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Abstract 

Background:  In medical diagnosis of brain, the role of multi-modal medical image fusion is becoming more promi-
nent. Among them, there is no lack of filtering layered fusion and newly emerging deep learning algorithms. The 
former has a fast fusion speed but the fusion image texture is blurred; the latter has a better fusion effect but requires 
higher machine computing capabilities. Therefore, how to find a balanced algorithm in terms of image quality, speed 
and computing power is still the focus of all scholars.

Methods:  We built an end-to-end Hahn-PCNN-CNN. The network is composed of feature extraction module, feature 
fusion module and image reconstruction module. We selected 8000 multi-modal brain medical images downloaded 
from the Harvard Medical School website to train the feature extraction layer and image reconstruction layer to 
enhance the network’s ability to reconstruct brain medical images. In the feature fusion module, we use the moments 
of the feature map combined with the pulse-coupled neural network to reduce the information loss caused by con-
volution in the previous fusion module and save time.

Results:  We choose eight sets of registered multi-modal brain medical images in four diease to verify our model. 
The anatomical structure images are from MRI and the functional metabolism images are SPECT and 18F-FDG. At the 
same time, we also selected eight representative fusion models as comparative experiments. In terms of objective 
quality evaluation, we select six evaluation metrics in five categories to evaluate our model.

Conclusions:  The fusion image obtained by our model can retain the effective information in source images to the 
greatest extent. In terms of image fusion evaluation metrics, our model is superior to other comparison algorithms. In 
terms of time computational efficiency, our model also performs well. In terms of robustness, our model is very stable 
and can be generalized to multi-modal image fusion of other organs.

Keywords:  Multi-modal brain medical image, Brain medical image fusion, Clinical diagnosis, Deep learning, Hahn 
moment
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Background
Deep learning technology is currently revolutioniz-
ing medical diagnostic services. Convolutional net-
works are fusing or surpassing human operators in 

multi-modal brain medical image fusion and are 
increasingly proposed as an aid to human medical deci-
sion-making. Multi-modal brain medical images use 
different sensors to image the head to show the anat-
omy and metabolism of the head [1–3]. Among them, 
Computed Tomography (CT) and Magnetic Resonance 
Imaging (MRI) display the structural information of 
organs with high spatial resolution. They are called 
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structural images. Positron Emission Tomography 
(PET) and Functional Magnetic Resonance Imaging 
(fMRI) images provide information about the function 
of organs. They are called functional images. Each uni-
modal image has its own characteristics. CT images are 
used to clearly show bone structure information, while 
MRI images are good at showing the physiological 
details of soft tissues. PET images can be used to quan-
titatively and dynamically detect human metabolites or 
drugs, while fMRI images are good at detecting changes 
in blood flow in the magnetic field of brain cells to help 
confirm the diagnosis. For example, glioma is the most 
common brain tumor [4–6], accounting for 80% of all 
malignant brain tumors [7]. The symptoms are not only 
related to their metabolism in the functional image, but 
also have an important relationship with their position 
in the brain. Therefore, it is necessary to perform multi-
mode medical image fusion to gather all the features of 
multi-source images into an image with high contrast 
and resolution [8–12]. The obtained fusion image not 
only helps doctors make a more favorable diagnosis of 
patients, but also reduces the uncertainty of medical 
images generated by multiple sensors [13–15].

We will explain with a detailed example below.
As shown in Fig. 1, brain images showed a large mass 

with edema around it. The mass and edema pressure 
forced the midline to shift and adjacent midbrain struc-
tures were compressed. On the Proton Density (PD) and 
T2-weighted (T2) images of Magnetic Resonance (MR), 
the large area of the left temporal area showed high sig-
nal intensity. On the contrast-enhanced image, the lesion 
contains cystic components. A narrower sulcus in the 
left cerebral hemisphere indicates severe swelling of the 
left cerebral hemisphere. In addition, according to per-
fusion Single-Photon Emission Computed Tomography 
(SPECT) imaging, the blood flow in the lesion area is 
very low. It can be seen that the fused image can reduce 
the diagnosis scope and eliminate interference informa-
tion better than the unfused source image.

At this stage, the mainstream algorithms that prevail in 
multi-modal brain medical images are generally divided 
into two categories, namely filtering hierarchical fusion 
algorithms and deep learning algorithms. Among them, 
Dual-Tree Complex Wavelet Transform (DTCWT) [16] 
algorithm and Nonsubsampled Contourlet (NSCT) algo-
rithm [17] are representative filtering hierarchical fusion 
algorithms. In deep learning, Coupled Neural Network 
(CNN) [18] algorithm and Laplacian Pyramid Sparse 
Representation (LPSR) algorithm [19] are more typi-
cal. Of course, there are Guided Filtering Fusion (GFF) 
algorithm [20], Internal Generative Mechanism (IGM) 
algorithm [21], Visual Saliency Map and Weighted 
Least Square (VSMWLS) algorithm [22]and Laplacian 

Re-Decomposition (LRD) algorithm [23] in between are 
also algorithms with good performance.

Although the above eight algorithms have achieved 
good fusion results, they also have their own shortcom-
ings. The traditional algorithm pyramid decomposition 
wavelet transform fusion algorithm has low time com-
plexity, however, the overall brightness of the fusion 
image is dark and some areas have inexplicable shad-
ows, which shows that their details are mishandled; the 
image fidelity and color saturation of the convolutional 
neural network fusion are very good, which shows its 
ability to extract features. Of course, the finer the fea-
ture extraction, the higher the time complexity. At the 
same time, the more feature extraction, the easier it is 
to cause artifacts in the fusion image. In order to bet-
ter express the tissue metabolism, the remaining algo-
rithm enhances the brightness of the fusion image 
without changing the color information, resulting in 
low image contrast and affecting the presentation of the 
image structure. Based on the problems of the above 
algorithms, we propose a fusion model. The model 
selects the convolutional neural network to construct 
the feature extraction module and the image recon-
struction module. In the feature fusion module, Hahn 
moments are used to guide the potential block to acti-
vate Pulse-Coupled Neural Network (PCNN) to real-
ize feature map fusion. Convolutional neural networks 
are currently the best technology in the field of feature 

(a) MR-T2 (b) SPECT-Tc

(c) The fusion of MR-T2 and
SPECT-Tc

Fig. 1  Multi-modal image of a brain metastasis of a bronchial cancer



Page 3 of 22Guo et al. BMC Med Imaging          (2021) 21:111 	

extraction and image reconstruction. PCNN is a global 
fusion algorithm that can retain more detailed informa-
tion, and its signal form and processing principles are 
more in line with the physiological basis of the human 
visual nervous system . In solving the blurring of image 
structure, Hahn moments can represent the shape of 
the image well. As for how to avoid fusion artifacts, we 
introduce the Hahn moment energy of the block.

Methods
Related work
Hahn moment
The moment invariants of the image are good at 
describing the characteristics of the image. It is not 
only simple, but also immune to interference from 
light, noise and geometric distortion. Among these 
moments, the Hahn moment is widely used because it 
has a more general meaning. The Hahn moment is a 
kernel function of the orthogonal polynomial of Hahn. 
The Hahn polynomial of order N can be expressed as

where x, n = 0, 1, 2, . . .N − 1 , N is a given positive integer. 
α > −1 , β > −1 , Bn(x) =

(−1)n

n!  , ρ(x) = Ŵ(N+α−x)Ŵ(β+1+x)
Ŵ(x+1)Ŵ(N−x)  

and ρn(x) = Ŵ(N+α−x)Ŵ(n+β+1+x)
Ŵ(x+1)Ŵ(N−n−x) .

In order to reduce the oscillation in the calculation of 
higher moments and avoid the divergence of polyno-
mial values, the polynomial is regularized. The regular-
ized Hahn polynomial is defined as

where x, n = 0, 1, 2, . . .N − 1 and 
d2n =

Ŵ(α+n+1)Ŵ(β+n+1)Ŵ(α+β+n+1+N )
(α+β+2n+1)n!(N−n−1)!Ŵ(α+β+n+1) . Hahn moments 

of order (n+m) in terms of weighted Hahn polynomi-
als, for an image (M × N ) with intensity function f(x, y) 
is defined as

where x, y ∈ [0,N − 1] . The parameters N and M are sub-
stituted with N-1 and M-1 respectively to match the pixel 
points of an image.

(1)h(α,β)n (x) =
Bn

ρ(x)
∇n[ρn(x)]

(2)∇nf (x) =

n
∑

k=0

(−1)k
n!

k!(n− k)!
f (x − k)

(3)h
(α,β)
n (x) = h(α,β)n (x)

√

ρ(x)

d2n

(4)Hmn =

N−1
∑

x=0

M−1
∑

y=0

h
(α,β)
m (x)h

(α,β)
n (y)f (x, y)

Simplified PCNN
In view of the fact that many parameters of the origi-
nal PCNN require feedback iteration to adjust, which is 
both inconvenient and time complexity. In this article, we 
use a simplified PCNN neuron model [24]. This model 
is loved by most scholars, so it is widely used. Its math-
ematical model is described as follows:

In simplified PCNN, the input neuron in the F channel is 
the pixel gray value of the external image, and the input 
neuron in the L channel only considers the output of the 
internal neuron affected by the eight neighborhoods. This 
operation greatly reduces the time complexity.

When the P × Q image is input into PCNN, PCNN 
becomes a network composed of P × Q neurons. The 
gray value of each input pixel is each stimulation signal 
Sij . When there are pixels with similar gray values in the 
neighborhood of the inner matrix W and M, the pulse 
output generated by stimulating a pixel will cause the 
stimulation of the corresponding neuron in the neigh-
borhood of the pixel with similar gray value, resulting in 
an edge including edge, Pulse output sequence of texture 
and area information. The binary image produced by it 
is a fusion image, so the parameters of PCNN affect the 
result of image fusion.

The framework of our multi‑modal brain medical image 
fusion
In terms of image processing, the convolutional layer can 
extract features, which are usually more meaningful and 
valuable than the features obtained by traditional fea-
ture extractors. In addition, the convolutional layer also 
acts as a weighted average to generate output images. We 
design a multi-modal brain medical image fusion frame-
work based on CNN with Hahn moment, hereinafter 
referred to as Hahn-PCNN-CNN. Hahn-PCNN-CNN 
consists of feature extraction module, feature fusion 
module and image reconstruction module. As shown 
in Fig.  2, the feature extraction module is employed to 
extract image information features from MR-T1 and 

(5)Fij(n) =Sij

(6)Lij(n) =
∑

WijklYij

(7)Uij(n) = Fij(1+ βLij(n))

(8)Tij(n) = e−αT Tij(n− 1)+ VTYij(n− 1)

(9)Yij(n) =

{

1,Uij(n) ≥ θij(n)
0,Uij(n) < θij(n)
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Positron Emission Tomography labeling Glucose with 
Positron Nuclide 18F (18F-FDG). Secondly, the convolu-
tion feature of source images is fused through the feature 
fusion module. Finally, the image reconstruction module 
is used to generate the fused image.

Feature extraction module
In the feature extraction module, we intend to use three 
convolutional layers to extract image features from source 
images. Feature extraction is a key step in the transform 
domain image fusion algorithm. For CNN, the stochas-
tic initialization convolution kernel training regression 
model has been faced with instability problem and it is 
difficult to train. The best approach is to take advantage 
of model migration in migration learning. Therefore, we 
plan to use the first convolutional layer of GoogLeNet, 
which is pre-trained on ImageNet, as the First Convolu-
tional Layer (CONV1) of our network , where it contains 
64 convolution kernels of 7× 7 size, which can extract 
many effective features of the image.

Although CONV1 has a wide acceptance range, more 
graphics functions can be used. Therefore, not all image 
features must be displayed in the fusion. The key to 
multi-mode brain medical image fusion is the fusion of 
effective information, that is, while giving clear edges to 
metabolic information, as much as possible to ensure that 
the texture of the structural image is clear, so as to help 
doctors make a correct diagnosis. Therefore, the Second 
Convolutional Layer (CONV2) and the Third Convo-
lutional Layer (CONV3) are added to filter the features 
obtained by CONV1 and finally obtain a feature map that 
can be fused.

If the image is undersampled, part of the image infor-
mation will be lost. Therefore, in the feature selection 
module, we do not want to lose the information of the 
image. Adjust the value of the corresponding stride 

and padding for the kernel of each convolution layer. 
Details of each convolutional layer of feature extraction 
module are shown in the Table 1.

Feature fusion module
We input the feature maps that are obtained from 
CONV3 into the image fusion module. Firstly, divide 
them into blocks and calculate the Hahn moment of 
each block. Then, inspired by the expansion coefficient 
factor, we defined the potential of the image patch. 
Finally, we use the potential of the image block as the 
external stimulus of PCNN to achieve the fusion of fea-
ture maps.

The size of a brain medical image I(x,y) is M × N  . It 
will be divided into blocks of the same size; the block 
size is D × D . n order to get a block of integers, we 
choose to fill with the number 0 so that M and N are 
equal. After the fusion is completed, the filled elements 
are removed to obtain the fused image. All the divided 
blocks will form a set called {CI

ij} , i ∈ {1, 2, 3, . . . ,M/D} , 
j ∈ {1, 2, 3, . . . ,N/D} . Hahn moments of image blocks 
of {CI

ij} can be expressed as

Fig. 2  Our multi-modal brain medical image fusion model

Table 1  Details of each convolutional layer of feature extraction 
module

Layer Setting

Kernel 
number

Convolution 
kernel

Stride Padding

CONV 1 64 7× 7 1 3

CONV 2 64 5× 5 1 2

CONV 3 64 3× 3 1 1
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where m, n ∈ {1, 2, 3, . . . ,D} , The Potential Energy (PE) of 
Hahn moments values is computed by

where u ∈ {1, 2, . . . ,m} , v ∈ {1, 2, . . . , n} . Its structure is 
based on the principle of linear expansion coefficient in 
physics.

In image fusion, how to make full use of the biologi-
cal features of PCNN and combine PCNN attributes and 
image characteristics to determine relevant parameters 
has always been a research hotspot in PCNN adaptive 
image fusion. PCNN has a strong adaptive link strength 
and will not change due to changes in the image. Humans 
have always liked to judge the clarity of the image based 
on the visually significant area. Whether it is a functional 
image or a structural image, they all have a prominent area 
to express information and an inconspicuous black back-
ground. And we tend to pay more attention to the for-
mer. After all, the visually significant areas are clear. Visual 
saliency detection through image complexity function is 
introduced into multi-modal brain medical image fusion. 
In view of its good performance, it can detect the saliency 
of medical images well. In this article, the visually signifi-
cant areas detected by the Complexity-Weighted Saliency 
(CWS) detection [25] model are used as the link strength 
of the corresponding neurons. When the link strength beta 
and the external stimulus PE are determined, they are both 
input into the pulse coupled neural network. The feature 
map fusion starts according to the following formula:

where A represents the structure image and B represents 
the functional image. F represents the fused images. 
PEA

uv and PEB
uv are external stimuli of PCNN. The link-

ing strength βA and βB are calculated by the CWS model. 
The firing times matrix TA and TB are determined by βA 
and βB , respectively.

(10)Hij =









H11 H12 · · · H1n

H21 H22 · · · H2n

...
...

. . .
...

Hm1 Hm2 · · · Hmn









(11)PEuv =

m
∑

u=1

n
∑

v=1

|Huv −H11|
√

(u− 1)2 + (v − 1)2

(12)TA = PCNN (PEA
uv)

(13)TB = PCNN (PEB
uv)

(14)F =







max(A(i, j),B(i, j))TA = TB

A(i, j)TA > TB

B(i, j)TA < TB

Image reconstruction module
Since our feature extraction module is composed of 
three convolutional layers, we continue to use the con-
volutional layer to reconstruct it to get our final fused 
image after the feature map is fused. In the image 
reconstruction module, we choose two convolutional 
layers, namely CONV4 and CONV5. The convolution 
kernel of CONV4 is 3 × 3, stride and padding are both 
set to 1. The convolution kernel of CONV5 is 1 ×  1, 
stride and padding are both set to 0. The kernel num-
ber of CONV4 is the same as CONV3. Since CONV5 
reconstructs feature maps into a three-channel output. 
Thereby, the kernel number of CONV5 is 3. Details of 
each convolutional layer of the image reconstruction 
module are shown in the Table 2.

Loss function
All researchers who use neural networks for image fusion 
will face the problem of information loss. Therefore, how 
to reduce information loss is particularly important. The 
loss function that determines the amount of informa-
tion loss has become the focus of research. In the case of 
ground-truth image, Mean Square Error (MSE) is gener-
ally used as a loss function and the objective function is 
to reduce the distortion of images. However, multi-modal 
brain medical image fusion has two characteristics that 
make it unable to use MSE as a loss function. One is that 
there is no reference image for brain medical images and 
the other is that brain medical images are multi-modal. 
Therefore, the fusion image should retain the texture, 
edge and metabolic activity information in the source 
image as much as possible, not simply inherit all the 
information in the source image.

In the article, we plan to use cross_entropy loss func-
tion, Multiscale-Structural Similarity (MS-SSIM) loss 
function and Total Variation (TV) loss function. Cross_
entropy loss function can reduce the loss in the pixel 
model pixel by pixel; MS-SSIM loss function can reduce 
the loss of brightness, contrast and structural informa-
tion in the reconstruction; TV loss function can make our 
images smoother while eliminating noise in the source 
image. The total loss function formula is as follows.

Table 2  Details of each convolutional layer of image 
reconstruction module

Layer Setting

Kernel 
number

Convolution 
kernel

Stride Padding

CONV 4 64 3× 3 1 1

CONV 5 3 1× 1 0 0
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Cross_entropy loss function can be described as

MS-SSIM loss function can be described as

TV loss function can be described as

where I represents the input image and O represents the 
output image. SSIM(·) represents multi scale structural 
similarity operation. F(i, j) is the pixel value at point (i, j).

As shown in Fig. 3, our images reduce the loss of much 
information through the feature extraction layer and the 
image reconstruction layer.

Dataset
We use the brain medical images provided by the Har-
vard Medical School website as the data set. The data 
set of this website consists of normal brain images, 
stroke images, brain tumor images and brain images of 
other diseases. In order to enhance the robustness of our 
model, we selected 8000 images from the normal and 
abnormal images on the website as the training images 
of our model. All images have a resolution of 256× 256 
and are saved in the training set in Portable Network 
Graphics (PNG) format. The data set contains both CT 
and MRI, which are good at expressing structure, as well 
as PET and SPECT, which are professional at expressing 
metabolic information.

(15)Ltotal = Lcross_entropy + LMS−SSIM + LTV

(16)
Lcross_entropy = −

∑

I log(O)+ (1− I) log(1− O)

(17)LMS−SSIM = 1−MS − SSIM(I ,O)

(18)

LTV =
∑

i,j

(((F(i, j − 1)− F(i, j))2 + (F(i + 1, j)− F(i, j))2)

Qualitative and quantitative analysis methods
Qualitative methods are to combine the knowledge of 
medical nuclear imaging to qualitatively analyze our 
fusion images. The quality of brain image fusion is judged 
by the texture, edge and color of the image; Quantitative 
methods are to use several representative image fusion 
evaluation metrics to evaluate the quality of brain image 
fusion. Evaluation metrics are generally divided into five 
categories. There are evaluation metrics based on infor-
mation theory, mainly including information entropy, 
mutual information, edge mutual information and nor-
malized mutual information; there are evaluation met-
rics based on structural similarity, mainly including SSIM 
[26], MS_SSIM, MSE; there are evaluation metrics based 
on image features, Mainly include Spatial Frequency (SF), 
Standard Deviation (SD), Average Gradient (AG); there 
are evaluation metrics based on source image and gen-
erated image, mainly including Correlation Coefficient 
(CC) and QF

AB [27]; there are evaluation metrics based 
on human visual perception, mainly including Visual 
Information Fidelity (VIF) [28]. In this article, we used 
six metrics of Cross Entropy (CE), Feature Mutual Infor-
mation (FMI) [29], SSIM, SF, VIF and QF

AB to evaluate the 
quality of our model and comparison algorithm.

Results
Experiment details and result analysis
We selected multi-modal medical images of four dis-
eases from the Harvard Medical School website to 
verify the performance of our model. The four diseases 
are Glioma, Huntington’s disease, Metastatic broncho-
genic carcinoma and Alzheimer’s disease. For structural 
images, we generally choose MR-T2 images that are 
good at expressing lesion information; For functional 
images, we choose SPECT-Tl images, SPECT-Tc images 
and FDG-PET images. Our model is implemented in the 

Fig. 3  The evolution of images through feature extraction part and image reconstruction part
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PyTorch framework and trained and tested on a platform 
with Intel Core i7-8700k CPU and NVIDIA RTX 2080 
GPU. In this experiment, we plan to adopt eight repre-
sentative image fusion algorithms that are mentioned in 
Background.

Glioma
The source images in Figs.  4 and 5 are from a 51-year-
old female. She has right hemiplegia and hemianopia 
due to glioma. In the MR-T2 image, the astrocytoma is 
located in the left parietal lobe; in the SPECT-T1 image, 
its metabolism is abnormal. Ideally, the fused image 
should contain both clear astroglioma texture and edges, 
as well as its metabolism. From Figs.  4 and 5, it can be 
seen that the fused images obtained based on GFF, IGM 
and VSMWLS algorithms have better structural informa-
tion, however, the metabolic state of the tissue can not 
be obtained. The contrast of the fused image obtained by 
DTCWT and NSCT algorithms is too low, which causes 
the image to darken and is not suitable for observation. 
The fused image obtained based on the CNN algorithm 
has good structural information and metabolic status, 

however, the texture and edges of astrogliomas are poor. 
The fused image obtained by the LPSR algorithm is seri-
ously distorted. Although the fusion image obtained 
based on the LRD algorithm retains the color informa-
tion and structural information of the source image well, 
it is seriously blurred in the diseased tissue, which is 
not conducive to the diagnosis of the doctor. In general, 
whether it is normal tissue or glioma, the fused image 
obtained by our algorithm is the best in preserving struc-
tural information and metabolism. Tables 3 and 4 show 
the quantitative analysis of all fusion algorithms. Obvi-
ously, our algorithm performs well in terms of feature 
mutual information, spatial frequency and cross entropy. 
Among other metrics, it is also slightly better than other 
algorithms.

Huntington’s disease
The source images in Figs.  6 and 7 are from a 70-year-
old woman who was clinically diagnosed as Huntington’s 
disease. In the MR-T2 image, the caudate nucleus has a 
tendency to shrink ; in the SPECT-Tc image, we can see 
the metabolism of the caudate nucleus in the shrinking 

Table 3  The objective evaluation scores about group 1 fused images

Methods Metrics

QF
AB

SSIM VIF FMI SF CE

DTCWT​ 0.5983 0.5995 0.5663 0.6014 18.3195 0.3081

GFF 0.6807 0.5716 0.6189 0.6606 18.9207 0.2167

NSCT 0.6217 0.6449 0.5828 0.6043 18.3654 0.3141

LPSR 0.5930 0.6291 0.5801 0.6321 17.6417 0.2455

IGM 0.6604 0.5764 0.6663 0.6382 18.9412 0.2191

CNN 0.6480 0.6541 0.5962 0.6455 17.8180 0.2376

VSMWLS 0.5564 0.5222 0.5818 0.6087 14.6674 0.2961

LRD 0.6567 0.5750 0.6498 0.6339 18.9175 0.2257

Hahn-PCNN-CNN 0.6838 0.7792 0.6671 0.6852 22.8255 0.1972

Table 4  The objective evaluation scores about group 2 fused images

Methods Metrics

QF
AB

SSIM VIF FMI SF CE

DTCWT​ 0.5850 0.5655 0.5233 0.6019 18.4431 0.3297

GFF 0.6766 0.5474 0.5467 0.6716 19.2020 0.2267

NSCT 0.6106 0.6139 0.5479 0.6243 18.5155 0.3095

LPSR 0.6255 0.6220 0.6128 0.6509 18.6395 0.2609

IGM 0.6362 0.5740 0.6145 0.6513 18.9933 0.2218

CNN 0.6334 0.6370 0.5678 0.6536 21.8355 0.2574

VSMWLS 0.5387 0.4918 0.5495 0.6167 14.7282 0.3167

LRD 0.6381 0.5650 0.5957 0.6455 19.0145 0.2178

Hahn-PCNN-CNN 0.6967 0.6438 0.6984 0.6950 23.1363 0.1705
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(a) MR-T2 (b) SPECT-Tl

(c) DTCWT (d) GFF (e) NSCT

(f) LPSR (g) IGM (h) CNN

(i) VSMWLS (j) LRD (k) Hahn-PCNN-CNN
Fig. 4  The first set of fused MRI-SPECT images from 9 methods on glioma
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(a) MR-T2 (b) SPECT-Tl

(c) DTCWT (d) GFF (e) NSCT

(f) LPSR (g) IGM (h) CNN

(i) VSMWLS (j) LRD (k) Hahn-PCNN-CNN
Fig. 5  The second set of fused MRI-SPECT images from 9 methods on glioma
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process. Therefore, the fusion of the above two images 
has far-reaching significance. The structure information 
of the fusion image obtained by GFF, IGM and VSMWLS 
algorithms is well preserved, but the metabolism can 
hardly be expressed; the color information of the fusion 
image obtained based on the LPSR algorithm is seriously 
distorted; the fusion image obtained based on the LRD 
algorithm contains the source image. However, the detail 
information is seriously lost; the fused image obtained 
by DTCWT and NSCT algorithms can also obtain the 
source image information, however, the visual fidelity is 
somewhat poor and the low contrast leads to dark shad-
ows in the caudate body; the fused image obtained by 
the GFF algorithm has a deviation in the expression of 
metabolic information at the edge of the caudate nucleus; 
our model performs well in retaining overall structural 
information and the expression of metabolic conditions 
in and around the caudate nucleus. The evaluation results 
shown in Tables 5 and 6 can prove that our model per-
forms far better than other algorithms on the metric of 
structural similarity; on other metrics, the model is also 
quite satisfactory and stable.

Metastatic bronchogenic carcinoma
The source images in Figs.  8 and 9 are from a 42-year-
old patient with brain metastases from bronchial can-
cer. In the MR-T2 image, most of the left temporal area 
showed high signal intensity. The narrow sulcus in the 
left hemisphere is caused by severe swelling of the left 
hemisphere; in the SPECT-Tc image, the blood flow in 
the lesion area is very low. Ideally, the fused image can 
not only maintain high signal strength and the metabolic 
status of the diseased area, but also eliminate interference 
information. Algorithms like IGM, CNN and VSMWLS, 
the overall information of the fused image is well pre-
served, but the metabolism of the lesion is almost absent. 
The fused image obtained based on the GFF algorithm 
shows inexplicable black blocks at the lesion; the fused 
image obtained by DTCWT and NSCT algorithms retain 
the metabolism of the tissue, but the edge structure is 
blurred in details; the color is distorted during the fusion 
process based on the LPSR algorithm; the fused image 
obtained based on the LRD algorithm can present a bet-
ter metabolic status, but the overall texture information 
is still unclear. The fused image obtained by our model 

Table 5  The objective evaluation scores about group 3 fused images

Methods Metrics

QAB
F SSIM VIF FMI SF CE

DTCWT​ 0.3861 0.4348 0.4464 0.2852 17.4331 0.8959

GFF 0.5720 0.6468 0.4506 0.3532 18.9569 0.8728

NSCT 0.3976 0.4788 0.4817 0.2887 17.4846 0.8479

LPSR 0.5423 0.7266 0.5427 0.3284 18.9312 0.8081

IGM 0.4853 0.5885 0.5013 0.3227 17.8907 0.8875

CNN 0.5141 0.6261 0.4613 0.2933 19.6962 0.8215

VSMWLS 0.4470 0.6027 0.5735 0.3037 15.0761 0.8140

LRD 0.5102 0.6293 0.5016 0.3008 18.0826 0.6713

Hahn-PCNN-CNN 0.5731 0.7636 0.5957 0.3741 19.8026 0.6092

Table 6  The objective evaluation scores about group 4 fused images

Methods Metrics

QAB
F SSIM VIF FMI SF CE

DTCWT​ 0.5203 0.5950 0.4491 0.3454 19.9903 0.8249

GFF 0.3054 0.5114 0.4355 0.2843 13.1245 0.4720

NSCT 0.5372 0.6469 0.4810 0.3594 20.1095 0.7836

LPSR 0.5487 0.6896 0.5029 0.3719 22.3260 0.3817

IGM 0.5076 0.5443 0.4583 0.3873 19.1917 0.5209

CNN 0.5345 0.6054 0.4381 0.3562 21.2160 0.7761

VSMWLS 0.5085 0.5873 0.4587 0.3261 19.2965 0.5004

LRD 0.4187 0.5584 0.5363 0.2913 15.2035 0.5092

Hahn-PCNN-CNN 0.5498 0.7878 0.5387 0.3891 22.3293 0.3802
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(a) MR-T2 (b) SPECT-Tc

(c) DTCWT (d) GFF (e) NSCT

(f) LPSR (g) IGM (h) CNN

(i) VSMWLS (j) LRD (k) Hahn-PCNN-CNN
Fig. 6  The first set of fused MRI-SPECT images from 9 methods on huntington’s disease
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(a) MR-T2 (b) SPECT-Tc

(c) DTCWT (d) GFF (e) NSCT

(f) LPSR (g) IGM (h) CNN

(i) VSMWLS (j) LRD (k) Hahn-PCNN-CNN
Fig. 7  The second set of fused MRI-SPECT images from 9 methods on huntington’s disease
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performs well in anatomical information retention, meta-
bolic information acquisition and visual perception. In 
Tables  7 and 8, we  found that our algorithm excels in 
cross entropy, structural similarity and spatial frequency 
and is better than other algorithms in other metrics.

Mild Alzheimer’s disease
The source images in Figs.  10 and 11 are from a 
70-year-old man. He suffers from memory loss and is 
always depressed, which is a manifestation of mild Alz-
heimer’s disease. In the MR-T2 image, the global hemi-
spheric sulcus is enlarged and is more prominent in the 
parietal lobe; in PET-FDG images, local brain metabo-
lism is abnormal, especially in the anterior and poste-
rior regions of the parietal wall of the temporal lobe. 
Changes have also occurred on both sides of the tem-
poral lobe. Ideally, the above-mentioned information 
is included in the fused image and at the same time, 
interference information items are eliminated. The 
color distortion of the fused image obtained based on 
GFF and LPSR algorithms will affect the expression of 
metabolism; the brightness of the fused image obtained 

by IGM and VSMWLS algorithms is too high, result-
ing in unclear structural information; the brightness of 
the fused image obtained based on DTCWT and NSCT 
algorithms is too dark, resulting in unclear edges of the 
caudate nucleus; the fused image obtained by CNN and 
LRD algorithms retain the effective information of the 
source image, but the color saturation is poor; the fused 
image obtained based on the Hahn-PCNN-CNN algo-
rithm realizes the perfect fusion of the source image, 
both in terms of structural information and metabo-
lism. At the same time, it also performs well in terms of 
chroma and saturation and the image is easy to observe. 
Tables 9 and 10 show the objective performance of all 
algorithms. It can be seen that the Hahn-PCNN-CNN 
algorithm is superior to other algorithms in all metrics.

Comparison and analysis with IFCNN
Inspired by Image Fusion Framework based on Convolu-
tional Neural Network (IFCNN), we proposed our model. 
In multi-modal brain medical image fusion, IFCNN can 
not fuse images containing metabolic information of 
organs and tissues and only performs image fusion on 

Table 7  The objective evaluation scores about group 5 fused images

Methods Metrics

QF
AB

SSIM VIF FMI SF CE

DTCWT​ 0.5338 0.6173 0.5345 0.6390 17.2110 0.3243

GFF 0.3500 0.5700 0.5854 0.6503 11.4905 0.3959

NSCT 0.5462 0.6766 0.5852 0.6610 17.2561 0.2981

LPSR 0.5702 0.7618 0.6424 0.6979 17.5615 0.3264

IGM 0.4685 0.7007 0.6266 0.6495 15.8747 0.3751

CNN 0.5328 0.7324 0.6194 0.6919 18.0280 0.2577

VSMWLS 0.5346 0.7416 0.6399 0.6773 16.9311 0.4165

LRD 0.4600 0.6851 0.6830 0.6243 13.7973 0.3925

Hahn-PCNN-CNN 0.5732 0.8464 0.6848 0.6994 18.0290 0.2560

Table 8  The objective evaluation scores about group 6 fused images

Methods Metrics

QF
AB

SSIM VIF FMI SF CE

DTCWT​ 0.5162 0.5854 0.4655 0.6069 18.7235 0.3018

GFF 0.5660 0.6326 0.4165 0.6917 19.0711 0.2555

NSCT 0.5340 0.6635 0.5234 0.6459 18.9222 0.2639

LPSR 0.5376 0.7405 0.5835 0.6782 19.0237 0.2111

IGM 0.4752 0.6564 0.5545 0.6460 17.1588 0.3222

CNN 0.5224 0.7132 0.5494 0.6745 20.2132 0.3133

VSMWLS 0.4662 0.6400 0.6091 0.6133 15.5493 0.3542

LRD 0.5128 0.6845 0.5666 0.6559 18.0514 0.3483

Hahn-PCNN-CNN 0.5671 0.7597 0.6209 0.6926 21.6100 0.1755
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(a) MR-T2 (b) SPECT-Tc

(c) DTCWT (d) GFF (e) NSCT

(f) LPSR (g) IGM (h) CNN

(i) VSMWLS (j) LRD (k) Hahn-PCNN-CNN
Fig. 8  The first set of fused MRI-SPECT images from 9 methods on metastatic bronchogenic carcinoma
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(a) MR-T2 (b) SPECT-Tc

(c) DTCWT (d) GFF (e) NSCT

(f) LPSR (g) IGM (h) CNN

(i) VSMWLS (j) LRD (k) Hahn-PCNN-CNN
Fig. 9  The second set of fused MRI-SPECT images from 9 methods on metastatic bronchogenic carcinoma
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CT and MRI. Therefore, the functional image with color 
information can not be directly fused in IFCNN, however, 
our model can do it. In the process of model training, we 
added color images to the training set so that our model 
can fully process this type of image. In order to prove that 
our model is more suitable for multi-modal brain medi-
cal image fusion than IFCNN, we designed a set of exper-
iments to convert functional images with colors to three 
representative color spaces that are RGB, HSV and YUV. 
Then we compare their fusion results with ours.

In Fig.  12, we can clearly find that the final images of 
the three color spaces obtained by IFCNN are not as 
good as our model. In HSV color space and YUV color 
space, the fused images have poor texture and blur and 
it is difficult to provide valuable information to doctors. 
In RGB color space, the fused image has better texture 
information preservation, but it lags far behind the fused 
image generated by our model in terms of visual fidel-
ity. Therefore, in the multi-modal brain medical image 
fusion, our model is far superior to IFCNN.

Time complexity analysis
In this part, we focus on the time complexity of our 
model. Time complexity is an important metric that 
measures the efficiency of a model in this field. Gener-
ally, time complexity is directly proportional to the fusion 
effect. That is, the more time it takes, the better the result 
of the fusion. However, this is not the result we want. 
Our goal is to obtain a better fusion result in a short time 
through our fusion algorithm. In the article, we con-
ducted a total of eight sets of multi-modal brain medical 
image fusion experiments.We calculate the average time 
loss of eight sets of images under different algorithms 
and put it as the average time loss of the corresponding 
algorithm. Figure  13 shows the average time loss of all 
algorithms.

Figure 13 shows the average time loss (in seconds) of 
all algorithms. Among the above methods, DTCWT 
showed the smallest average execution time, while 
IGM showed the highest execution time. Considering 
our proposed Hahn-PCNN-CNN algorithm, compared 
with NSCT, LPSR, CNN, VSMWLS, LRD, its average 

Table 9  The objective evaluation scores about group 7 fused images

Methods Metrics

QF
AB

SSIM VIF FMI SF CE

DTCWT​ 0.4743 0.4454 0.3624 0.5655 26.9326 0.3822

GFF 0.3679 0.4612 0.3108 0.6074 18.9252 0.3541

NSCT 0.5178 0.5147 0.3878 0.6229 27.4106 0.3529

LPSR 0.4999 0.5338 0.3964 0.6612 27.0963 0.2105

IGM 0.5383 0.6012 0.4251 0.6701 27.2623 0.2107

CNN 0.5220 0.5769 0.4085 0.6741 20.5773 0.1924

VSMWLS 0.4653 0.5358 0.4087 0.6226 25.9969 0.1941

LRD 0.4760 0.4782 0.4495 0.6126 22.1965 0.2633

Hahn-PCNN-CNN 0.5393 0.6065 0.4502 0.6762 28.7803 0.1904

Table 10  The objective evaluation scores about group 8 fused images

Methods Metrics

QF
AB

SSIM VIF FMI SF CE

DTCWT​ 0.4956 0.5142 0.4285 0.5815 27.7145 0.2668

GFF 0.3633 0.4777 0.3782 0.6199 18.9824 0.2818

NSCT 0.5272 0.5711 0.4690 0.6300 27.9576 0.2664

LPSR 0.5106 0.5851 0.4831 0.6650 27.5567 0.1360

IGM 0.5035 0.6061 0.5048 0.6880 26.8727 0.1503

CNN 0.5217 0.5854 0.4925 0.6882 28.3076 0.1276

VSMWLS 0.4620 0.5632 0.4911 0.6429 26.3168 0.1404

LRD 0.4724 0.5528 0.5356 0.6444 22.4599 0.1699

Hahn-PCNN-CNN 0.5292 0.6297 0.5370 0.6888 28.6091 0.1251
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(a) MR-T2 (b) PET-FDG

(c) DTCWT (d) GFF (e) NSCT

(f) LPSR (g) IGM (h) CNN

(i) VSMWLS (j) LRD (k) Hahn-PCNN-CNN
Fig. 10  The first set of fused MRI-PET images from 9 methods on mild Alzheimer’s disease
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(a) MR-T2 (b) PET-FDG

(c) DTCWT (d) GFF (e) NSCT

(f) LPSR (g) IGM (h) CNN

(i) VSMWLS (j) LRD (k) Hahn-PCNN-CNN
Fig. 11  The second set of fused MRI-PET images from 9 methods on mild Alzheimer’s disease
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execution time is shorter; compared with GFF, its aver-
age execution time is longer. This is because our model 
uses the block potential of Hahn moment blocks, thus 
avoiding the possibility of image artifacts and enhanc-
ing visualization. Therefore, the algorithm execution 
time will increase, resulting in an average time con-
sumption higher than the average time consumption 
of DTCWT and GFF. It can be seen that the focus of 
future work is how to minimize the average time loss of 
the model.

Statistical analysis of the results
We used a non-parametric test method to verify the per-
formance of our model. Among the many non-paramet-
ric testing methods, Friedman’s test can make full use of 
all the information in the relevant samples. Others such 
as Kruskal-Wallis test and the popular median method 
are also correct to judge whether multiple related sam-
ples come from a population with significant differences 
in size, but this approach is like using a non-parametric 
method to test two independent samples. The informa-
tion about the differences between different individuals 

(a) MR-T2 (b) SPECT-Tc

(c) IFCNN in RGB (d) IFCNN in HSV (e) IFCNN in YUV

(f) Hahn-PCNN-CNN
Fig. 12  The second group of source images and fused images by IFCNN in different color space and Hahn-PCNN-CNN
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in the sample is ignored, thereby reducing the power of 
the test. Therefore, We used the non-parametric Fried-
man’s test and the post-hoc Nemenyi test to analyze how 
the analyzed methods differ from each other. Tukey’s dis-
tribution is introduced to calculate the Critical Difference 
(CD). If the difference between the algorithm levels is 
greater than the CD, the difference is considered signifi-
cant [30]. We use the values to calculate the level of the 
average data fusion method from Tables 3, 4, 5, 6, 7, 8, 9 
and 10. The resulting grade is shown in Fig. 14.

In Fig. 14, we find that the level difference between all 
comparison algorithms and our algorithm is greater than 
the value of CD. Therefore, our algorithm has obvious 
statistical advantages compared with other comparison 
algorithms.

Tri‑modal fusion
Brain medical images are often different from other types 
of images. Since the imaging comes from multiple sen-
sors, each sensor has a different focus. CT images focus 
on skill tissues; MRI images have better imaging effect 
on brain tissues; PET images help doctors observe the 
metabolism state of tissues. Therefore, it is very challeng-
ing to extend the traditional fusion method of two-mode 
medical images to three or more images while avoiding 
the overlap of information and the blurring of key tex-
tures. Such research is of great value. Most fusion meth-
ods are designed for image fusion of two modes. If you 
want to achieve tri-modal image fusion, you can only 
manually select two images for fusion and then merge the 
fusion result with the third image to get the final result. 
This is not the best choice because the fusion algorithm 
assumes that the image prior may not appear in the inter-
mediate fusion results. The previous neural network 
methods all fuse two images from the training set and 
continuous fusion will result in multiple false images.

Our fusion model just overcomes shortcomings of the 
above fusion method. There will be no continuous fusion 
of multiple false images, nor will it affect the effect of 
later fusion image because of different selection order in 
the early stage. Please note that the addition of modalities 
will not affect the processing time of our neural network 
because feature maps are extracted in parallel. Figure 15 
shows us such an example. In the final fusion image, 
there are not only the eye-catching skull from CT, but 
also the clear brain tissue from MRI and metabolic infor-
mation from PET around it.

Conclusions
Current research shows that the image obtained by our 
model retains the texture information of the anatomical 
image and the color information of the functional image 

Fig. 13  The time complexity of different types of multi-modal 
medical images

Fig. 14  The time complexity of different types of multi-modal medical images
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to the greatest extent, while maintaining the contrast of 
the image during fusion. On the six representative evalu-
ation metrics, the performance of our model is signifi-
cantly better than the other eight algorithms. In addition, 
the diversity of images enhances the robustness of our 
algorithm. Since our algorithm is a lightweight and high-
quality algorithm, it has broad application prospects in 
intelligent medicine. If it is extended to other image data 
sets, the performance of the model can be improved.
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(a) CT (b) MR-T2

(c) SPECT-Tc (d) the fused image
Fig. 15  Tri-modal fusion of magnetic resonance imaging, computed 
tomography, and single-photon emission computed tomography 
slices. Best viewed on screen
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