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Abstract 

Background: Currently, there is an urgent need for efficient tools to assess the diagnosis of COVID-19 patients. In this 
paper, we present feasible solutions for detecting and labeling infected tissues on CT lung images of such patients. 
Two structurally-different deep learning techniques, SegNet and U-NET, are investigated for semantically segment-
ing infected tissue regions in CT lung images.

Methods: We propose to use two known deep learning networks, SegNet and U-NET, for image tissue clas-
sification. SegNet is characterized as a scene segmentation network and U-NET as a medical segmentation tool. 
Both networks were exploited as binary segmentors to discriminate between infected and healthy lung tissue, also 
as multi-class segmentors to learn the infection type on the lung. Each network is trained using seventy-two data 
images, validated on ten images, and tested against the left eighteen images. Several statistical scores are calculated 
for the results and tabulated accordingly.

Results: The results show the superior ability of SegNet in classifying infected/non-infected tissues compared to 
the other methods (with 0.95 mean accuracy), while the U-NET shows better results as a multi-class segmentor (with 
0.91 mean accuracy).

Conclusion: Semantically segmenting CT scan images of COVID-19 patients is a crucial goal because it would not 
only assist in disease diagnosis, also help in quantifying the severity of the illness, and hence, prioritize the population 
treatment accordingly. We propose computer-based techniques that prove to be reliable as detectors for infected 
tissue in lung CT scans. The availability of such a method in today’s pandemic would help automate, prioritize, fasten, 
and broaden the treatment of COVID-19 patients globally.
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Background
COVID-19 is a widespread disease causing thousands 
of deaths daily. Early diagnosis of this disease proved to 
be one of the most effective methods for infection tree 
pruning [1]. The large number of COVID-19 patients 
is rendering health care systems in many countries 

overwhelmed. Hence, a trusted automated technique 
for identifying and quantifying the infected lung regions 
would be quite advantageous.

Radiologists have identified three types of irregularities 
related to COVID-19 in Computed Tomography (CT) 
lung images: (1) Ground Glass Opacification (GGO), (2) 
Consolidation, and (3) pleural effusion [2, 3]. Developing 
a tool for semantically segmenting medical lung images 
of COVID-19 patients would contribute and assess in 
quantifying those three irregularities. It would help the 

Open Access

*Correspondence:  iyad.hatem@tishreen.edu.sy; iyad.hatem@gmail.com
Mechatronics Program for the Distinguished, Tishreen University, 
Distinction and Creativity Agency, Latakia, Syria

http://orcid.org/0000-0003-1152-4531
http://orcid.org/0000-0002-3815-166X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-020-00529-5&domain=pdf


Page 2 of 10Saood and Hatem  BMC Med Imaging           (2021) 21:19 

front-liners of the pandemic to better manage the situa-
tion of overloaded hospitals.

Deep learning (DL) has become a conventional method 
for constructing networks capable of successfully mod-
eling higher-order systems to achieve human-like perfor-
mance. Tumors have been direct targets for DL-assisted 
segmentation of medical images. In [4], a lung cancer 
screening tool was implemented using DL structures 
aiming to lower the false positive rate in lung cancer 
screening with low-dose CT scans. Also, in [5], research-
ers attempted to segment brain tumors from MRI images 
with a hybrid network of U-NET and SegNet, reach-
ing an accuracy of 0.99. Breast tumor was also a target 
for segmentation in [6] using Generative Adversarial 
Networks (GANs) and Convolutional Neural Networks 
(CNNs) resulting in a mean accuracy of 0.90. Body parts 
were subject to segmentation also; researchers attempted 
to segment: kidneys in [7], Lungs in [8, 9], liver in [10], 
brain tissue in [11] and [12], temporal bones in [13], and 
arterial walls in [14].

Until today, many research projects have been con-
ducted for COVID-19 detection using DL analysis of 
medical images such as X-Ray and CT scans and revealed 
significant results. However, semantically segmenting 
those images has been less appealing.

Many DL structures were considered by researchers 
to detect COVID-19 patients using medical images. A 
recent study designed a binary classifier (COVID-19, 
No information) and a multi classifier (COVID-
19 , No Information, Pneumonia) using a CNN 
with X-Ray images as an input, reaching 0.98 for binary 
classes and 0.87 for a multi-class classifier [15]. Another 
study employed Xception and ResNet50V2 networks 
for COVID-19 detection from CT scans, resulting in an 
accuracy of 0.99 for the target class [16]. References [17–
21] used various DL systems with medical images and 
obtained results with accuracy values ranging from 0.83 
to 0.98.

Few attempts for semantically segmenting medical 
images of COVID-19 patients were published recently. 
Implementing such a tool would be a key component in a 
system that prioritizes patients by severity. It would iden-
tify an infection and output its key spatial features such as 
size, distribution, and shape parameters. Bounding-box 
segmentors, by definition, fail to deliver such parameters. 
Thus, we expect it to have poor performance in illness 
severity assessment. Study [22] employed a deep CNN 
as a binary segmentor and compared it to other struc-
tures (FCN, U-NET, VNET, U-NET++). The authors 
reached a Sorensen-Dice of 0.73, a sensitivity of 0.75, and 
a precision of 0.73. Another usage of DL as a binary seg-
mentation tool was presented in [23]. The study reached 
a Dice of 0.78, an accuracy of 0.86, and a sensitivity of 

0.94. Reference [24] implemented a Fully Convolutional 
Network (FCN) and a U-NET as binary segmentation 
tools; their work performed well in terms of precision 
and accuracy, but lesser in terms of recall and Dice.

Researchers in [25] detailed the design of a novel DNN 
structures named Inf-Net and Semi-Inf-Net to 
semantically segment infected regions, and to segment 
GGO and consolidation. Their work utilized the same 
data set that this research is using. In binary segmenta-
tion, their results reached a Dice of 0.74, a sensetivity of 
0.72 and specitivity of 0.96. While in Cosilidation and 
Opacity segmentation, the average results were 0.54, 0.56 
and 0.97, respectively.

Methods
The dataset
Images of the dataset used in this work is a collection of 
the Italian Society of Medical and Interventional Radiol-
ogy [26]. One hundred one-slice CT scans are provided 
in a resized 512× 512 dimensions. Region labels are 
already compiled into a NIFTI with proper documenta-
tion by the author.

In manual labeling, classes pixel count (total number of 
pixels in a class) and image pixel count (total number of 
pixels in images that had an instance of a class) show an 
extensive disparity in representation; the dominant class 
is larger in order of 1e+3 than the least represented class. 
See Table 1. We note here that the class C0 not only rep-
resent the portions of the lungs unaffected by pneumo-
nia, but also the lung-enclosing tissue.

The dataset source website offers image masks to 
segment the lung regions. These masks were created 
automatically based on [27]. The automated lung seg-
mentation model can be found in the GitHub repository 
JoHo/lungmask. Figure  1 illustrates the original, the 
lung-masked, and the labeled images of one sample.

By visual inspection of the dataset images, we notice 
that the infected areas of the lungs are localized in spe-
cific regions. To illustrate the correlation between 
infected tissue and its relative location, all the labels of 
the dataset were summed and plotted with hot colormap 
in Fig.  2. It is clear from the accumulation image that 

Table 1 Dataset class sizes

Pixel Count denotes the total number of pixels of the class, and Image Pixel 
Count is the total number of pixels of images that had an instance of the class

Class Metrics

Name Pixel count Image pixel count

C0 2.4394e+07 2.6214e+07

C1 1.1965e+06 2.5166e+07

C2 5.8921e+05 2.0447e+07

C3 33.4265e+04 6.5536e+06
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some portions of the lungs are more prone to infection 
than others. Therefore, the spatial values of pixels tend to 
be a key feature in this research.

Deep neural networks
The overall methodology of semantically segment-
ing images is to design a structure that extracts features 
through successive convolutions and uses that infor-
mation to create a segmentation map as an output. See 
Fig. 3. In the following two paragraphs, we present a brief 
description of the two DL networks used in this research.

U‑NET architecture
U-NET was originally developed for medical image 
understanding and segmentation. It has vast applications 
in the domain and has been a key architecture in the 
medical imaging automation society. In this section, we 
detail the key technical features of this network and their 
role in achieving good results.

The architecture of this network includes two main 
parts: contractive and expansive. The contracting path 
consists of several patches of convolutions with filters of 
size 3× 3 and unity strides in both directions, followed 
by ReLU layers. This path extracts the key features of the 
input and results a feature vector of a specific length. The 
second path pulls information from the contractive path 
via copying and cropping, and from the feature vector via 
up-convolutions, and generates, by a successive opera-
tion, an output segmentation map. The key component 
of this architecture is the operation linking the first and 
second paths together. This linkage allows the network to 
attain highly accurate information from the contractive 
path, thus generating the segmentation mask as close as 
possible to the intended output. A detailed overview of 
the architecture can be found in [28].

SegNet architecture
SegNet is a Deep Neural Network originally designed 
to model scene segmentors such as road image segmen-
tation tool. This task requires the network to converge 
using highly imbalanced datasets since large areas of road 
images consist of classes such as road, sidewalk, sky. In 
the dataset section, we demonstrated numerically how 
the dataset used in this work exhibit disparity in class 
representation. As a consequence, SegNet was our first 
choice for this task.

Fig. 1 Dataset sample. CT scan (left), masked lungs (middle), and labeled classes (right), where black is class C0, dark gray is  C1, light gray is C2, and 
white is C3.

Fig. 2 Accumulation of the dataset’s labels. All the labels of the 
dataset were summed up to form a graphic that illustrates the 
regions of the lungs most prune to infection
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SegNet is a DNN with an encoder-decoder depth 
of three. The encoder layers are identical to the con-
volutional layers of the VGG16 network. The decoder 
constructs the segmentation mask by utilizing pool-
ing indices from the max-pooling of the correspond-
ing encoder. The creators removed the fully connected 
layers to reduce complexity, which reduces the number 
of parameters of the encoder sector from 1.34e+8 to 
1.47e+7 . See [29].

Network training
Training the neural networks is done using the ADAM 
stochastic optimizer due to its fast convergence rate 
compared to other optimizers [30]. The input images 
are resized to 256× 256 to reduce the training time and 
also for memory requirements. The one-hundred images 
dataset is divided into three sets for training, valida-
tion, and testing, with proportions of 0.72, 0.10, and 0.18 
respectively. In spite of class imbalance discussed earlier, 
class weights are calculated using median frequency bal-
ancing and handed over to the pixel classification layer to 
formulated a weighted cross-entropy loss function [31]:

(1)γ = −
1

K

K
∑

k=1

N
∑

n=1

wi · l
n
k · log(pnk )

where K is the number of instances, N number of classes, 
lnk  and pnk are label and prediction in class n in instance i, 
and wi is the weight of class i.

Each network is trained nine times using different 
hyperparameters to find the best possible configuration. 
Table  2 lists these training hyperparameters. For the 
training performance, it was completed in 160 epochs for 
all the experiments. Training time variation was negligi-
ble among networks, with an average of 25 min. Figure 4 
illustrates training performance and loss for the best 
binary segmentors (U-NET #4 and SegNet #4) and the 

Table 2 Hyperparameters used for training the DNNs

Nine experiments for each network with different initial learning rates (ILR) and 
mini batch sizes

 Exp. SegNet U-NET

ILR MniBatch ILR MiniBatch

1 1e−4 4 1e−4 2

2 1e−4 8 1e−4 8

3 1e−4 12 1e−4 12

4 1e−3 4 5e−4 2

5 1e−3 8 5e−4 8

6 1e−3 12 5e−4 12

7 3e−3 4 1e−3 2

8 3e−3 8 1e−3 8

9 3e−3 12 1e−3 12

Fig. 3 The DNN architectures The SegNet (top) where the encoder-decoder of the network are illustrated using the gray and white bubbles, and 
U-NET (bottom) where the contractive and expansive layer patches are encapsulated in blue and yellow bubbles
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best multi-class segmentors (U-NET #4 and SegNet #7). 
The criteria used to conclude the best experiments are 
discussed in the results section.

The training process was done using the Deep 
Learning Toolbox version 14.0 in MATLAB R2020a 
(9.8.0.1323502) in a Windows 10 version 10.0.18363.959 
machine with an INTEL core-i5 9400F and an NVIDIA 
1050ti 4GB VRAM GPU using CUDA 10.0.130. Usage 
of the GPU reduced training times by a factor of 35 on 
average.

Evaluation criteria and procedure
To fully quantify the performance of our models, we uti-
lized five known classification criteria: sensitivity, speci-
ficity, G-mean, Sorensen-Dice (aka. F1), and F2 score. 
The following Eqs. (2)–(6) describe these criteria:

(2)Sensitivity =
TP

TP+ FN

(3)Specificity =
TN

TN+ FP

(4)Sorensen-Dice =
2× TP

2× TP+ FP+ FN

(5)G-mean =

√

sensitivity× specificity

(6)F2-score =
5× Precision× Sensitivity

4 × Precision+ Sensitivity

Fig. 4 SegNet and U-NET binary and multi-class segmentors’ training accuracy and loss Four plots of training loss and accuracy for the best 
configuration of each segmentor
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These criteria are selected because of the dataset imbal-
ance nature discussed in the Materials and Methods 
section.

The evaluation was carried out as follows: the global 
accuracy of the classifier was calculated for each test 
image and averaged over all the images. Using the mean 
values of global accuracies, the best experiment of each 
network was chosen for a ”Class Level” assessment. Then, 
statistical scores (2)–(6) were calculated for each class 
and tabulated properly.

Results
Binary segmentation
Test images results
Table  3 shows results for both models of binary classi-
fiers after evaluating every experiment of each network. 
We can see from the results that our networks achieve 
accuracy values larger than 0.90 in all cases, and 0.954 
accuracy in the best case (experiment 4 of the network 
SegNet). The standard deviation of experiment 4 is 
0.029. The second best network is experiment 4 of the 
U-NET architecture with an accuracy of 0.95 and a stand-
ard deviation of 0.043.

The best experiment of each architecture is selected for 
further performance investigation on the class level.

Class Level
Based on the criteria discussed in the “Methods” sec-
tion, the best two networks found in the previous sec-
tion are evaluated. We can see that the SegNet network 
surpasses U-NET with noticeable margins for all metrics 
except sensitivity and G-mean, where both networks pro-
duce similar results. See Table 4.

Multi class segmentation
Test images results
Similarly, we obtain the best experiment for each multi-
classification network. The best experiment of the Seg-
Net architecture is number 7, giving an accuracy of 0.907 
with a standard deviation of 0.06. We also found that the 
overall best accuracy of 0.908 is achieved by the fourth 
experiment of U-NET network with a standard deviation 
of 0.065. All the experiments achieve higher accuracy 
than 0.8 except for the first three experiments of Seg-
Net. Refer to Table 5.

Class level
In the same manner as the binary segmentation results 
section, the best experiment of each architecture is evalu-
ated as presented in Table 6. Both networks struggled to 
recognize the  C3 class. Nevertheless, they achieve good 
results for C1 and C2 . We also notice the high specific-
ity rate regarding all the classes. The U-NET architec-
ture recorded higher values for all parameters except the 
specificity.

Discussion
Binary classification problem
It can be referred from Table  5 that SegNet outper-
forms U-NET architecture by a noticeable margin. 
Both networks have an exceptionally high true positive 

Table 4 Statistical results for the binary segmentor

Bold values indicate the highest number of a comparable set

SegNet and U-NET binary segmentation tools results is terms of sensitivity, 
specificity, dice, G-mean, and F2 score

Net. Sens. Spec. Dice G-mean F2

SegNet 0.956 0.9542 0.749 0.955 0.861
U-NET 0.964 0.948 0.733 0.956 0.856

Table 3 Global accuracy metrics of  the Test data images calculated for  the  nine experiments of  the UNET and SegNet 
networks as binary class segmentors. The “plot” columns visualize the mean accuracy and the standard deviation of each 
experiment
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count for the ”Not Infected” class. The results state in a 
quantifiable manner how reliable is the DNN models in 
distinguishing between the non-infected and infected 
classes, i.e. ill portions of the lungs. Further experi-
ments involving a larger dataset is likely to confirm 

this. The high sensitivity (0.956) and specificity (0.945) 
of the best network (SegNet) indicate its goodness in 
modeling a trained radiologist for the task at hand.

Regarding the standard deviation of the results dem-
onstrated in Table  3, the values ranged from 0.060 to 

Table 5 Global accuracy metrics of  the Test data images calculated for  the  nine experiments of  the UNET and SegNet 
networks as multi-class segmentors. The “plot” columns visualize the mean accuracy and the standard deviation of each 
experiment

Table 6 Statistical results for the multi segmentor

Bold values indicate the highest number of a comparable set

 SegNet and U-NET multi class segmentation tools results is terms of sensitivity, specificity, dice, G-mean, and F2 score. Matching color rows display the results for 
the same class

Net. Class Sens. Spec. Dice. G-mean F2

 SegNet C1 0.638 .0.952 0.479 0.780 0.562

C2 0.672 0.965 0.454 0.806 0.564

C3 0.574 0.988 0.121 0.753 0.231

 U-NET C1 0.804 0.930 0.483 0.865 .0.636
C2 0.694 0.983 0.597 0.826 0.652
C3 0.684 0.993 0.225 0.824 0.377

Table 7 Five-fold experiment results for the best network of each architecture

Results are the mean and standard deviation of sensitivity, specificity, dice, g-mean, and F2

Sensitivity Specificity Dice G-mean F2

µ σ µ σ µ σ µ σ µ σ

 Binary SegNet 0.947 0.048 0.945 0.015 0.703 0.055 0.945 0.019 0.829 0.029

U-NET 0.961 0.033 0.923 0.018 0.643 0.058 0.941 0.014 0.800 0.033

 Multi  SegNet C1 0.653 0.043 0.927 0.030 0.425 0.084 0.778 0.035 0.535 0.069

C2 0.688 0.072 0.963 0.004 0.410 0.081 0.813 0.043 0.537 0.073

C3 0.679 0.270 0.987 0.006 0.117 0.068 0.804 0.167 0.214 0.110

 U-NET C1 0.685 0.130 0.910 0.045 0.402 0.144 0.786 0.083 0.527 0.135

C2 0.666 0.120 0.973 0.013 0.458 0.093 0.801 0.066 0.550 0.052

C3 0.632 0.26 0.991 0.005 0.152 0.092 0.777 0.165 0.250 0.118
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0.086. These low values indicate highly consistent accu-
racies in the test partition of the dataset.

The results of our SegNet show enhancements 
over Inf-Net and Semi-Inf-Net presented in [25] in 
terms of Dice, specificity, and sensitivity Metrics. As 
well, the U-NET outperforms them only in terms of 
sensitivity. Both works utilize the same dataset. As a 
binary segmentor, Inf-Net focuses on edge informa-
tion and allocates a portion of computations to high-
light it. This would remove focus from the important 
internal texture and allocate more weight to the fractal 
shaped edge, especially that no evidence of high con-
trast between the infection and lung tissue is found. 
Secondly, the parallel partial decoder used by the net-
work gives less weights to low-level features which are 
considered a key for texture highlighting. Another rea-
son might be that the SegNet was trained on dataset 
images that contain only lung areas.
SegNet outperforms the Semi-Inf-Net network, an 

architecture utilizes pseudo labeling to generate addi-
tional training data, by a small margin. This might be 
because the used pseudo-labeling technique generated 
1600 labels from only 50 labeled images which were used 
to train the network.
SegNet also surpasses the COVID-SegNet architec-

ture proposed in [22] in sensitivity and Dice metrics. This 
might be because, according to the authors, COVID-19 
lesions were difficult to distinguish from the chest wall. 
COVID-SegNet was able to segment the lung region 
with close-to-perfect performance, yet was not able to 
match this accuracy in segmenting the infection regions 
that are close to the wall. A more detailed comparison, 

in which both architectures are trained and tested on the 
same dataset, might be necessary to further generalize 
this result.

It should be noted here that increasing the mini-batch 
size has a negative effect on the networks performance; 
further tests may lead to a generalized statement regard-
ing this.A previous study investigated the mini-batch size 
role in the VGG16 network convergence. It concluded 
that smaller mini-batch sizes coupled with a low learning 
rate would yield a better training outcome [32]. Another 
study concluded that smaller mini-batch sizes tend to 
produce more stable training for ResNet networks by 
updating the gradient calculations more frequently [33].

Multi class problem
Table 6 shows how good the U-NET is in segmenting the 
Ground Glass Opacification and the Consolidation. The 
U-NET produced moderate results in segmenting the 
pleural effusion; a Dice of 0.23 and F2 score of 0.38 which 
downplays its role as a reliable tool for pleural effusion 
segmentation.

The C3 class, as discussed in the Dataset section, is the 
least represented class in the dataset. Therfore, such a 
result is expected from a multi-class segmentation model 
constructed using 72 image instances only.

The standard deviation values of the multiclass seg-
mentors were, on average, a little higher than those of 
the binary segmentors. Yet, they still indicate that the 
networks are solid performers in terms of accuracy. The 
high specificity rates clearly state that the models are reli-
able in identifying non-infected tissue (class C0 ).

Fig. 5 SegNet binary segmentor Deep Dream image Deep dream image laying out key features the network is using to segment the CT scans. 
infected tissue (right), non-infected (left)
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Five-fold cross validation
Due to the small size of images in the dataset, a five-fold 
cross-validation was performed as an overall assessment. 
The dataset images were first scrambled to form a newly 
randomized dataset. Then, for each iteration, images 
were divided into three sets: 70% for training, 10% for val-
idation, and 20% for testing in a successive manner. The 
validation set was utilized for monitoring the network 
performance during training, and to keep the overall 
training data count as close as possible to the procedure 
performed in the Networks Training section.

Table  7 presents the statistical results using criteria 
described in the Evaluation Criteria and Procedure sec-
tion. We notice low values of standard deviation for each 
score, except for the sensitivity of the C3 class, with mean 
values close to the ones reported in Tables 4 and 6.

Network feature visualization
Deep Dream is a method used to visualize the features 
extracted by the network after the training process [34]. 
Since SegNet proved to be a reliable segmentor con-
sidering its high statistical scores, the generated Deep 
Dream image should lay out the key features distinguish-
ing each class (non-infected, infected). We plot-
ted the Deep Dream image in Fig. 5. We can apparently 
visualize a discerning pattern between the two classes in 
this image.

Conclusions
In this paper, the performance of two deep learning net-
works (SegNet & U-NET) was compared in their ability 
to detect diseased areas in medical images of the lungs of 
COVID-19 patients. The results demonstrated the ability 
of the SegNet network to distinguish between infected 
and healthy tissues in these images. A comparison of 
these two networks was also performed in a multiple 
classification procedure of infected areas in lung images.
The results showed the U-NET network’s ability to distin-
guish between these areas. The results obtained in this 
paper represent promising prospects for the possibility of 
using deep learning to assist in an objective diagnosis of 
COVID-19 disease through CT images of the lung.
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