered by a thick layer of perinephric 
adipose tissue. The fibrous layer can protect tumor from 
seeding or spreading to the adjacent tissue, thus a cap-
sular invasion is an early sign of cancer spreading and 
reflects a tumor’s aggressiveness. Several studies [7–9] 
showed that the prognosis of RCC patients with renal 
capsule invasion was poorer than those without the inva-
sion. A recent study showed that the existence and extent 
of renal capsule invasion are associated with prognosis, 
while lymphovascular invasion was not [10]. Another 
study on surgically treated stages I and II RCC patients 
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showed that patients with invasion but no penetration 
had an adverse prognostic outcome [11]. Therefore, the 
prediction of capsular invasion may be an essential fac-
tor for the staging of RCC and is vital to the selection of 
appropriate treatments for RCC patients.

The visual assessment of capsule invasion at imag-
ing, however, can be challenging because RCC patients 
with capsule invasions may or may not invade the renal 
perirenal fat space [12–15]. Recent work proposed an 
approach for scoring renal capsule invasion on surgical 
specimens [16]. Still, non-invasive methods such as com-
puted tomography (CT) imaging for assessing potential 
capsule invasion may provide a pre-surgical prediction of 
capsule invasion for RCC patients and guide the surgical 
planning.

Radiomics is a computational method to extract mas-
sive quantitative features from medical images for inves-
tigating clinical outcomes [17, 18]. Previous applications 
of radiomics in RCC mainly focused on three aspects: (1) 
identifying malignant renal tumors from benign lesions 
[19, 20]; (2) predicting the Fuhrman grade using differ-
ent imaging-based models [21, 22]; and (3) differentiat-
ing different subtypes of renal cancer [19, 23]. To the best 
of our knowledge, few reported studies have examined 
the prediction of capsule invasion in RCC patients using 
radiomics. The purpose of this study was to develop radi-
omics models from CT images for the preoperative pre-
diction of capsule invasion in RCC patients, aiming to 
improve the clinical management of patients with RCC.

Methods
Study cohort
This study was a retrospective study and was approved 
by the ethics committee of the Chongqing University 
Cancer Hospital (CZLS2021068-A). The requirement for 
informed consent was waived by the ethics committee 
of the Chongqing University Cancer Hospital. The study 
included patients admitted to the Chongqing University 

Cancer Hospital and diagnosed with RCC from January 
2011 to May 2019. The inclusion criteria were (1) patho-
logically confirmed RCC after partial or radical nephrec-
tomy surgery and (2) complete CT scan acquired within 
2 weeks before surgery.

A histopathological evaluation was performed with 
hematoxylin and eosin staining for all patients, along with 
immunohistochemistry when needed. The tumor his-
tological findings were classified according to the WHO 
2004 system [24]. An associate chief pathologist with 
10 years of experience and specialized in renal pathology 
re-examined all specimens. According to the pathological 
results, the specimens were categorized into two groups: 
capsule invasion and non-capsule invasion.

Data collection
All data of the patients included in this study were col-
lected from the Integrated Electronic Medical Record 
System of the Chongqing University Cancer Hospital, 
including age, sex, tumor location, maximal diameter of 
the tumor, Furhman stage, and lymph node metastasis.

CT imaging parameters
All patients underwent multi-phase enhanced CT scan-
ning. Three different CT systems (Philips Brilliance 
CT 64, SOMATOM Definition AS, and SOMATOM 
Drive) with comparable clinical operations were used 
on patients upon availability. The majority of patients 
(n = 107; 85%) were scanned using the Philips Brilliance 
CT 64. Table 1 presents the specific imaging parameters.

For contrast-enhanced imaging, iodixanol alcohol 
80–90  mL (320  mg/mL) was injected into the elbow 
vein with a high-pressure syringe at a rate of 2.5–4.0 mL 
through a power injector. The scanning started from the 
top of the diaphragm to the level of the iliac wing. The CT 
images were acquired at three different scanning phases: 
(1) phase 1, unenhanced phase (UP), before the injection 
of the contrast agent; (2) phase 2, corticomedullary phase 

Table 1  CT scanning parameters and information

FOV field of view, CT computed tomography

Imaging parameters Philips brilliance CT SOMATOM definition AS SOMATOM drive

Detector collimation, mm 64 × 0.625 128 × 0.6 128 × 0.6

Pitch 1.016 0.6 0.6

Tube voltage, kV 120 120 120

Tube current 250mAs CARE Dose4D CARE Dose4D

FOV, cm 35 40 35 40 35 40

Reconstruction section thickness, mm 2 2 2

Slice spacing, mm 2 2 2

Year of installation 2008 2018 2019

Patients numbers, n 107 13 6
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(CMP), 7  s after aortic enhancement exceeded 150 HU 
compared to baseline; and (3) phase 3, nephrographic 
phase (NP), 20 s after CMP.

Tumor segmentation
The tumors in the UP, CMP, and NP images were manu-
ally segmented by a certified associate chief radiologist 
with 10  years of experience, using the Philips Radiom-
ics Tool(Philips Healthcare, Shanghai, China). The larg-
est cross-sectional region of the tumor was selected for 
segmentation. Then, another senior radiologist (10 years 
of experience) reviewed the selection to confirm or 
make corrections to the initial segmentation results. 
To evaluate the effects of the tumor margin regions, an 
extended area of 3 mm adjacent to the tumor boundary 
was automatically generated by image processing algo-
rithms to extract the radiomics features of the peritumor 
region. The 3-mm margin was determined based on the 
clinical experience and considerations of the two expert 
radiologists.

Feature extraction, selection, and classification
As seen in Fig. 1, a standard radiomics pipeline was fol-
lowed. Pyradiomics [25] was used to extract 119 radi-
omics features, including morphological and texture 
features. These features were extracted from UP, CMP, 
and NP separately. The effects of every single scan-
ning phase were first evaluated. Then, considering that 
the imaging features extracted from different scanning 
phases may be complementary, we also assessed the 
combination of these features extracted from different 
scanning phases: UP + CMP and UP + CMP + NP.

To evaluate the effects of the tumor regions and 
the tumor’s margin regions, radiomics models were 
built using features from the tumor region alone, the 

marginal region alone, and their combination. Two 
“combination” modes were evaluated: (1) combining 
radiomics features separately extracted from tumor and 
marginal area (marked with “T + M”); and (2) extract-
ing features directly from the combined/integrated 
region of the tumor and margin (denoted by “whole 
region”).

Statistical analysis
The least absolute shrinkage and selection opera-
tor (LASSO) algorithm [26] was used to select a sub-
set of the most related features for machine learning 
modeling. The effects of five machine learning classi-
fiers were tested: support vector machine (SVM) with 
radial basis function (RBF) kernel, linear discriminant 
analysis (LDA), k-nearest neighbor (kNN) (k = 5), 
logistic regression (LR), and forward neural network 
(FNN), for the binary classification of “capsule inva-
sion” versus “capsule non-invasion”. The FNN includes 
three layers: input, hidden, and output. The MATLAB 
R2018a Statistics (MathWorks, Natick, MA, USA) 
with its Machine Learning Toolbox was used to imple-
ment the classifiers. Considering the size of the cohort, 
patient-wise fivefold cross-validation was performed to 
evaluate the classification effects. Receiver operation 
characteristic (ROC) curve analyses and the area under 
the ROC curve (AUC) were used as the model perfor-
mance metric. The continuous data were presented as 
median (range) and were analyzed using the Mann–
Whitney U-test. Categorical data were presented as 
numbers (percentages) and were analyzed using the 
chi-square test. Two-sided p < 0.05 was considered sta-
tistically significant.

Fig. 1  The pipeline of the proposed radiomics modeling. First, tumor was manually segmented in CT images. Second, the features were extracted 
using Pyradiomics software. Third, the features were selected using the least absolute shrinkage and selection operator (LASSO) method. Finally, 
binary-class classification was performed with different classifiers
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Results
Patient characteristics
This study included 126 patients with RCC; 46 had cap-
sule invasion, and 80 had no capsule invasion. Table  2 
summarizes the characteristics of the patients. The 
median age was 57.5 years. There were 70 males and 56 
females, and the proportion of males was lower in the 
capsule invasion group (43.5% vs. 62.5%, p = 0.039). The 
number of tumors located on the left and right sides was 
similar. The tumor size ranged from 1.2 to 16  cm, and 
the tumors were smaller in the capsule invasion group 
(5.6 vs. 6.0  cm, p = 0.046). The patients in the capsule 
invasion group had more advanced stages (p = 0.002). 
According to pathology, only nine (7.1%) patients out of 
126 had lymph node metastasis.

Classification results
Figure 2 shows the classification results of the five clas-
sifiers on different sets of features extracted from the 
images and the corresponding ROC curves. Overall, FNN 
performed the best among the classifiers. For the three 
different scanning phases of the tumor region, CMP 
exhibited the highest AUC (AUC = 0.81) compared to 
UP and NP. In general, the performance dropped in FNN 
when combining features from different scanning phases.

Based on the results mentioned above, FNN was used 
as the primary model for the subsequent analyses with 
features extracted from different regions. Table  3 listed 
the features selected for the UP, CMP, and NP in the 
tumor region As shown in Table  4, the tumor region 
achieved slightly higher AUCs than the marginal area 
in CMP and NP. And the AUC of the features extracted 
from the tumor or marginal regions separately is gen-
erally higher than from the combined regions. For the 
UP, the best result was obtained from the marginal 
area (AUC = 0.80). And the combination of the features 
extracted from the UP and CMP generally achieved lower 
AUCs than using either UP or CMP alone. In addition, 
the AUC decreases significantly when we combined the 
features extracted from all three scanning phases com-
pared to using the features extracted from UP, CMP and 
NP alone.

Robustness evaluation of results
To further evaluate the robustness of the FNN clas-
sifier, the algorithm was performed 100 times (each 
time all the cases were randomly split to form 5 folds 
for cross-validation) to determine the mean and stand-
ard deviation of the ROC curves for the UP, CMP, and 
NP (Fig. 3). Even when considering the lower standard 

Table 2  Characteristics of the patients

Characteristics Total (n = 126) With capsule invasion 
(n = 46)

Without capsule invasion 
(n = 80)

p Value

Age, years,
median (range)

57 (28, 87) 59 (43, 85) 56 (28, 87) 0.073

Sex, n (%)

 Male 70 (55.6) 20 (43.5) 50 (62.5) 0.039

 Female 56 (44.4) 26 (56.5) 30 (27.5)

Tumor location, n (%)

 Left 63 (50) 26 (56.5) 37 (46.2) 0.383

 Right 63 (50) 20 (43.5) 43 (53.8)

 Max diameter (cm) 5.8 (1.2, 16) 5.6 (1.5, 12) 6.0 (1.2, 16) 0.046

Furhman stage, n (%)

 I 19 (15.1) 0 19 (23.8) 0.002

 II 72 (57.1) 30 (65.2) 42 (52.5)

 III 23 (18.3) 7 (15.2) 16 (20.0)

 IV 12 (9.5) 9 (19.6) 3 (3.8)

Lymph node metastasis, n (%) 9 (7.1) 4 (8.7) 5 (6.3) 0.585

Fig. 2  The receiver operating characteristic (ROC) curves and area under the curve (AUC) of five different machine learning algorithms for the 
classification of capsule invasion versus non-invasion in different CT imaging phases. A The comparison of AUCs of different machine learning 
algorithms. B–F The ROC curves in different imaging phases (B: the unenhanced phase; C: corticomedullary phase (CMP); D: nephrographic phase 
(NP); E: unenhanced + CMP; F: unenhanced + CMP + NP). FNN forward neural network, LR logistic regression, KNN k-nearest neighbor, LDA linear 
discriminant analysis, SVM support vector machine

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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deviation, the AUCs remained well above 0.500. The 
average ROC curve of the 100-round fivefold cross-
validation on the UP, CMP, and NP obtained by the 
FNN classifier achieved AUCs of 0.76, 0.79, and 0.77, 
which were similar (p < 0.05) to the corresponding 
one-round result 0.74, 0.81, and 0.77, showing the sta-
bility of the FNN classifier and the radiomics model.

Discussion
In this study, we developed a radiomics model from CT 
images for the preoperative prediction of capsule inva-
sion in RCC patients. The results show an association 
between radiomics features in renal CT imaging and the 
renal capsule invasion of RCC, and, in particular, it shows 
that the characteristics of tumors at the CMP stage are 
predictive of the capsule’s invasion.

The results of this study showed that the radiomics fea-
tures separately extracted from the tumor or marginal 
regions are generally more predictive than the features 
extracted from the combined regions (i.e., “T + M” or the 
“whole region”). This indicates the LASSO method may 
be able to select better-performing feature combinations 
to achieve the higher classification performance. Previ-
ous studies have studied different features among tumor, 
peritumoral, and necrosis areas [27–30]. Therefore, in 
this study, the two type of regions (marginal vs. “whole 
region” and”T + M”) yield different features because of 
the different nature of the regions (malignant vs. non-
malignant), and it is possible that, to certain extent, the 
features of the non-malignant area attenuate those of the 
malignant region. Nevertheless, the peritumoral region 
may carry useful information for diagnosis and charac-
terization of various tumors [27–30], and future stud-
ies are needed to examine the effects of these different 
regions.

In addition, as observed for the whole versus indi-
vidual T and M results, the combination of the features 
extracted from the UP and CMP phase showed overall 
worse performance than using either UP or CMP alone. 
It suggests that these two scanning phases may have some 
conflicting features for FNN to effectively learn patterns. 
Likewise, the model performance decreases significantly 
when we combine the features extracted from all three 
scanning phases compared to using the features extracted 
from UP, CMP and NP alone. This may further imply the 
increasing redundancy of information conveyed by these 
mixed features, making the feature selection procedure 
less effective. Of note, the UP phase achieved higher per-
formance than CMP and NP as well as their combina-
tions. This suggests that contrast-enhanced imaging may 
not be necessarily beneficial for the detection of capsule 
invasion. Yet, previous studies have shown various results 
regarding the effects of enhanced/unenhanced imaging 
[31–33]. This question remains to be further examined 
on larger datasets.

This study shows no significant association between 
RCC capsule invasion and age, tumor localization, and 
lymph node metastasis. There is moderate association 
between the Fuhrman stage and capsule invasion, as 
expected, based on the definition of the Fuhrman stages 
[7, 9, 21].

Table 3  The features selected across all five folds

ROI region of interest, UP unenhanced phase, CMP corticomedullary phase, NP 
nephrographic phase

ROI Selected features

UP Original_firstorder_10Percentile

Original_firstorder_Kurtosis

Original_firstorder_Median

Original_glcm_ClusterProminence

Original_glszm_LargeAreaLowGrayLevelEmphasis

Original_glszm_SizeZoneNonUniformity

Original-glszm_SizeZoneNonUniformityNormalized

Original_ngtdm_Busyncss

Original_ngtdm_Contrast

Original_shape_Maximum2DDiameterColumn

Original_shape_Maximum2DDiamcterRow

CMP Original_glszm_LargeArcaHighGrayLevelEmphasis

Original_ngtdm_Complexity

Original_shape_Elongation

Original_shape_Maximum2DDiameterRow

Original_shape_SurfaceVolumeRatio

NP Original_glcm_MCC

Original_gldm_DependenceVariance

Original_glszm_ZoncEntropy

Original_ngtdm_Complexity

Original_shape_Maximum2DDiameterRow

Original_shape_SurfaceVolumeRatio

Table 4  AUCs of the FNN classifier on using different regions, CT 
imaging phases, and their combinations

UP unenhanced phase, CMP corticomedullary phase, NP nephrographic phase, 
T tumor, M marginal region, AUC​ area under the curve, FNN forward neural 
network

The number in bold is the best performance in each column. The number in 
italic is the best performance in each row

Region UP CMP NP UP + CMP UP + CMP + NP

Tumor 0.74 0.81 0.77 0.78 0.73

Marginal region 0.80 0.73 0.76 0.78 0.74

T + M 0.79 0.77 0.76 0.77 0.75
Whole region 0.78 0.75 0.76 0.72 0.72
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While previous work used simple qualitative imaging 
signs [9, 12, 15], this study applied quantitative radiom-
ics methods to predict capsule invasion in RCC using 
unenhanced and contrast-enhanced imaging and their 
combinations. Using the FNN classifier and extracting 
features from the tumor region in the CMP achieved 
the highest AUC, reaching 0.81. The developed radi-
omics models can aid in staging and preoperative 
prognosis, and improve upon radiologists’ subjective 
interpretation of CT images. The radiomics model will 
be useful for patient prognostication before surgery, 
which has an important clinical value because the prog-
nosis of RCC patients is currently assessed by the TNM 

staging system after surgical treatment, such as using 
radical or partial nephrectomy [15].

Our study has some limitations. First, the sample 
size was small, and this is a single-center study. Further 
evaluation of the models and findings are warranted 
on larger datasets. Second, the radiomics models use 
two-dimensional images instead of three-dimensional 
CT scan, so its performance needs further evaluation 
on three-dimensional data [17]. In addition, the tumor 
segmentation was performed manually that may intro-
duced user-dependence and variations. Fully automated 
segmentation will be ideal in future work. Finally, a 

Fig. 3  Robustness analysis of the forward neural network (FNN) for the classification of capsule invasion vs non-invasion. A Unenhanced phase. B 
Corticomedullary phase (CMP). C Nephrographic phase (NP). CV coefficient of variation, AUC​ area under the curve
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selection bias cannot be entirely avoided because this 
work is a retrospective study.

Conclusions
In conclusion, preoperative CT-based radiomics features 
are shown to be associated with renal capsule invasion 
of RCC. Renal capsule invasion may be characterized 
by radiomics of unenhanced CT imaging and the CMP 
images. Compared to traditional visual assessment of 
images, the radiomics model may provide a tool to aid 
assessment of whether a capsule is invaded, and thus to 
better inform clinical prognosis and patient manage-
ment. Further evaluation of our findings is warranted on 
large datasets in future work.
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