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Abstract 

Background: Arterial brain vessel segmentation allows utilising clinically relevant information contained within the 
cerebral vascular tree. Currently, however, no standardised performance measure is available to evaluate the qual-
ity of cerebral vessel segmentations. Thus, we developed a performance measure selection framework based on 
manual visual scoring of simulated segmentation variations to find the most suitable measure for cerebral vessel 
segmentation.

Methods: To simulate segmentation variations, we manually created non-overlapping segmentation errors common 
in magnetic resonance angiography cerebral vessel segmentation. In 10 patients, we generated a set of approxi-
mately 300 simulated segmentation variations for each ground truth image. Each segmentation was visually scored 
based on a predefined scoring system and segmentations were ranked based on 22 performance measures common 
in the literature. The correlation of visual scores with performance measure rankings was calculated using the Spear-
man correlation coefficient.

Results: The distance-based performance measures balanced average Hausdorff distance (rank = 1) and average 
Hausdorff distance (rank = 2) provided the segmentation rankings with the highest average correlation with manual 
rankings. They were followed by overlap-based measures such as Dice coefficient (rank = 7), a standard performance 
measure in medical image segmentation.

Conclusions: Average Hausdorff distance-based measures should be used as a standard performance measure in 
evaluating cerebral vessel segmentation quality. They can identify more relevant segmentation errors, especially in 
high-quality segmentations. Our findings have the potential to accelerate the validation and development of novel 
vessel segmentation approaches.
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Introduction
Stroke is a leading cause of mortality and disability, 
affecting 15 million people worldwide [1]. As a cerebro-
vascular disease, it is characterised by arterial brain vessel 
changes, e.g. narrowing and occlusion. Thus, the status 

of the cerebral arteries is routinely utilised in the clinical 
setting for the understanding, treatment and prevention 
of stroke [2]. For example, quantified parameters such as 
arterial diameters can serve as biomarkers for foreseeing 
future strokes [3]. Additionally, the incompleteness of 
intracranial vessel structures, such as the circle of Wil-
lis was associated with a higher risk of anterior circula-
tion stroke [4]. In addition, other diseases such as vessel 
inflammations or aneurysms can lead to changes in the 
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vasculature. Therefore, accurate visualisation and quanti-
fication of the status of the arterial vessel tree are of high 
clinical relevance.

Recently, advances in deep neural network architec-
tures, a particular type of artificial intelligence (AI), 
made fully automated and clinically applicable cerebral 
vessel segmentation approaches feasible [5–7]. Once 
deployed, these methods do not rely on human interven-
tion and can provide high-quality binary segmentations 
of the arterial vessels in less than a minute [5]. However, 
a severe obstacle to developing and validating improved 
vessel segmentation approaches is accurate segmenta-
tion performance assessment. In other words, how do we 
know which model provides better segmentations?

Usually, the performance assessment of a given seg-
mentation result encompasses a qualitative and quan-
titative analysis. Qualitative analysis is done visually; 
however, its inter-rater variability, susceptibility to human 
error and time-consuming nature limit its broader use [8, 
9]. The quantitative analysis comprises the comparison of 
a given segmentation to a reference image via a computed 
measure. The reference image—also called the ground 
truth—is usually a manual segmentation performed by 
at least one human expert. The comparison is performed 
via specific performance measures. Taha et al. provide an 
extensive overview of the existing measures [10]. In brief, 
many measures exist, and they can be divided into dis-
tinct families: overlap based, volume based, pair counting 
based, information theoretic based, probabilistic based 
and spatial distance based measures [10]. Each type of 
performance measure is sensitive to different types of 
errors present in a segmentation. Also, each measure 
has other biases depending on the characteristics of the 
segmented structures. Therefore, to assess segmentation 
performance measures should be selected that are the 
best fit for each given segmentation task.

For arterial brain vessel segmentation, specifically, 
various performance measures are in widespread use for 
evaluation of vessel segmentation quality [11].

The most commonly used measure is the Dice coeffi-
cient [12, 13]. It is popular because it is easily interpret-
able and allows comparisons with other studies [14]. Less 
often, other performance measures such as the average 
Hausdorff distance [15], the area under the receiver oper-
ating characteristic curve [16], sensitivity [17, 18], speci-
ficity [18], or accuracy [16–18] are used.

Importantly, however, there is no scientific evidence 
supporting that the Dice coefficient—or any other meas-
ure—in arterial brain vessel segmentation is the best 
choice. While theoretical considerations argue heavily 
in favour of distance-based measures [10], an empiri-
cal assessment to corroborate or refute these theoretical 
assumptions lacks to date.

Therefore, in the present work, we aimed to fill this sci-
entific gap. To find the most suitable performance meas-
ures for cerebral vessel segmentation, we first simulated 
segmentation variations containing various manually cre-
ated errors. We then visually scored these segmentations 
using a predefined scoring system. Finally, we correlated 
these visual scores with the segmentation rankings pro-
vided by 22 different performance measures to find the 
most suitable measure.

Methods
Data
Time-of-flight MR-Angiography (TOF MRA) images 
of 10 patients from the 1000Plus study were randomly 
selected. The 1000plus study included patients with 
the clinical diagnosis of an acute cerebrovascular event 
within the last 24  h. For our analysis, the only inclu-
sion criterion was a complete Circle of Willis without 
any occlusion in its vessel segments. The reason for this 
inclusion criterion was that patients with occlusions 
in the arteries of the Circle of Willis would not allow 
the creation of errors in these arteries. The 1000Plus 
study was carried out with approval from the local Eth-
ics Committee of the Charité University Hospital Berlin 
(EA4/026/08). Details about the study have been previ-
ously published [19].

Imaging parameters
Time-of-flight MR-Angiography (TOF MRA) was per-
formed on a 3T MRI scanner (Tim Trio; Siemens AG, 
Erlangen, Germany) with the following parameters: 
Voxel size = (0.53 × 0.53 × 0.65) mm3; Matrix: 364 × 268; 
Averages: 1; TR/TE = 22  ms/3.86  ms; Gap: − 7.2; FOV: 
200 mm; Duration: 3:50 min; Flip angle = 18 degrees.

Ground truth creation
To create a ground truth image of the cerebral arterial 
vessels, the 3D TOF MRA was pre-segmented using a 
U-net deep learning framework [8] and manually cor-
rected by OUA (4  years experience in stroke imaging) 
using ITK-Snap [20]. The results were checked by VIM 
(11  years experience in stroke imaging). The resulting 
binary ground truth was manually annotated voxel-wise 
into following arteries and their corresponding segments: 
internal carotid artery (ICA), the sphenoidal segment 
of the middle cerebral artery (M1), posterior communi-
cating artery (Pcom). All other segmented arteries were 
classified as small vessels (Fig. 1).

Error creation
To explore the properties of performance measures for 
quality assessment of cerebral vessel segmentations 
systematically, a framework to simulate segmentation 
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variations was developed. To simulate segmentation 
variations for ranking, a set of 48 non-overlapping seg-
mentation errors commonly encountered in a vessel seg-
mentation task were manually created. In this context, an 
error means that the ground truth was manipulated man-
ually by introducing false negative or false positive voxels. 
The created errors are selected based on the experience 
of our group developing and optimising vessel segmenta-
tion algorithms. These errors were regularly encountered 
in segmentations produced by state of the art deep learn-
ing models [5, 8] and also other traditional methods like 
region growing or graph cut algorithms [8]. Additionally, 
these errors are also encountered in the literature [21–
25]. The errors included, for example, boundary errors of 
various vessel segments, false positively labelled anatomi-
cal vessel and non-vessel structures such as the sagittal 
sinus, middle meningeal artery, fat and muscle tissue and 
omitted parts of the vessel tree. Three different intensity 
levels (subtle, moderate, severe) of errors were generated 
where possible. Error groups and individual errors cre-
ated in the framework are listed in Table 1. Example illus-
trations of errors belonging to different error groups can 
be found in Fig. 2 and visualisations of all errors can be 
found in the Additional File 1.

Simulation of segmentation variations
In real-world segmentation of cerebral arteries, errors 
regularly occur in combinations. The simulation frame-
work, therefore, allows combinations of errors. Exam-
ple error combinations are shown in Fig.  3. To ensure 
an equal representation of errors in the created sets, 
the simulated segmentation variations were generated 

by selecting errors randomly from an error pool of 48 
errors with each error having an equal probability to be 
selected. However, some errors are mutually exclusive 
because of overlapping voxels that manipulate the same 
segment or location within the arterial vessel tree vol-
ume. This would lead to an unbalanced representation of 
errors in the analysis where some errors would be unin-
tentionally found more frequently. This unwanted effect 
was compensated for by defining boundary conditions 
for segmentation sets: First, for each patient, a set was 
supposed to contain 295 to 305 simulated segmentation 
variations. Second, in each set, the simulated segmenta-
tion variations were supposed to contain a minimum of 
2 errors and a maximum of 7 errors per segmentation 
leading to a total of 6 segmentation groups per set. Third, 
we also balanced how often these error groups appeared 
per patient set. Each group was allowed to appear 45–60 
times. Finally, to prevent an over-representation of spe-
cific errors, each manually created error occurred a mini-
mum of 25 and a maximum of 30 times in total in each 
set.

Software environment
Our framework was written in the Python programming 
language. For the introduction of errors to the ground 
truth, we used the Python library NiBabel to add or sub-
tract images in NIfTI data format. Random combinations 
were achieved with the combinations function from the 
itertools module in Python. Error combinations that were 
not allowed are specified within the code. The ranking 
was performed using the min method of the rank func-
tion in Pandas library in Python. The code is available 

Fig. 1 Binary ground truth (a) and voxel-wise annotated ground truth (b). White: M1 segment of the middle cerebral artery, Yellow: Posterior 
communicating artery, Purple: Internal carotid artery, Red: Other arteries and artery segments classified as small vessels
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under the following GitHub repository: https:// github. 
com/ predi ction 2020/ arter ial_ vessel_ measu res.

Visual scoring
Each simulated segmentation variation was visually 
scored based on a newly designed predefined scoring 
system with scores ranging from 1 to 10. Higher visual 
scores denote higher severity of errors in the simulated 

Table 1 Manually created errors for simulation of segmentation variations

All created errors (n = 48) in the framework are listed and divided into three groups. In parentheses, the error intensity levels for each error are specified (1:subtle 
2:moderate 3:severe). Abbreviations: ICA: Internal Carotid Artery, Pcom: Posterior communicating artery M1: Sphenoidal segment of the middle cerebral artery, 
Random voxels: Selection of random voxels (Subtle: 1%, Moderate: 2%, Severe: 3% of all ground truth voxels) from the original TOF MRA and addition to the ground 
truth image. Merge/Separation: merging vessels close to each other (A2 segments or M3-M4 segments). Radius manipulation of segments are also false-positive and 
false-negative errors but are given as a separate category. Detailed illustrations and descriptions of errors can be found in the Additional File 1

Error type False-positive errors (added voxels) False-negative errors (missing voxels) Boundary precision 
errors (radius 
manipulation of 
segments)

Number of errors
(total = 48)

8 distinct errors with 3 intensity levels (24 
errors in total)

4 distinct errors of which one has 3 intensity 
levels (6 errors in total)

6 distinct errors with 
3 intensity levels (18 
errors in total)

Name of errors Superior sagittal sinus (1,2,3) Small vessels (1,2,3) Pcom under (1,2,3)

Middle meningeal artery (1,2,3) Pcom missing Pcom over (1,2,3)

Meninges (1,2,3) ICA missing ICA under (1,2,3)

Sigmoid Sinus (1,2,3) M1 missing ICA over (1,2,3)

Orbit (1,2,3) M1 under (1,2,3)

Skull (1,2,3) M1 over (1,2,3)

Merge/separation (1,2,3)

Random voxels (1,2,3)

Fig. 2 Examples of manually created errors of various intensity levels that were introduced to the ground truth. Examples of false-positive 
segmentation of structures in green (a–c): a moderate skull error, b severe sigmoid sinus error, c severe orbit error. Examples of false-negative 
segmentation of vessels in blue (d–f): d omission of internal carotid artery, e severe small vessel error, f omission of the posterior communicating 
arteries. Radius manipulation of segments (g, h): g subtle boundary error of the M1 segment of the middle cerebral artery, h severe boundary error 
of the internal carotid artery. Red: True positive voxels, Green: False-positive voxels, Blue: False-negative voxels

https://github.com/prediction2020/arterial_vessel_measures
https://github.com/prediction2020/arterial_vessel_measures
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segmentation variations and lower segmentation qual-
ity. For example, a score of 10 was assigned to segmen-
tations containing multiple severe errors, whereas a 
score of 1 was assigned to segmentations with subtle 
errors not affecting segmentation quality. The visual 
scoring system is described in Table  2. The scoring 
was performed by OUA with 4  years of experience in 
cerebral vessel segmentation. A total of 2984 segmen-
tations were scored with approximately 300 from each 
of the 10 patients. Example visualisations of two simu-
lated segmentation variations with their corresponding 
visual scores can be found in Fig. 3.

A senior rater (VIM) validated a random subset of 50 
simulated segmentations by performing an independ-
ent visual scoring. We assessed differences between the 
scorings by VIM and OUA by calculating the median 
score deviation, the interquartile range, the exact score 
overlap, and the percentage of cases where the raters 

chose the same subcategory of the scoring scheme (i.e. 
low/moderate/high quality).

Performance measures analysis
The simulated segmentation variations were compared 
against the ground truth using the EvaluateSegmentation 
software tool [10]. EvaluateSegmentation is an evaluation 
framework for medical image segmentation comprising 
implementation of various performance measures from 
the literature to assess segmentation quality. In addition 
to the average Hausdorff distance, the tool also included 
an improved version of the average Hausdorff distance 
called the balanced average Hausdorff Distance that 
was introduced recently [26]. The 95th quantile of the 
Hausdorff distance was utilised to handle outliers [27]. 
All distance-based measures were calculated in voxels. 
Complementary to the available measures in the evalua-
tion framework, we added further performance measures 

Fig. 3 Example simulated segmentation variations containing error combinations and corresponding visual scores. a This simulated segmentation 
variation contains 6 errors: severe orbit error, severe skull error, subtle merge/separation error, omission of the internal carotid artery, severe 
boundary error of the M1 segment of the middle cerebral artery and posterior communicating artery. Due to the high number and severity of 
errors, a visual score of 10 is assigned to this segmentation, indicating low quality. b This simulated segmentation variation contains 2 errors: a 
severe omission error of the small vessels and a subtle false-positive segmentation of parts of the superior sagittal sinus. This segmentation gets a 
visual score of 3, corresponding to moderate quality. Please see Table 2 for the subjective scoring system and Table 1 for a detailed description of 
errors. Red: True positive voxels, Green: False-positive voxels, Blue: False-negative voxels
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used in the literature, namely Conformity and Sensibility 
[28]. In total, we thus analysed 22 performance measures. 
These measures belonged to the following categories: 
Overlap based, volume based, pair counting based, infor-
mation theoretic based, probabilistic based, and spatial 
distance based. Details and calculations of the perfor-
mance measures implemented can be found in the publi-
cation of Taha et al. [10] and Table 3.

Simulated segmentation variations were ranked by 
ordering segmentations according to their performance 
measure values. Each performance measure provided a 
score for each analysed simulated segmentation variation 
denoting how similar or different segmentations were 
compared with the ground truth. The segmentation with 
the highest similarity with the ground truth ranked first, 
and the one with the lowest similarity ranked last within 
that segmentation set. Each performance measure assigns 
different scores to segmentations thus producing differ-
ent rankings. Therefore, one can compare performance 
measures by comparing the segmentation rankings pro-
duced by them. We produced and analysed rankings of 
segmentations by all 22 performance measures.

Then, we aimed to select the most suitable perfor-
mance measure by measuring the correlation of the 
performance measures rankings with the ranking 
assigned by the visual scores. This is a modified version 
of the method described by Taha et  al. [9]. The visual 
scores can be thought of as manually assigned ranks to 

segmentations. The Spearman correlation coefficient was 
used to measure correlation for the simulated segmenta-
tion variation set of each patient individually yielding 10 
correlation coefficients. For each measure, the median 
correlation coefficient was reported. Performance meas-
ures were ranked from the highest correlation to the low-
est (Table  4). Ranking results of performance measures 
are reported in standard competition ranking.

Subgroup analysis
We repeated the above-described analysis steps in two 
subsets to analyze the difference in performance measure 
rankings based on segmentation quality. The first subset 
consisted of segmentations of high and moderate qual-
ity (visual scores from 1 to 5) and the second subset con-
sisted of segmentations of moderate to low quality (visual 
scores from 6 to 10).

Sensitivity analysis of performance measures
In a second subanalysis, we assessed the sensitivity of 
the applied performance measures to the created errors. 
An ideal performance measure should have a wide score 
range and reflect the difference in quality of the assessed 
segmentations in its values. The extent of the score range 
shows the sensitivity of a performance measure to the 
created errors and can be measured by the index of dis-
persion (IoD). The index of dispersion is calculated by 

Table 2 Criteria of the predefined visual scoring system for simulated segmentation variations

An error severity score was assigned to each simulated segmentation variation based on visual assessment. Higher scores indicate higher combined severity of errors 
in the segmentation and therefore lower quality of the segmentation. For example, simulated segmentation variations with a score of 7 to 10 are considered low 
quality and receive a high severity score. Due to the “and/or” criterion one point from each category is enough to assign a score. In higher error severity scores criteria 
from lower scores can also be fulfilled. For instance, a segmentation with a score of 9 can contain a severe boundary error but this criterion is not listed again under 
the criteria for score 9 since it is mentioned previously within the criteria of score 3

Score Combined 
error severity

Segmentation 
quality

Scoring criteria

1 Low High • Minor errors with a typically low number of false positive or false negative voxels with minimal dete-
rioration of segmentation quality and/or

• Minor to moderate boundary errors

2 • False-positive labelling of a low number of voxels not associated with any anatomical structure and/
or

• False-positive labelling of parts of an anatomical structure and/or
• Parts or arterial segments of the arterial tree are represented without major errors and/or
• Moderate to severe boundary errors

3 Moderate Moderate • False-positive labelling of at least one defined anatomical structure and/or
• Parts or arterial segments of the arterial tree are missing and/or
• Severe boundary errors

4

5 • False-positive labelling of anatomical structures in multiple locations and slices and/or
• Major parts or arterial segments of the arterial tree are missing6

7 High Low • False-positive labelling of anatomical structures in multiple locations and slices significantly compro-
mising segmentation quality and/or

• Major parts or multiple arterial segments of the arterial tree are missing
8

9 • No/failed discrimination between vessels and other anatomical structures and/or
• Major parts or multiple major artery segments of the arterial tree are missing10
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dividing the variance by the mean. We calculated the 
index of dispersion for each performance measure over 
the values they assigned to all 2984 simulated segmenta-
tion variations.

In addition, it can be challenging to compare the abso-
lute values of performance measures [29]. It becomes 
easier to compare values when for each visual score the 
corresponding performance measure values are pro-
vided. Therefore, across all patients, for each visual score 
from 1 to 10, we calculated the median values of perfor-
mance measures of all simulated segmentation variations 
receiving this score.

Results
In our analysis of 2984 simulated segmentation varia-
tions, average distance based performance measures per-
formed best. Balanced average Hausdorff distance (rank 
1) and average Hausdorff distance (rank 2) provided the 
segmentation rankings with the highest median corre-
lation with visual scores. Overlap based measures such 
as Dice, Jaccard, Conformity performed worse (rank 7). 

Other popular measures such as Volumetric similarity 
(rank 19) and 95% Hausdorff distance (rank 20) showed 
considerably lower correlations than the aforementioned 
performance measures. In 8 out of the 10 tested patients, 
an average distance based performance measure, either 
the bAHD or the classic AHD, led the rankings (see 
Additional File 2). The rankings of all performance meas-
ures can be found in Table 4.

In the subgroup analysis, bAHD and AHD were also 
the best performing measures for both good and bad 
quality groups. We provide, as an example, two errors in 
Fig. 4 with their corresponding Dice and bAHD values.

In our second subanalysis, performance measures 
exhibited different score ranges as evidenced by the 
index of dispersion (Table 5). The highest IoDs, indicat-
ing a beneficial wide spread, were found for the three 
Hausdorff distance based measures. Generally, the IoDs 
exhibited large differences, e.g. Conformity (IoD of 0.336) 
vs. accuracy (IoD of > 0.000002). The balanced average 
Hausdorff distance had at all times higher IoD values 
compared with its counterpart, the traditional average 
Hausdorff distance.

The validation analysis of visual scores resulted in a 
median score deviation of 1 (interquartile range 2), the 
exact score overlap was 26%, and the raters chose the 
same subcategory of the scoring scheme (i.e. low/moder-
ate/high) in 78% of cases.

Discussion
In the present work, we developed a performance meas-
ure selection framework based on visual scoring to find 
the most suitable measure for cerebral arterial vessel 
segmentation from TOF images. We showed that the 
average Hausdorff distance, especially its balanced ver-
sion, is best suited for quality assessment of cerebral ves-
sel segmentations. The ranking performance of average 
distance-based measures was superior in comparison to 
overlap-based measures, especially in ranking segmen-
tations of good quality. We corroborated the theoreti-
cal assumptions that distance-based measures identify 
more relevant segmentation errors in complex struc-
tures like vessel trees due to their consideration of voxel 
localisation.

Finding a suitable performance measure for a specific 
segmentation task requires analysing the features of the 
anatomical structures that are segmented [10]. Cerebral 
vessel trees have complex boundaries, especially when 
considering pathologies like the stenosis of a vessel. Cer-
ebral vessel tree segments are remarkably smaller than 
the background since only around 1% of brain voxels are 
vessels [8]. Outliers, small false-positive segments far 
outside of the segment, are also harmful in cerebral vessel 
segmentation because they often represent false-positive 

Table 3 Overview of performance measures analysed in this 
study

The symbols in the “abbreviation” column are used to denote the performance 
measures throughout the manuscript. The column “category” assigns each 
metric to one of the following performance measure families: (1) Overlap based, 
(2) Volume based, (3) Pair counting based, (4) Information theoretic based, (5) 
Probabilistic based, and (6) Spatial distance based

Performance Measure Abbreviation Category

Dice DICE 1

Jaccard Index JAC 1

Sensitivity SNS 1

Specificity SP 1

Sensibility SB 1

Global consistency error GCE 1

Conformity CNF 1

Accuracy ACC 1

Precision PRC 1

Volumetric similarity VS 2

Rand Index RI 3

Adjusted Rand Index ARI 3

Mutual information MI 4

Variation of information VOI 4

Interclass correlation ICC 5

Probabilistic distance PBD 5

Cohen’s kappa KAP 5

Area under ROC Curve AUC 5

Hausdorff distance (95th quantile) HD95 6

balanced average Hausdorff distance bAHD 6

average Hausdorff distance AHD 6

Mahalanobis Distance MHD 6
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anatomical structures. On theoretical grounds, Taha 
and colleagues suggested to favour distance-based per-
formance measures for small segments with complex 
boundaries where outliers are also considered to be 
important [10]. Our empirical results with bAHD and 
AHD as the top-performing performance measures con-
firm these theoretical considerations.

Why average distance-based measures outperformed 
other measures can be explained by specific measure 
properties. For example, similarity-based performance 
measures such as Dice or Sensitivity do not take informa-
tion about the voxel localisation into consideration. Voxel 
localisation, however, is of paramount importance in cer-
ebral vessel segmentation. Distance-based performance 
measures penalise voxels and surfaces that are further 

away from the ground truth more severely. This allows 
the distance-based performance measures to recognise a 
false-positive structure, for example, the superior sagittal 
sinus, and penalise the error accordingly.

The lack of sensitivity of the Dice coefficient towards 
specific errors becomes evident when looking at Fig.  4. 
Here, the severe omission of small vessels leads to a Dice 
coefficient of 0.960, which is almost identical to that of a 
minor boundary error of the internal carotid artery with 
a Dice coefficient of 0.963. bAHD, however, takes voxel 
localisation into consideration and penalises the severe 
small vessel error adequately. This shows that the applica-
tion of measures like the Dice coefficient is problematic. 
As long as many errors or severe errors are present, both 
the Dice coefficient and distance-based measures will 

Table 4 Median spearman correlation coefficients of visual scores and performance measure rankings

The median correlation of visual scores and performance measure rankings are given for the 10 patients. Together with the overall results analysed over all visual 
scores ranging from 1–10 (column 1), the results of 2 additional subsets based on the lower (1–5) and upper (6–10) range of the visual scores are reported (columns 
2 and 3, respectively). The performance measure names are sorted based on their Spearman correlation coefficient from highest to lowest. Average Hausdorff 
distance and balanced average Hausdorff distance perform best in the overall analysis as well as in the good and bad quality subsets. In the good quality subset, the 
difference between average distance-based measures (bAHD and AHD) and overlap based measures is more prominent than in the bad quality subset. This can be 
interpreted by the relative inability of overlap based measures to distinguish between certain types of errors as shown in Fig. 4. This inability becomes more evident in 
segmentations of good quality. The group of overlap based measures (Dice, Jaccard, Conformity) have the same correlation in all analyses. Please note that the overall 
correlation results are inherently higher than the results of the two subsets because the underlying score range of all segmentations (1–10) is wider than the score 
ranges of the subsets (1–5 and 6–10 respectively). rho: median Spearman correlation coefficient

Overall correlation results (Visual scores 1–10) Correlation results of good quality simulated 
segmentation variations (Visual scores 1–5)

Correlation results of bad quality 
simulated segmentation variations 
(Visual scores 6–10)

Rank Performance 
Measure

rho Rank Performance 
measure

rho Rank Performance 
measure

rho

1 bAHD 0.956 1 bAHD 0.817 1 bAHD 0.894

2 AHD 0.950 2 AHD 0.800 2 AHD 0.880

3 RI 0.936 3 VOI 0.758 3 VOI 0.872

3 ACC 0.936 4 GCE 0.757 3 GCE 0.872

3 GCE 0.936 5 ACC 0.754 5 ARI 0.865

3 VOI 0.936 5 RI 0.754 5 ACC 0.865

7 ARI 0.932 7 KAP 0.742 5 RI 0.865

7 KAP 0.932 7 ARI 0.742 8 KAP 0.864

7 PBD 0.932 7 PBD 0.742 8 PBD 0.864

7 DICE 0.932 7 DICE 0.742 8 DICE 0.864

7 ICC 0.932 7 ICC 0.742 8 JAC 0.864

7 JAC 0.932 7 JAC 0.742 8 CNF 0.864

7 CNF 0.932 7 CNF 0.742 8 ICC 0.864

14 PRC 0.858 14 PRC 0.709 14 PRC 0.802

15 SP 0.820 15 SP 0.683 15 SP 0.714

15 SB 0.820 15 SB 0.683 15 SB 0.714

17 MI 0.755 17 MHD 0.621 17 VS 0.532

18 MHD 0.728 18 MI 0.595 18 MI 0.426

19 VS 0.722 19 VS 0.555 19 MHD 0.343

20 HD95 0.418 20 HD95 0.359 20 HD95 0.259

21 AUC 0.378 21 AUC 0.271 21 AUC 0.142

22 SNS 0.314 22 SNS 0.212 22 SNS 0.104
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be sufficient to identify a bad segmentation. When only 
a few errors are left, i.e. the best segmentation out of a 
group of good segmentations must be chosen, the Dice 
coefficient cannot correctly rank the segmentations any-
more. The work of Hilbert et  al. also corroborates this. 
They found no significant differences in Dice values when 
comparing different high-performing architectures but 
did find significant differences in the average Hausdorff 
distance values [5].

These considerations have direct implications for 
the further development of novel vessel segmentation 
algorithms.

On one hand, research has focused on developing 
completely new [30], modified [26] or combined [14] 
performance measures that are more sensitive to errors 
and have wider score ranges to distinguish between sub-
tle differences between ground truth and segmentation. 
For example, Chang et  al. proposed Conformity instead 
of DICE and Sensibility instead of Specificity. These two 
new performance measures promised better perfor-
mance in recognising errors and detecting minor vari-
abilities in segmentations due to their wider score range 

[28]. The wider score ranges have also been confirmed 
in our analysis by the index of dispersion (Table 5). Con-
formity and Sensibility should thus be preferred over 
Dice and Specificity, respectively.

On the other hand, our results have direct implica-
tions for the training process of deep learning applica-
tions. During the training process, the algorithm must 
be given a mathematical formula according to which it 
can decide how erroneous the current model’s segmenta-
tions are. This error definition, so-called loss function in 
deep learning terminology is minimised during training 
and consequently used for model adaptation. Currently, 
Dice coefficient based loss functions are in widespread 
use [8, 31–33]. Based on the previous considerations, it 
is evident that such a loss function will experience a ceil-
ing effect and will not identify the optimal segmentation. 
Thus, we recommend the utilisation of loss functions 
based on average Hausdorff distance measures as the 
default loss function for arterial brain vessel segmenta-
tion [34, 35].

Our results also argue against the utilisation of single 
measures. Simultaneous usage of multiple measures for 

Fig. 4 Comparison of bAHD and Dice values for two examples of manually created errors. a A severe omission of small vessels is shown in the 
subpanel a. This error received a Dice score of 0.960 and a bAHD score of 0.65. b In subpanel b, a subtle boundary error of the internal carotid 
artery is shown. This error received a similar Dice value of 0.963, however, it received a lower bAHD value of 0.039. Please note that distance based 
measures assign lower values to better segmentations. bAHD is sensitive to the error in subpanel a and penalises the omission of small vessels 
because it considers voxel localisation. In contrast, Dice, which measures only the overlap, cannot distinguish between the two errors. Red: True 
positive voxels, Green: False-positive voxels, Blue: False-negative voxels
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performance assessment may reveal aspects of the tested 
segmentations, which may be overlooked by relying solely 
on one performance measure [36]. In this sense, using 
an additional distance-based performance measure may 
reveal contour errors or outliers that may compromise 
the segmentation quality. The 95% Hausdorff Distance, 
for example, quantifies the largest error of a segmenta-
tion as the longest distance one has to travel from a point 
in one of the two sets to its closest point in the other set 
[27]. Thus, the 95% Hausdorff Distance provides a dif-
ferent perspective on the quality of the segmentation at 
hand. We argue that reporting Dice for comparability and 
overlap-based evaluation, reporting bAHD for capturing 
more relevant errors, and reporting 95% Hausdorff dis-
tance for quantifying the largest segmentation error is a 
suitable protocol to assess segmentation quality of cer-
ebral vessel segmentations.

Our study has limitations. First, the predefined vis-
ual scoring was only performed by one rater due to the 
highly time-consuming nature of scoring nearly 3000 

segmentations. To mitigate this limitation, we performed 
a validation analysis of visual scores in a random subset 
which showed a high similarity of scores assigned by two 
independent raters. This high similarity in the scoring 
argues in favor of the robustness of our results. Second, 
we analysed a large amount of 22 measures, but could not 
analyse all existing performance measures due to avail-
ability constraints in the analysis software. Thus, it can-
not be ruled out that other measures might exhibit better 
performance than the ones identified in the current work. 
Third, the different types of technically designed errors 
were not weighted according to their clinical impact on 
treatment decisions. Fourth, our work was performed in 
images of 3D-TOF-MRI only. However, it is likely that 
the results are transferable to other 3D neuroimaging 
modalities such as computed tomography (CT). Fifth, 
our study included a limited number of 10 patients. Time 
intensive manual error creation and subsequent visual 
scoring are the main limiting factors to increase the num-
ber of patients. However, it is important to note that our 

Table 5 Index of dispersion and median performance measure values of performance measures

Performance measures (PM) are sorted from highest index of dispersion (IoD) to the lowest. Median performance measure values corresponding to the different 
segmentation qualities are provided in the additional columns. Performance measures exhibit different value ranges (Please see Fig. 4 for two errors with their 
corresponding Dice and balanced average Hausdorff distance values). Some performance measures, such as accuracy and rand index, give close values to 
segmentations receiving different visual scores. For example, the Rand index has the same median correlation coefficient value of 0.997 for visual scores 5 and 6. In 
contrast, the adjusted Rand index can differentiate between two visual qualities and has the median values 0.868 and 0.836 for visual scores 5 and 6, respectively. This 
explains the higher IoD for the adjusted Rand index. Performance measures like Conformity, Sensibility and balanced average Hausdorff distance provide higher IoD 
values than their theoretical counterparts Dice, Specificity and average Hausdorff distance respectively

Median value corresponding to visual score

PM IoD 1 2 3 4 5 6 7 8 9 10

HD95 9.191 20.395 43.578 57.892 59.363 61.011 66.332 66.393 67.971 71.365 77.772

bAHD 5.925 0.086 0.332 0.905 1.353 2.309 3.275 4.309 6.408 8.626 13.212

AHD 2.537 0.082 0.318 0.843 1.197 1.983 2.722 3.648 4.766 5.769 7.967

CNF 0.337 0.963 0.925 0.848 0.759 0.701 0.615 0.477 0.353 0.257 -0.145

SB 0.163 0.976 0.957 0.900 0.847 0.784 0.738 0.654 0.524 0.399 0.158

MHD 0.103 0.038 0.077 0.135 0.204 0.207 0.233 0.284 0.309 0.340 0.404

JAC 0.037 0.964 0.931 0.868 0.806 0.770 0.722 0.657 0.607 0.574 0.466

PRC 0.034 0.976 0.956 0.908 0.862 0.816 0.777 0.726 0.660 0.610 0.515

ARI 0.017 0.982 0.964 0.929 0.891 0.868 0.836 0.790 0.751 0.726 0.631

KAP 0.017 0.982 0.964 0.929 0.892 0.869 0.838 0.792 0.754 0.728 0.634

ICC 0.016 0.982 0.964 0.930 0.892 0.870 0.838 0.793 0.756 0.729 0.636

DICE 0.016 0.982 0.964 0.930 0.892 0.870 0.838 0.793 0.756 0.729 0.636

SNS 0.013 0.994 0.989 0.980 0.978 0.970 0.955 0.951 0.935 0.966 0.898

VS 0.011 0.986 0.974 0.956 0.924 0.908 0.888 0.848 0.827 0.780 0.734

VOI 0.010 0.004 0.006 0.011 0.017 0.020 0.024 0.028 0.034 0.039 0.052

AUC 0.003 0.997 0.994 0.989 0.988 0.985 0.977 0.975 0.966 0.981 0.947

GCE 0.002 0 0.001 0.001 0.002 0.002 0.003 0.004 0.004 0.005 0.007

MI 0.001 0.041 0.039 0.037 0.036 0.035 0.034 0.032 0.031 0.031 0.027

PBD 0.001 0 0 0 0 0.001 0.001 0.001 0.001 0.001 0.002

RI 0.000008 1 0.999 0.999 0.998 0.997 0.997 0.996 0.995 0.994 0.991

ACC 0.000002 1 1 0.999 0.999 0.999 0.998 0.998 0.997 0.997 0.996

SP 0.000002 1 1 1 0.999 0.999 0.999 0.998 0.998 0.997 0.996



Page 11 of 12Aydin et al. BMC Med Imaging          (2021) 21:113  

analysis mainly depends on a large number and the vari-
able selection of different errors and less on the number 
of patients. This is due to the fact that the variability of 
changes in the vasculature introduced by the errors is far 
larger than the anatomical variation between patients.

Conclusions
Out of all performance measures analysed in this work, 
average distance based measures are most suited to iden-
tify the optimal segmentations for arterial brain ves-
sel segmentation from 3D-TOF-MRI. Our work has the 
potential to accelerate the validation and development of 
novel vessel segmentation approaches.
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