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A model based on CT radiomic features 
for predicting RT‑PCR becoming negative 
in coronavirus disease 2019 (COVID‑19) patients
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Abstract 

Background:  Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic. According to the diagnosis 
and treatment guidelines of China, negative reverse transcription-polymerase chain reaction (RT-PCR) is the key crite‑
rion for discharging COVID-19 patients. However, repeated RT-PCR tests lead to medical waste and prolonged hospital 
stays for COVID-19 patients during the recovery period. Our purpose is to assess a model based on chest computed 
tomography (CT) radiomic features and clinical characteristics to predict RT-PCR negativity during clinical treatment.

Methods:  From February 10 to March 10, 2020, 203 mild COVID-19 patients in Fangcang Shelter Hospital were retro‑
spectively included (training: n = 141; testing: n = 62), and clinical characteristics were collected. Lung abnormalities 
on chest CT images were segmented with a deep learning algorithm. CT quantitative features and radiomic features 
were automatically extracted. Clinical characteristics and CT quantitative features were compared between RT-PCR-
negative and RT-PCR-positive groups. Univariate logistic regression and Spearman correlation analyses identified the 
strongest features associated with RT-PCR negativity, and a multivariate logistic regression model was established. The 
diagnostic performance was evaluated for both cohorts.

Results:  The RT-PCR-negative group had a longer time interval from symptom onset to CT exams than the RT-PCR-
positive group (median 23 vs. 16 days, p < 0.001). There was no significant difference in the other clinical characteris‑
tics or CT quantitative features. In addition to the time interval from symptom onset to CT exams, nine CT radiomic 
features were selected for the model. ROC curve analysis revealed AUCs of 0.811 and 0.812 for differentiating the 
RT-PCR-negative group, with sensitivity/specificity of 0.765/0.625 and 0.784/0.600 in the training and testing datasets, 
respectively.

Conclusion:  The model combining CT radiomic features and clinical data helped predict RT-PCR negativity during 
clinical treatment, indicating the proper time for RT-PCR retesting.
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Background
Coronavirus disease 2019 (COVID-19) is a major threat 
to the health of people worldwide. According to the diag-
nosis and treatment guidelines proposed by the National 
Health Committee of the People’s Republic of China 
(7th Edition) [1], negative reverse transcription-poly-
merase chain reaction (RT-PCR) is the key criterion for 
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discharging COVID-19 patients. The clinical prediction 
of RT-PCR becoming negative is critical for the proper 
retesting time, preventing medical waste from repeated 
RT-PCR tests and unnecessary prolonged hospital stays. 
Doctors need an objective and accurate method for pre-
diction of RT-PCR negativity during clinical treatment.

Chest computed tomography (CT) can intuitively 
demonstrate the lung lesions and its manifestations of 
COVID-19 pneumonia have been reported in many 
studies [2–4]. Chest CT exams are useful in supplemen-
tary diagnosis of RT-PCR tests [5–7], evaluating disease 
stages [2, 3, 8, 9] and severity [10–12]. Recently, deep 
learning techniques have been widely used in the detec-
tion and segmentation of COVID-19 lesions in chest 
CT images [13–16]. Based on a reliable segmentation 
method, the high-throughput and high-dimensional radi-
omic features on chest CT showed strong potential for 
predicting the true status of RT-PCR.

We hypothesized that a model incorporating CT radi-
omic features and clinical characteristics can predict 
RT-PCR becoming negative. We collected the clinical 
data and chest CT features of mild COVID-19 patients 
in Fangcang Shelter Hospital in Wuhan, Hubei, aiming to 
establish a predictive model for RT-PCR becoming nega-
tive during the recovery period.

Patients and methods
The study was approved by the institutional review board 
of the First Affiliated Hospital of China Medical Univer-
sity. Informed consent was waived due to the nature of 
the retrospective study.

Patients
Between February 10, 2020, and March 10, 2020, the clin-
ical data and CT images of COVID-19 patients at Fang-
cang Shelter Hospital in Hongshan Gymnasium, Wuhan, 
Hubei, were reviewed retrospectively. All cases were mild 
from the onset and during the course of hospitalization, 
as defined by no hypoxemia or respiratory distress (res-
piratory rate ≥ 30 breaths/min, requirement for oxygen 
treatment or mechanical ventilation, or SpO2 ≤ 93% on 
room air) [1]. Patients were included if they met the fol-
lowing criteria: (1) No abnormal clinical symptoms (fever 
and severe respiratory symptoms) for more than 3 days. 
(2) Underwent RT-PCR tests at least 3 times after abnor-
mal clinical symptoms disappeared. (3) The first RT-PCR 
tests were performed between 3 and 5 days after abnor-
mal clinical symptoms disappeared. (4) Underwent chest 
CT exams within 2  days after the first RT-PCR test. 
Patients with inconsistent results in the first two con-
secutive RT-PCR tests were excluded (Fig. 1a, b). Novel 
coronavirus 2019-nCoV nucleic acid detection kit (fluo-
rescence PCR method) (Sansure Biological Technology 
Co., Ltd., Changsha, China, Serial Number: 20150036) 
was used for RT-PCR tests.

The enrolled patients were divided into two groups: 
RT-PCR-negative and RT-PCR-positive groups (Fig.  1a, 
b). Inclusion criteria for the RT-PCR-negative group 
were: (1) All RT-PCR tests were negative; (2) No wors-
ening clinical symptoms during hospitalization and the 
2-week isolation after discharge. Inclusion criteria for the 
RT-PCR-positive group: the first two RT-PCR tests were 
positive.

Fig. 1  The operating mode diagram of Fangcang Shelter Hospital in our study (a); the flow diagram summarizing the selection of the enrolled 
patients (b). N negative, P positive
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Clinical characteristics
We collected 20 available clinical characteristics, includ-
ing general characteristics (age, gender, time interval 
from symptoms onset to CT exams), comorbidities, vital 
signs on the CT scan day and laboratory tests on admis-
sion. Comorbidities included diabetes, hypertension, 
cardiovascular disease, chronic obstructive pulmonary 
disease, chronic liver disease and cancer. Vital signs on 
the CT scan day included heart rate, systolic blood pres-
sure, diastolic blood pressure, respiratory rate, and blood 
oxygen saturation. Laboratory tests include white blood 
cell count, neutrophil count, lymphocyte count, plate-
let count, hemoglobin and neutrophil/lymphocyte ratio 
(NLR) (NLR = neutrophil counts/lymphocyte counts).

CT protocol
The first RT-PCR tests for all enrolled patients were 
performed between 3 and 5  days after abnormal clini-
cal symptoms disappeared. Then, all patients under-
went CT exams within 2 days after the first RT-PCR test. 
Chest CT scanning used a mobile cabin CT (CT-NeuVz 
Prime, Neusoft) with a single breath-hold in the supine 
position. The scan parameters are as follows: tube volt-
age of 120  kVp, tube current of 100–200  mA, detector 
collimation of 64 or 128 × 0.625  mm, field of view of 
350 mm × 350 mm, and matrix size of 512 × 512. Imaging 
data were reconstructed using a medium sharp recon-
struction algorithm with a slice thickness of 5 mm and an 
interval of 1 mm.

Image segmentation and feature extraction
CT image analysis was performed on a dedicated work-
station—Lung intelligence Kit (LK) Version V2.1.1. R (GE 
Healthcare, China). The main processes included data 
import and preprocessing, lung lobe segmentation, lesion 
segmentation and feature extraction (Fig. 2). Lung lobes 
were segmented with the purpose of improving the accu-
racy of lesion segmentation and calculating the propor-
tion of lesions in each lung lobe.

Lobe and lesion segmentation
Before lung lobe and lesion segmentation, the images 
were resampled to voxel size 1 × 1 × 1 mm3, and a Gauss-
ian filter was applied for denoising. Then, a fully auto-
matic segmentation of three-dimensional lung lobes 
and lesions based on deep learning algorithms was per-
formed. In cases of unsatisfactory lung lobe and lesion 
segmentation, two thoracic radiologists (with 5 and 
15 years of experience, respectively) blinded to the clini-
cal information and RT-PCR results manually adjusted 
the contour and resolved discrepancies by consensus.

Quantitative feature extraction
After segmentation, 86 CT quantitative parameters were 
automatically calculated: the statistical results of lung 
lobe and lesion (volume, volume percentage, pneumo-
nia score, average density, standard deviation of density) 
and the component analysis of the lesion (partial solidity, 
solidity and total lesions) (Additional file 1: Supplemen-
tary Data 1).

Fig. 2  The process of model establishment
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Radiomic feature extraction
After segmentation, 120 radiomic features of 7 catego-
ries were automatically calculated: (1) first-order fea-
tures (n = 19); (2) 2D and 3D shape features (n = 26); (3) 
gray level cooccurrence matrix features (n = 24); (4) gray 
level run length matrix features (n = 16); (5) gray level 
size zone matrix features (n = 16); (6) neighboring gray 
tone difference matrix features (n = 5); and (7) gray level 
dependence matrix features (n = 14). Detailed names and 
definitions of all 120 features can be found in Additional 
file 1: Supplementary Data 2.

Feature selection
Missing values were replaced by the median, and the data 
were standardized by the following formula: standardized 
value = (original value-average value)/standard deviation.

The patients were randomly assigned at a 7:3 ratio 
to either the training cohort or the testing cohort. All 
patients in the training cohort were used to build the pre-
dictive model, while patients in the testing cohort were 
used to independently evaluate the model’s performance. 
To obtain the strongest features that were significantly 
associated with negative RT-PCR results in the train-
ing cohort, we performed univariate logistic regression 
analysis, and features with a p value < 0.10 were used for 
subsequent analysis. Then, Spearman correlation analysis 
was used to remove the features highly correlated with 
others; here, the |r| value was 0.9.

Model establishment and evaluation
We constructed a multivariate logistic regression model 
to identify a strategy to best classify RT-PCR-negative 
patients in the training dataset. Radiomics scores (Rad-
scores) were calculated in each patient through a linear 
combination of the extracted features with their respec-
tive coefficients. The predictive performance was evalu-
ated in terms of discrimination-receiver operating 
characteristic (ROC) curve, calibration-calibration curve 
and clinical application-decision curve.

Statistical analysis
Categorical variables are presented as the number 
and percentage of the total. The normality of continu-
ous variables was evaluated by using the Shapiro–Wilk 
test. Normally distributed variables are shown as the 
mean ± standard deviation or the median (25% percen-
tile, 75% percentile). The differences in variables between 
different subgroups were assessed by the t test or Mann–
Whitney U test as appropriate. The chi-squared test 
was used to compare the significance of the differences 
between categorical variables. All statistical analyses 
for the present study were performed with R 3.5.1 and 

Python 3.5.6. A two-tailed p value < 0.05 indicated statis-
tical significance.

Results
Analysis of clinical and CT quantitative features
The flow diagram summarizing the selection of the 
enrolled patients is shown in Fig.  1b. For 203 patients 
included in our study, the average number of RT-PCR 
tests was 6 ± 3, ranging from 3 to 12 during hospitaliza-
tion. 122/203 (60.1%) were categorized in the RT-PCR-
negative group, and 81 (39.9%) were categorized in the 
RT-PCR-positive group. Figure  3 shows CT images for 
cases in the RT-PCR-negative and RT-PCR-positive 
groups. Clinical information of the training and the test-
ing cohort is shown in Table  1. The RT-PCR-negative 
group had a longer time interval from symptom onset to 
CT exams than the RT-PCR-positive group (median 23 
vs. 16 days for the total patients, p < 0.001). There was no 
significant difference in the other clinical characteristics. 
The CT quantitative features are summarized in Addi-
tional file 1: Supplementary Data 1, and none of them dif-
fered between the two groups.

Feature selection
A total of 226 characteristics from each patient were col-
lected: 20 clinical characteristics, 86 quantitative features 
and 120 radiomic features. After the univariate logistic 
regression analysis was performed, 20/226 parameters 
were reserved. Then, 10 features that were highly cor-
related (|r|> 0.9) with other features were removed due 
to their redundancy based on the Spearman correlation 
analysis. Ultimately, 10/20 parameters (Table  2) were 
retained to build the model.

Model establishment and evaluation
The statistical summary of the multivariate logistic 
regression model is shown in Table 2. The time interval 
from symptom onset to CT exams and original_first-
order_Minimun had the highest odds ratio (OR) values 
(OR = 2.84 and 2.10, respectively) among all parameters. 
Figure 4 shows Rad-score for each patient in the training 
and testing datasets. ROC curves of the model (Fig.  5) 
showed an area under the curve (AUC) of 0.811 with a 
sensitivity of 76.5%, specificity of 62.5% and accuracy of 
70.9% in the training dataset and 0.812 with a sensitiv-
ity of 78.4%, specificity of 60.0% and accuracy of 71.0% 
in the testing dataset. The calibration curve of Rad-scores 
for the differentiation of the RT-PCR-negative group 
demonstrated the good consistency between predic-
tion and observation in the training and testing cohorts 
(Fig.  6). The decision curve analysis showed that the 
model had a significantly improved performance within 
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a certain threshold range in the training and testing data-
sets (Fig. 7).

Discussion
We demonstrated the usefulness of CT radiomic fea-
tures for predicting RT-PCR negativity and established 
a predictive model based on CT radiomic features com-
bined with clinical data in COVID-19 patients during the 
recovery period. With AUCs of 0.811 and 0.812 for the 
training and testing datasets, respectively, we expect the 
model to help doctors effectively predict RT-PCR nega-
tivity during clinical treatment.

The unsatisfactory sensitivity of RT-PCR detection is a 
major concern [5, 6, 17, 18]. To avoid the possibility of 
false negative RT-PCR in our study, we included patients 
with repeated RT-PCR tests (average times: 6; range 
3–12) during hospitalization. Only the patients with 
consistent results of the consecutive RT-PCR tests were 
included to ensure true negative or positive RT-PCR sta-
tus for the corresponding CT. A 2-week isolation after 
discharge was further performed to avoid any possibility 
of false negative RT-PCR.

Accurate lesion segmentation is the key to feature 
extraction and model construction. Colombi et al.’s study 
[19] divided lung parenchyma into upper, middle and 
lower zones in severe COVID-19 patients. They found 

quantification of well aerated lung parenchyma were pre-
dictors of adverse outcome. In the present study, we used 
the automatic pneumonia segmentation software based 
on a deep learning algorithm. It detected the respiratory 
tract and lung lesions based on the actual segmentation 
of the lung lobes, so more comprehensive and compli-
cated quantitative parameters and radiomic features were 
evaluated for model construction. Recently, the deep 
learning algorithm has been widely used in the detection 
of COVID-19 lesions in chest CT images [13–16]. Most 
studies [13–15] applied it to chest CT images in the early 
stage of the disease course for diagnosis and differential 
diagnosis, while there are few studies regarding chest 
CT images of COVID-19 patients during the recovery 
period. We analyzed chest CT images after the abnormal 
clinical symptoms disappeared, and proposed a combina-
tion model of radiomic features and clinical data to pre-
dict RT-PCR negativity.

Radiomic features played important roles in the 
model. Among the 10 parameters in the model, 9 of 
them were CT radiomic features. The top five radi-
omic features are original_firstorder_Minimum, origi-
nal_gldm_Small Dependence Low Gray Level Emphasis, 
original_glszm_Large Area High Gray Level Emphasis, 
original_firstorder_10Percentile, and original_shape_
Sphericity (Table  2). These indicators represent lesion 

Fig. 3  CT images for cases in the RT-PCR-negative and RT-PCR-positive groups. The CT exams were performed on the 31st, 23rd, 24th and 22nd 
days from symptom onset for case 1–4, respectively. The two groups have a great overlap in original CT images and are difficult to be distinguished 
by eyes. After deep learning-based lobe and lesion segmentation, the radiomic feature maps of the lesion are calculated. For example, we can 
observe that original_firstorder_Minimum of the RT-PCR-negative group seems higher than the RT-PCR-positive group
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Table 1  Clinical characteristics of the RT-PCR-negative and RT-PCR-positive groups

Bold with p value < 0.05. Categorical variables are presented as numbers (percentages). Quantitative variables are presented as the mean ± standard deviation or 
median (25% percentile, 75% percentile) according to normality test results

COPD chronic obstructive pulmonary disease, NLR neutrophil/lymphocyte ratio

Variables Total (n = 203) Training dataset (n = 141) Testing dataset (n = 62)

Negative 
(n = 122)

Positive 
(n = 81)

p Negative 
(n = 85)

Positive 
(n = 56)

p Negative 
(n = 37)

Positive 
(n = 25)

p

General characteristics

 Age (years) 52 (41, 58) 49 (39, 57) 0.325 52 (41, 61) 51 (39, 58) 0.551 52 (41, 56) 46 (38, 56) 0.315

 Gender 0.343 0.191 0.800

 Female, n (%) 70 (57.38) 41 (50.62) 49 (57.65) 26 (46.43) 21 (56.76) 15 (60.00)

 Male, n (%) 52 (42.62) 40 (49.38) 36 (42.35) 30 (53.57) 16 (43.24) 10 (40.00)

 Time interval 
from symp‑
toms onset 
to CT exams 
(days)

23 (18, 30) 16 (10, 22) < 0.001 22 (18, 30) 17 (11, 22) < 0.001 25.16 ± 8.45 15.52 ± 7.51 < 0.001

Comorbidities

 Diabetes, n (%) 9 (7.38) 1 (1.23) 0.099 7 (8.24) 1 (1.79) 0.212 2 (5.41) 0 (0.00) 0.511

 Hypertension, 
n (%)

20 (16.39) 10 (12.35) 0.426 13 (15.29) 9 (16.07) 0.901 7 (18.92) 1 (4.00) 0.183

 Cardiovascular 
disease, n (%)

1 (0.82) 1 (1.23) 1.000 1 (1.18) 1 (1.79) 1.000 0 (0.00) 0 (0.00) 1.000

 COPD, n (%) 4 (3.28) 2 (2.47) 0.929 2 (2.35) 1 (1.79) 0.713 2 (5.41) 1 (4.00) 0.726

 Chronic liver 
disease, n (%)

1 (0.82) 0 (0.00) 1.000 1 (1.18) 0 (0.00) 1.000 0 (0.00) 0 (0.00) 1.000

 Cancers, n (%) 3 (2.46) 1 (1.23) 0.921 1 (1.18) 1 (1.79) 1.000 2 (5.41) 0 (0.00) 0.511

Vital signs*

 Heart rate 
(beats/min‑
ute)

83 (76, 90) 85 (76, 90) 0.650 83 (74, 90) 85 (78, 89) 0.432 84.51 ± 10.90 83.40 ± 14.06 0.727

 Systolic blood 
pressure 
(mmHg)

127 (121, 135) 128 (120, 134) 0.637 126 (121, 133) 129 (121, 135) 0.822 129.43 ± 11.90 126.40 ± 12.53 0.339

 Diastolic blood 
pressure 
(mmHg)

78 (74, 84) 79 (74, 84) 0.621 78 (73, 84) 79 (72, 85) 0.420 79 (75, 87) 80 (76, 83) 0.841

 Respiratory 
rate (times/
minute)

19 (18, 20) 19 (18, 20) 0.430 19 (18, 20) 19 (18, 20) 0.703 19 (18, 20) 19 (19, 20) 0.393

 Blood oxygen 
saturation 
(%)

96 (96, 97) 96 (96, 98) 0.887 96 (96, 97) 96 (96, 98) 0.654 97 (96, 98) 96 (96, 97) 0.621

Laboratory indicators*

 White blood 
cell count 
(× 109/L)

5.19 (4.62, 6.27) 5.10 (4.18, 5.86) 0.194 5.16 (4.53, 6.27) 5.00 (4.11, 5.61) 0.298 5.40 (4.75, 6.23) 5.19 (4.40, 6.18) 0.478

 Neutrophil 
count 
(× 109/L)

3.13 (2.66, 3.75) 2.79 (2.34, 3.46) 0.061 3.14 (2.46, 3.73) 2.83 (2.33, 3.46) 0.166 3.11 (2.72, 3.87) 2.79 (2.31, 3.49) 0.192

 Lymphocyte 
count 
(× 109/L)

1.64 (1.33, 1.97) 1.66 (1.30, 2.01) 0.964 1.58 (1.33, 1.91) 1.60 (1.26, 2.00) 0.982 1.76 (1.43, 2.02) 1.78 (1.43, 2.06) 0.914

 Hemoglobin 
count (g/L)

127 (118, 140) 129 (118, 139) 0.576 126.89 ± 16.99 131.46 ± 15.33 0.107 131 (121, 141) 122 (115, 133) 0.092

 Platelet count 
(× 109/L)

232 (180, 279) 219 (183, 283) 0.469 226 (177, 281) 219 (172, 263) 0.565 240 (187, 277) 215 (191, 288) 0.651

 NLR 1.83 (1.49, 2.40) 1.77 (1.34, 2.16) 0.160 1.91 (1.43, 2.50) 1.79 (1.36, 2.25) 0.357 1.82 (1.57, 2.13) 1.62 (1.24, 2.02) 0.187
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internal heterogeneity of morphology, density, texture 
and distribution, thus indicating disease severity. The 
time interval from symptom onset was the only clinical 
parameter selected in the model, with the strongest cor-
relation with the RT-PCR-negative group (OR = 2.84). As 
expected, the longer the disease course, the more patients 
received negative RT-PCR.

We also analyzed the chest CT quantitative parameters, 
but none of them were included in the model. Increased 
numbers, extents, and densities of ground-glass opacities 
(GGOs) [20] and consolidations [21] represent progres-
sion in COVID-19 patients, as well as the transformation 
of consolidation from GGOs [8]. Decreased sizes, extents, 

and degrees of such lesions could indicate improvement 
[21–25]. In our study, the recovering patients who had a 
negative RT-PCR result were expected to show smaller 
lesion volumes and lower CT values, but the quantitative 
parameters were not precise enough for the changes. The 
high-throughput and high-dimensional radiomic features 
could reflect more detailed changes inside the lesions 
than the CT quantitative parameters.

No laboratory tests were included in the model. Neu-
trophils and lymphocytes are the main hematological 
indicators reflecting systematic inflammation. Lympho-
cytopenia occurred in more than 80% of critically ill 
patients [26], while in an almost mild study population, 

*Normal range: heart rate, 60–100 beats/minute; Systolic blood pressure, 90–140 mmHg; Diastolic blood pressure, 60–90 mmHg; Respiratory rate, 12–20 times/
minute; Blood oxygen saturation, 95–100%; White blood cell count, 3.50–9.50 × 109/L; Neutrophil count, 1.80–6.30 × 109/L; Lymphocyte count, 1.10–3.20 × 109/L; 
Hemoglobin count, 130–175 g/L; Platelet count, 125–350 × 109/L

Table 1  (continued)

Table 2  Statistical summary of the multivariate logistic regression model

OR odds ratio, CI confidence interval

Variables Coefficient Std. error Wald OR (95% CI)

Time interval from symptoms onset to CT exams 1.045 0.257 16.587 2.84 (1.72, 4.70)

Original_firstorder_Minimum 0.740 0.619 1.430 2.10 (0.62, 7.04)

Original_gldm_SmallDependenceLowGrayLevelEmphasis 0.187 0.297 0.397 1.21 (0.67, 2.16)

Original_glszm_LargeAreaHighGrayLevelEmphasis 0.093 0.290 0.104 1.10 (0.62, 1.94)

Original_firstorder_10Percentile 0.050 0.616 0.007 1.05 (0.31, 3.52)

Original_shape_Sphericity − 0.007 0.279 0.001 0.99 (0.57, 1.72)

Original_gldm_LargeDependenceLowGrayLevelEmphasis − 0.076 0.302 0.063 0.93 (0.51, 1.67)

Original_gldm_LargeDependenceHighGrayLevelEmphasis − 0.123 0.350 0.122 0.88 (0.45, 1.76)

Original_glrlm_ShortRunHighGrayLevelEmphasis − 0.183 0.328 0.306 0.83 (0.44, 1.59)

Original_shape_SurfaceArea − 0.570 0.309 3.402 0.57 (0.31, 1.04)

Constant 0.609

Fig. 4  Rad scores for each patient in the training and testing cohorts
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only 35% of patients had mild lymphocytopenia [27]. 
Elevated baseline neutrophils in mild cases were not 
common, and only 6.3% of non-severe patients showed 
increases in Zhang et  al.’s study [28]. Neutrophils also 
did not increase over the disease course for patients 
with mild disease and survivors [22, 29]. The patients 
included in our study were mild COVID-19 patients 
from Fangcang Shelter Hospital. Most laboratory tests 
were normal or slightly exceeded normal limits, and 
we did not find a significant difference in lymphocytes 

and neutrophils between the RT-PCR-negative and RT-
PCR-positive groups.

This study has several limitations. First, as a retro-
spective study, the study only involved mild COVID-
19 cases, so the model cannot be employed for severe 
and critical cases. For all mild COVID-19 patients in 
Fangcang Shelter Hospital, some laboratory tests such 
as erythrocyte sedimentation rate and C-reactive pro-
tein were not performed. Second, this is a single-center 
study, and multi-center data should be used for further 

Fig. 5  ROC curve in the training and testing datasets. ROC receiver operating characteristic

Fig. 6  Calibration curve in the training and testing datasets. The y-axis shows the actual result. The x-axis represents the predicted probability. The 
diagonal dotted line represents an ideal model. The blue solid line indicates the performance of the model. The closer the blue solid line is to the 
diagonal dotted line, the better the prediction is
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verification. Moreover, we only built one model type 
and lacked comparative analysis with other model 
types, including decision trees, random forests and 
support vector machines. Finally, we did not explain 
the biological interpretation of the radiomic features. 
We are fully aware of the need for further exploration 
of these conclusions in subsequent studies.

Conclusion
In conclusion, the established model based on CT radi-
omic features and clinical data could help doctors pre-
dict RT-PCR negativity during the clinical treatment, 
indicating the proper time for RT-PCR retesting.
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Fig. 7  Decision curve analysis (DCA) in the training and testing datasets. The y-axis represents the net benefit (the net benefit was calculated 
by subtracting the proportion of all false-positive patients from the true-positive patient, and the weight is the relative hazard of abandoning 
treatment versus negative patients). The red solid line indicates the model. The black solid line indicates the hypothesis that all patients were treated 
by one scheme (for example, assuming that all patients were in the RT-PCR-negative group). The black dotted line represents the hypothesis that all 
patients were treated by another scheme (for example, assuming that all patients were in the RT-PCR positive group). The model shows the added 
net benefit if the probability thresholds in the training and testing datasets are more than 0.20 and between 0.15 and 0.82, respectively
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