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Abstract 

Background:  This study aims to compare proton density weighted magnetic resonance imaging (MRI) zero echo 
time (ZTE) and head atlas attenuation correction (AC) to the reference standard computed tomography (CT) based 
AC for 11C-methionine positron emission tomography (PET)/MRI.

Methods:  A retrospective cohort of 14 patients with suspected or confirmed brain tumour and 11C-Methionine PET/
MRI was included in the study. For each scan, three AC maps were generated: ZTE–AC, atlas-AC and reference stand-
ard CT-AC. Maximum and mean standardised uptake values (SUV) were measured in the hotspot, mirror region and 
frontal cortex. In postoperative patients (n = 8), SUV values were additionally obtained adjacent to the metal implant 
and mirror region. Standardised uptake ratios (SUR) hotspot/mirror, hotspot/cortex and metal/mirror were then cal-
culated and analysed with Bland–Altman, Pearson correlation and intraclass correlation reliability in the overall group 
and subgroups.

Results:  ZTE–AC demonstrated narrower SD and 95% CI (Bland–Altman) than atlas-AC in the hotspot analysis for all 
groups (ZTE overall ≤ 2.84, − 1.41 to 1.70; metal ≤ 1.67, − 3.00 to 2.20; non-metal ≤ 3.04, − 0.96 to 3.38; Atlas over-
all ≤ 4.56, − 1.05 to 3.83; metal ≤ 3.87, − 3.81 to 4.64; non-metal ≤ 4.90, − 1.68 to 5.86). The mean bias for both ZTE–
AC and atlas-AC was ≤ 2.4% compared to CT-AC. In the metal region analysis, ZTE–AC demonstrated a narrower mean 
bias range—closer to zero—and narrower SD and 95% CI (ZTE 0.21–0.48, ≤ 2.50, − 1.70 to 2.57; Atlas 0.56–1.54, ≤ 4.01, 
− 1.81 to 4.89). The mean bias for both ZTE–AC and atlas-AC was within 1.6%. A perfect correlation (Pearson cor-
relation) was found for both ZTE–AC and atlas-AC compared to CT-AC in the hotspot and metal analysis (ZTE ρ 1.00, 
p < 0.0001; atlas ρ 1.00, p < 0.0001). An almost perfect intraclass correlation coefficient for absolute agreement was 
found between Atlas-, ZTE and CT maps for maxSUR and meanSUR values in all the analyses (ICC > 0.99).

Conclusions:  Both ZTE and atlas-AC showed a good performance against CT-AC in patients with brain tumour.
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Background
In neuro-oncology, positron emission tomography/
magnetic resonance imaging (PET/MRI) combines Posi-
tron Emission Tomography (PET) functional metabolic 

information with the magnetic resonance imaging (MRI) 
morphological appearance, allowing simultaneous data 
acquisition with the potential to overcome the intrin-
sic limitations of MRI [1]. Among the existing radiop-
harmaceuticals used in PET imaging, 11C-methionine 
(MET) is considered one of the most suitable amino 
acid tracers for brain tumours [2]. The uptake of MET 
by transmembrane transport via sodium-independent 
L-transporters reflects the concentration gradient and 
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cellular proliferation related to protein synthesis within 
the tumour. The distribution of 11C-methionine has 
potential to characterise primary brain tumour/metasta-
ses, assess the efficacy of oncological treatment and dif-
ferentiate radionecrosis from tumour recurrence [3–5]. 
Due to these characteristics, 11C-methionine provides a 
higher selectivity for the identification of brain gliomas, 
especially for hypo- or isometabolic lesions on 18F-Fluro-
deoxyglucose (FDG) PET [6, 7] and a diagnostic accu-
racy similar to 18F-fluoroethyl-l-tyrosine (FET) [8]. For 
accurate quantification of the radioactivity concentration 
measured by PET, correction for photon attenuation is 
needed. Conversion of the MRI signal into attenuation 
values is challenging, hampering accurate AC in PET/
MRI [9]. Several methods aiming to improve vendor 
specific MR-AC have been described [10–12]. Nonethe-
less, head CT scan is still needed for accurate AC, leaving 
PET/MRI dependent upon a separate CT and additional 
radiation exposure [13–15]. In comparison to PET/CT, 
PET/MRI lacks a clinically accepted standard method to 
directly obtain AC maps.

The unsolved AC issues in PET/MRI relate to the fact 
that proton density in MRI does not directly correlate to 
radiodensity [16, 17]. PET/MRI AC is especially challeng-
ing close to bony structures [18], air and metal implants 
[19]. Metal implants are encountered in postoperative 
brain tumour patients, introducing risk for errors in 
the AC near the postoperative site. Several attempts to 
improve MR-AC close to metal in PET/MRI has been 
made, for example using time-of-flight (TOF) [20, 21].

A recently developed template-based method, Zero 
Echo Time (ZTE), for AC in PET/MRI has been devel-
oped and tested in non-surgical patients, providing an 
accurate AC map when compared to attenuation correc-
tion with PET emission scan [10, 18, 22, 23]. The aim of 
this current study is to further evaluate ZTE–AC in pre- 
and postoperative patients with suspected or confirmed 
brain tumour for correct SUV quantification in the pres-
ence of surgical metal implants and clinical use of PET/
MRI study of brain tumours. Correct AC in PET/MRI 
will improve diagnostic accuracy and guide treatment-
based decisions in clinical practice.

To our knowledge, this is the first study evaluating 
ZTE–AC and atlas-AC compared to the reference stand-
ard CT-AC for brain MET PET/MRI.

Methods
The aim of the study is to retrospectively investigate 
ZTE–AC and atlas-AC compared to the reference stand-
ard CT-AC for MET PET/MRI in pre- and postopera-
tive patients with suspected or confirmed brain tumour. 
Maximum and mean standardised uptake values (SUV) 
were measured in the hotspot, mirror region and frontal 

cortex. In postoperative patients (n = 8), SUV values were 
additionally obtained adjacent to the metal implant and 
mirror region.

Subjects
We evaluated 18 lesions from 14 consecutive patients (6 
male, 8 female, median age 43 years, range 29–73) who 
had acquired MET PET/CT (not analysed further in this 
article) and 3  T PET/MRI (GE Healthcare, Waukesha, 
WI) at Karolinska University Hospital from January to 
June 2019. Inclusion criteria were 11C-MET PET/MRI 
acquisition, availability of atlas-AC map, proton density 
weighted ZTE–AC map and CT-based AC map as refer-
ence standard and suspected or confirmed brain tumour. 
The study was approved by the Swedish Ethical Review 
Authority (2019–01309), through which informed con-
sent was waived.

Data acquisition and image reconstruction
Acquisition of PET/MRI
First, a MET PET/CT was acquired per clinical proto-
col 15  min after injection of 4  mBq/kg (max 400  mBq) 
11C-methionine (MET), with an acquisition time of 
15 min. A low dose CT (7.5 mAs 120 kVp) was acquired 
for both clinical PET/CT AC and PET/MRI CT-AC. 
After the standard PET/CT exam, subjects were moved 
to the PET/MRI facility, located in an adjacent building, 
and scanned in a GE Signa 3 T PET/MRI scanner using a 
24-channel head-neck unit coil (GE Healthcare, Wauke-
sha, WI). The average time from MET injection to PET 
acquisition at the PET/MRI scanner was 59 min (41–81), 
depending on the mobility of the subject. The mean dura-
tion of the MET-PET exam at the PET/MRI was 17.1 min 
(range 16–30 min). The MRI acquisition included the fol-
lowing scan protocol for AC: a 3D Liver Acquisition with 
Volume Acceleration-flexible (LAVA Flex) T1-weighted 
(GE Healthcare, Waukesha, WI) and a ZTE sequence 
were acquired. The LAVA Flex sequence was acquired 
for 14  s with 1 Number of excitations (NEX), 500  mm 
field of view (FOV), a 256 × 256 matrix and a 5.2  mm 
slice thickness and was used to generate water, fat and 
in- and out of phase echoes. ZTE sequence acquisition 
time was 42  s with 4 NEX, 264  mm FOV, a 110 × 110 
matrix and 2.4 mm slice thickness. The clinical MRI pro-
tocol included T1, T2, T2*, postcontrast T1, DWI, ADC 
and Fractional Anisotropy for all the patients. Additional 
perfusion (ID 5–16) and spectroscopy (ID 10, 12, 14–18) 
sequences were also acquired.

Attenuation correction maps
For each subject, two different MR-based AC maps 
(ZTE–AC and atlas-AC) were generated and used 
for PET reconstruction and SUV calculation. For 
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comparison, CT-AC was used as a reference standard 
method for PET AC.

ZTE based attenuation correction map
Following the method described in Wiesinger et al. [24] 
and using the MATLAB (version R2018b; The Math-
Works) PET toolbox, a ZTE-based AC map was gener-
ated using:

•	 Histogram-based bias correction and normalization
•	 Tissue classification using a simple thresholding 

technique for soft tissue/bone and bone/air
•	 Attenuating for bone (300–2000 HU) with a linear 

correlation between CT and ZTE MRI values
•	 Classification of soft tissue fixed at 42 HU

Atlas‑based attenuation correction map
Following the method described in Wollenweber et  al. 
[25], an atlas-based AC map was generated using:

•	 Enhancement of bone in the 3D FSPGR T1-weighted 
images using a Hessian filter

•	 Rigid and non-rigid registration of bone-enhanced 
MRI to the CT skull atlas (provided by the manufac-
turer), creating a pseudo-CT

•	 Transformation of the pseudo-CT to an AC map for 
511  keV photons through standard energy conver-
sion and resampling

•	 Head coil and bed added to the AC map using a tem-
plate

CT‑based attenuation correction map
Following the method described in Burger et al. [26], CT-
based AC map was generated using:

•	 Rigid registration between the low dose head CT (7.5 
mAs 120 kVp) and ZTE MR images using FMRIB’s 

Linear Image Registration (FLIRT) Tool Software 
Library v6.0, Oxford, UK. and in-house created 
MATLAB script

•	 CT transformation following the same procedure as 
in the atlas-AC map

For each AC map, PET images were reconstructed 
using the GE PET toolbox (version MP26, GE Healthcare, 
Waukesha, WI) using TOF ordered subsets expectation 
maximization (OSEM) with three iterations, 16 subsets, 
and a 128 × 128 reconstruction matrix with a 256  mm 
FOV. A 3  mm Gaussian post-filter was applied to the 
reconstructed images.

ROI analysis
After MET PET/MRI acquisition, one of the authors 
(FDL) analysed the PET images using AW Server Vol-
ume Viewer 3D Viewer PET (GE Healthcare, Waukesha, 
WI). The analysis was blinded to the neuropathological 
diagnosis and clinical information. Results were ana-
lysed for the overall group and two subgroups (non-metal 
and metal), including pre- and postoperative patients 
respectively with suspected or confirmed brain tumour. 
Standardised uptake value (SUV) maps were calculated, 
normalized to body weight. A 27.4 mm2 elliptical region 
of interest (ROI) was delineated to include the PET hot-
spot with the help of gadolinium-enhanced T1weighted 
images from the PET/MRI or the prior MRI (Fig. 1a–d). 
For standardised uptake ratio (SUR) analysis, two differ-
ent background regions were delineated:

•	 Elliptic ROI (27.4 mm2) in the hotspot mirror region
•	 Free-hand 2D ROI in the contralateral frontal cortex 

at the level of the basal ganglia

In the postoperative patients, all presenting with metal 
implants, SUV values were additionally obtained in the 
parenchyma tangential to the longitudinal axis of the 
adjacent metal implant and mirror region (Fig.  2a–d). 

Fig. 1   Hotspot analysis. MET PET/MRI T1-weighted contrast for a representative brain tumour patient with metal implants (a). SUV hotspot and SUV 
mirror in CT-AC (b), atlas-AC (c) and ZTE–AC (d), demonstrating differences between the three AC methods
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In subjects with multiple surgical implants, the metal 
implant closest to the postoperative cavity and/or lesion 
was selected. SUR values – maxSURhotspot/mirror and 
maxSURhotspot/cortex; meanSURhotspot/mirror and 
meanSURhotspot/cortex; maxSURmetal/mirror and 
meanSURmetal/mirror—were calculated.

Statistical analysis
SUR values were analysed with the Bland–Altman (mean 
bias, SD, 95% CI), the Pearson correlation test (p < 0.05) 
and intraclass correlation reliability (ICC > 0.99) for abso-
lute agreement.

Bland–Altman and Pearson correlation tests were per-
formed using GraphPad Prism 8.4.3 (GraphPad Software, 
San Diego, California). Intraclass correlation reliability 
was performed using Statistical Package for Social Sci-
ences (SPSS, IBM Corp. Released 2019. Version 26.0. 
Armonk, NY: IBM Corp.).

Mean bias was calculated as follows [27]:

Outlier analysis was performed using Robust regres-
sion and Outlier removal (ROUT) test [28].

Results
Fourteen patients with 18 lesions were included in the 
study. Seventeen lesions had a hotspot at PET/MRI 
and the diagnoses included 6 gliomas (WHO grade 
IV, n = 1; grade III, n = 3; grade II, n = 2), 9 metasta-
ses (melanoma, n = 3; breast, n = 4; kidney, n = 1; lung, 
n = 1) per WHO classification (2, 3) and two suspected 
brain tumours (two suspected low grade astrocyto-
mas). The non-metal subgroup included 10 preopera-
tive lesions. Seven out of seventeen lesions occurred 
in postoperative patients with metal implant. In the 
metal analysis (n = 8), one additional postoperative 

Bias%(100 ∗

(

ZTE/ATLAS − CT

CT

)

)

patient with astrocytoma WHO grade II without a hot-
spot on PET/MRI was included [29, 30]. The majority 
of the metal implants involved CranioFix titanium cra-
niotomy clamps (B. Braun Medical, Melsungen, Ger-
many) or Low-profile titanium plates or screws (DePuy 
Synthes, Warsaw, Indiana, United States). The major-
ity of the lesions (n = 16) were treated using currently 
available treatment options in neuro-oncology and/or: 
surgery, chemotherapy, gamma knife radiosurgery or 
radiotherapy. Table 1.

Hotspot analysis
ZTE–AC demonstrated narrower SD and 95% CI than 
Atlas-AC in the hotspot analysis for all groups (ZTE 
overall ≤ 2.84, − 1.41 to 1.70; metal ≤ 1.67, − 3.00 
to 2.20; non-metal ≤ 3.04, − 0.96 to 3.38; Atlas over-
all ≤ 4.56, − 1.05 to 3.83; metal ≤ 3.87, − 3.81 to 4.64; 
non-metal ≤ 4.90, − 1.68 to 5.86). Mean bias was 
within 2.4% for both ZTE–AC and atlas-AC com-
pared to CT-AC. In the subgroup of patients with 
metal implants, atlas-AC demonstrated a narrower 
mean bias range—closer to zero—in three out of four 
analyses (atlas − 0.23 to 1.63, ZTE − 1.80 to 0.66). 
Results for the analysis of maxSURhotspot/cortex and 
maxSURhotspot/mirror are presented in Fig.  3a–f. A 
perfect correlation was found for both ZTE–AC and 
atlas-AC compared to CT-AC in the hotspot analysis 
(ZTE ρ 1.00, p < 0.0001; atlas ρ 1.00, p < 0.0001). Higher 
absolute values of correlation were found when the mir-
ror region was chosen as background. The ROUT outli-
ers test was performed and no outliers were identified 
for the analyses. Intraclass correlation reliability using 
absolute agreement between Atlas-, ZTE and CT maps 
for maxSUR and meanSUR values (hotspot/cortex; 
hotspot/mirror) was conducted and showed an almost 
perfect intraclass correlation coefficient (ICC > 0.99) 
in all the analyses. Detailed results for Bland–Altman, 

Fig. 2   Metal analysis. MET PET/MRI T1-weighted contrast for a representative brain tumour patient with metal implants (a). SUV adjacent to the 
metal and mirror region in CT-AC (b), atlas-AC (c) and ZTE–AC (d), demonstrating differences between the three AC methods
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Pearson correlation and intraclass correlation reliabil-
ity can be found in Additional file 1: Table S1, S3, Fig. 
S1–S3.

Metal analysis
In the metal region analysis, ZTE–AC demonstrated a 
narrower mean bias range—closer to zero—SD and 95% 
CI (ZTE 0.21–0.48, ≤ 2.50, − 1.70 to 2.57; Atlas 0.56–
1.54, ≤ 4.01, − 1.81 to 4.89) (Fig.  4a, b). Both ZTE–AC 
and atlas-AC showed a perfect correlation compared to 
CT-AC (ZTE ρ 1.00, p < 0.0001; atlas ρ 1.00, p < 0.0001). 
ROUT outliers test was performed and no outliers were 
identified for the analysis. Intraclass correlation reliabil-
ity using absolute agreement between Atlas-, ZTE and 

CT maps for maxSUR and meanSUR values (metal/mir-
ror) was conducted and showed an almost perfect intra-
class correlation coefficient (ICC > 0.99) in both analyses. 
Detailed results for Bland–Altman, Pearson correlation 
and intraclass correlation reliability can be found in 
Additional file  1: Table  S2–S3, Fig. S4. Representative 
PET/CT images of CT-AC, PET and fused PET/CT are 
shown in Additional file 1: Fig. S5.

Discussion
In the present study, both ZTE–AC and atlas-AC showed 
a good performance against CT-AC.

Recently, Schramm and Ladefoged described the cur-
rent state of the art in metal artefact correction strategies 

Table 1  Baseline demographic and patients’ characteristics

BC breast cancer; C chemotherapy, GB glioblastoma, GNR gamma knife radiosurgery, R radiotherapy, OD oligodendroglioma, WHO World Health Organization

Characteristics of patients with 11C-MET PET/MRI
Patients n = 14
11C-MET PET/MRI scans n = 15
Lesions n = 18

Neuropathological 
confirmation (Yes/
No)

Pathological 
diagnosis

Metal 
implant and analysis 
(Yes/No)

Treatment (a/o 
C, GNR, R, S) 
(Yes/No)

Hotspot 
analysis 
overall group 
(Yes/No)

Hotspot 
analysis metal 
subgroup 
(Yes/No)

Hotspot analysis 
non-metal 
subgroup (Yes/
No)

ID1 Yes Melanoma 
metastasis

No Yes Yes No Yes

ID2 Yes Astrocytoma 
WHO II

Yes Yes Yes Yes No

ID3 Yes Anaplastic 
Astrocytoma 
WHO III

Yes Yes Yes Yes No

ID4 Yes Lung cancer 
metastasis

No Yes Yes No Yes

ID5 Yes Melanoma 
metastasis

Yes Yes Yes Yes No

ID6 Yes BC metastasis No Yes Yes No Yes

ID7 Yes BC metastasis No Yes Yes No Yes

ID8 Yes BC metastasis No Yes Yes No Yes

ID9 Yes BC metastasis No Yes Yes No Yes

ID10 Yes Kidney cancer 
metastasis

No Yes Yes No Yes

ID11 Yes OD WHO II-III No Yes Yes No Yes

ID12 No – No No Yes No Yes

ID13 Yes GBM WHO IV Yes Yes Yes Yes No

ID14 Yes Astrocytoma 
WHO II

Yes Yes No No No

ID15 Yes OD WHO II Yes Yes Yes Yes No

ID16 
(same as 
in ID5)

Yes Melanoma 
metastasis

Yes Yes Yes Yes No

ID17 No – No No Yes No Yes

ID18 Yes Astrocytoma 
WHO II-III

Yes Yes Yes Yes No



Page 6 of 9De Luca et al. BMC Med Imaging          (2020) 20:126 

for PET/MRI [31]. Several studies have investigated AC 
methods in the presence of dental implants [32–35], 
whereas only one has focused on MR-AC in postop-
erative patients with brain tumour and surgical metal 
implants [11].

Previous studies in the field investigated ZTE–AC and 
atlas-AC compared to gold standard 68GE transmission 
scan and reference standard CT-AC [10, 22, 36]. Those 
studies demonstrated a better performance of ZTE–AC 
when compared to the reference standard used in the 
study.

In the present study, no consistent superiority between 
the ZTE–AC and atlas-AC was found for brain PET/MRI 
AC in the hotspot region and postoperative site.  Both 
methods presented mean bias within ± 5% across the 
regions, as previously described in a multi-centre study 
for MR-AC in brain PET/MRI [37]. Our findings are in 
line with a previous work comparing ZTE–AC and atlas-
AC using brain 15O-labeled water (H2

15O) PET/MRI [38]. 
The study showed no significant differences between AC 
for the regional values for cerebral blood flow. Notably, 
while the measurement of tracer uptake using H2

15O 
PET/MRI is affected by small variations of cerebral blood 
flow, semi-quantitative measurement using MET PET 
may be robust enough to achieve clinical objectives. Part 
of the design of the present work differs from previously 
published studies regarding the selection of reference 
method [10], patient selection [36–39] and lack of metal 
implants [10, 22, 36, 38, 39].

Fig. 3   Bland Altman for SURhotspot/cortex and SURhotspot/
mirror analysis. Mean bias for maxSURhotspot/cortex (left) and 
maxSURhotspot/mirror (right) respectively in the overall (a, b), metal 
(c, d) and non-metal (e, f) subgroup. ZTE–AC and atlas-AC compared 
to reference standard CT-AC. Bars and whiskers are mean ± SD. 
Despite atlas-AC showed narrower mean bias range -closer to zero- in 
the metal subgroup, ZTE–AC presented narrower SD and 95% CI for 
all the three groups, metal subgroup included. No notable difference 
in AC compared to CT-AC was found for both methods

Fig. 4   Bland Altman for SURmetal/mirror analysis. Mean bias 
for maxSURmetal/mirror (a) and meanSURmetal/mirror (b) in 
postoperative patients presenting with metal implants. ZTE–AC and 
atlas-AC compared to reference standard CT-AC. Bars and whiskers 
are mean ± SD
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In the present work, a 2D elliptical ROI was used for 
measurement of SUR values. Notably, previous works 
have used a volume of interest (VOI) for delineation 
[36]. Takano et  al. [40] recently described the value of 
both 2D and 3D ROI in PET analyses showing a better 
performance for 2D ROIs in FDG PET, apparent diffu-
sion coefficient (ADC) map, FA (fractional anisotropy), 
and a comparable p value for 2D ROIs and 3D ROIs (p 
value = 0.0056; p value = 0.0050, respectively) in MET 
PET. Based on these results, and for practical clinical 
usefulness in the radiological work-flow, a 2D ROI was 
chosen.

A limitation of this study is attributed to the relatively 
small number of patients included. This is explained by 
the high cost, limited use of PET/MRI, and the lack of 
universal validation in neuro-oncology [41].

Although the timing of PET/MRI was not standard-
ised, the comparison between the AC methods might 
not be affected by the average post-injection time, since 
the acquisition for all the three AC maps was simultane-
ous. The aim of this study was not to render a diagnosis 
based on SUV values, which depend on acquisition tim-
ing, noise, tracers and tissue composition [42–44]. The 
evaluation of ZTE- and atlas-AC compared to CT-AC 
was performed on a patient-by-patient basis using SUV/
SUR values, as previously reported in literature [11]. Fur-
ther investigation will be necessary to explore the impact 
of the intrinsic differences between the AC maps on the 
accuracy of each AC-method compared to the reference 
gold standard, and to assess the severity of artefacts on 
MR-AC based on the size and appearance of the metal 
implant.

This is a single-centre, retrospective study. Future 
multi-centre prospective studies with larger cohorts, 
analysis of MRI biomarkers, single pathology brain 
tumours at the same treatment stage after diagnosis and 
analysis of MRI biomarkers will be needed to confirm our 
preliminary results. The study was performed using a sin-
gle-reader assessment. Multi-reader assessment can  be 
used in the upcoming study for ROI delineation, SUR 
analyses and inter-reader reliability. The study included 
all available patients from one institution during a spe-
cific time. Due to the retrospective nature of the study, no 
pre-study calculation of power was performed.

Conclusions
This study retrospectively evaluated 14 pre- and post-
operative patients with suspected or confirmed brain 
tumour. Good performance of ZTE–AC and atlas-AC 
compared to reference standard CT-AC was found for all 
analyses. Our results indicate that both ZTE and atlas are 
feasible MET PET/MRI AC methods.
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Additional file 1: PDF file containing Supplementary material. Table S1. 
Hotspot analysis. Correlation and agreement for hotspot analysis in the 
overall group, metal and non-metal subgroups. As background, contralat-
eral frontal cortex and mirror ROI were respectively assessed. ZTE/Atlas-AC 
compared to reference gold standard CT-AC. Table S2. Metal analysis. Cor-
relation and agreement for parenchyma analysis in the metal subgroup. 
As background, contralateral mirror parenchyma ROI was assessed. ZTE/
Atlas-AC compared to reference gold standard CT-AC. Table S3. Intraclass 
correlation reliability. Intraclass correlation reliability for absolute agree-
ment in hotspot and metal analysis. Comparison among ZTE, Atlas and CT 
for SUR values. Fig. S1. Pearson correlation for hotspot analysis in the over-
all group. Correlation analysis for hotspot analysis in the overall group. As 
background, contralateral frontal cortex and mirror for maxSUR (a,b) and 
meanSUR (c,d) ROI were respectively assessed. ZTE/Atlas-AC compared 
to reference gold standard CT-AC. Fig. S2. Pearson correlation for hotspot 
analysis in the metal subgroup. Correlation analysis for hotspot analysis 
in the metal subgroup. As background, contralateral frontal cortex and 
mirror for maxSUR (a,b) and meanSUR (c,d) ROI were respectively assessed. 
ZTE/Atlas-AC compared to reference gold standard CT-AC. Fig. S3. Pearson 
correlation for hotspot analysis in the non-metal subgroup. Correlation 
analysis for hotspot analysis in the non-metal subgroup. As background, 
contralateral frontal cortex and mirror for maxSUR (a,b) and meanSUR 
(c,d) ROI were respectively assessed. ZTE/Atlas-AC compared to reference 
gold standard CT-AC. Fig. S4. Pearson correlation for metal analysis. Cor-
relation for parenchyma analysis in the metal subgroup. As background, 
contralateral mirror parenchyma for maxSUR (a) and meanSUR (b) ROI was 
assessed. ZTE/Atlas-AC compared to reference gold standard CT-AC. Fig. 
S5. PET/CT images. Representative PET/CT images of CT-AC, PET and fused 
PET/CT are shown for a postoperative patient with metal implants.
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