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Abstract

Background: Computer-aided diagnosis of skin lesions is a growing area of research, but its application to
nonmelanoma skin cancer (NMSC) is relatively under-studied. The purpose of this review is to synthesize the
research that has been conducted on automated detection of NMSC using digital images and to assess the
quality of evidence for the diagnostic accuracy of these technologies.

Methods: Eight databases (PubMed, Google Scholar, Embase, IEEE Xplore, Web of Science, SpringerLink, ScienceDirect,
and the ACM Digital Library) were searched to identify diagnostic studies of NMSC using image-based machine learning
models. Two reviewers independently screened eligible articles. The level of evidence of each study was evaluated using
a five tier rating system, and the applicability and risk of bias of each study was assessed using the Quality Assessment of
Diagnostic Accuracy Studies tool.

Results: Thirty-nine studies were reviewed. Twenty-four models were designed to detect basal cell carcinoma, two were
designed to detect squamous cell carcinoma, and thirteen were designed to detect both. All studies were conducted in
silico. The overall diagnostic accuracy of the classifiers, defined as concordance with histopathologic diagnosis, was high,
with reported accuracies ranging from 72 to 100% and areas under the receiver operating characteristic curve ranging
from 0.832 to 1. Most studies had substantial methodological limitations, but several were robustly designed and
presented a high level of evidence.

Conclusion: Most studies of image-based NMSC classifiers report performance greater than or equal to the reported
diagnostic accuracy of the average dermatologist, but relatively few studies have presented a high level of evidence.
Clinical studies are needed to assess whether these technologies can feasibly be implemented as a real-time aid for
clinical diagnosis of NMSC.

Keywords: Nonmelanoma skin cancer, Squamous cell carcinoma, Basal cell carcinoma, Artificial intelligence, Machine
learning, Computer-aided diagnosis, Image analysis

Background
Nonmelanoma skin cancer (NMSC) is by far the most
common malignancy in humans, with an estimated
3,300,000 annual cases in the United States alone [1]. Over
95% of NMSC cases are basal cell carcinoma (BCC) and
cutaneous squamous cell carcinoma (CSCC) [2], both of
which may be readily identified through visual inspection
by a skilled dermatologist. However, multiple benign lesions

can mimic these cancers, resulting in unnecessary morbid-
ity through invasive biopsies and treatments. For example,
the SCREEN study, which included 15,983 biopsies
performed in 360,288 adults for suspected skin cancer,
found that approximately five biopsies had to be performed
to detect one malignant skin lesion of any type [3].
The use of artificial intelligence (AI) as a diagnostic

aid is a growing trend in dermatology. These systems
generally utilize some form of machine learning (ML),
which is a subset of AI involving methods that enable
machines to make predictions based on their prior data
and experiences. In contrast to conventional models that
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are explicitly programmed to handle a static set of cases,
ML models can derive their own generalizations based on
a training set and perform accurately in novel scenarios.
Automated classification of NMSC has been achieved

through a variety of modalities, such as Raman spectros-
copy, optical coherence tomography, and electrical imped-
ance [4–6]. However, the simplest modality is digital
photography, often enhanced by a dermatoscope. Given the
near ubiquitous use of digital cameras and dermatoscopes
in dermatologic practice, digital image-based ML models
have the greatest potential for clinical implementation and
are thus the focus of this review.
Previous reviews of artificial intelligence and skin cancer

have focused on melanoma [7–9]. To our knowledge, the
present study represents the first systematic review of auto-
mated detection of NMSC using digital image analysis. The
objectives of this study are to identify which digital
image-based ML models have been used to diagnose BCC
and CSCC and to assess the evidence for their diagnostic
accuracy.

Methods
The review was registered in the PROSPERO international
prospective register of systematic reviews (Record number:
CRD42017060981) and follows the guidelines of the
PRISMA Statement. The PRISMA checklist is included in
Additional file 1.

Search strategy
Articles were identified from searches of PubMed, Google
Scholar, Embase, IEEE Xplore, SpringerLink, ScienceDir-
ect, Web of Science, and the ACM Digital Library using
Boolean operators with no search restrictions. Syntactic
modifications were made to accommodate the parameters
of the databases while preserving the logic of the search
string. The following search string was used:

(Association rule OR Automat* detection OR
Classification OR Classifier OR Computer-aided OR
Computer-assisted OR Computer vision OR Cluster
OR Bayes* OR Deep learning OR Decision tree OR En-
semble OR (Feature AND (extraction OR selection))
OR Genetic algorithm OR Inductive logic OR KNN OR
K-means OR Machine learning OR Neural network OR
Pattern recognition OR Regression OR Random forest
OR Support vector) AND (Basal cell carcinoma OR
Squamous cell carcinoma) AND (Skin OR Cutaneous
OR Dermatolog*) AND (Dermatoscop* OR Dermos-
cop* OR Image OR Photograph* OR Picture)

Machine learning terms were taken from textbooks on
machine learning and represent the most commonly used
models [10, 11]. Note that the search string contained
terms to exclude studies of noncutaneous cancers.

Study selection
Two investigators extracted data, and results were
cross-validated at each step of the selection protocol.
Studies were included according to the following selec-
tion criteria: (i) classification of NMSC versus benign le-
sion, (ii) machine learning method, (iii) digital image
modality, and (iv) publication in English. Several studies
met these criteria but were excluded because they in-
volved classification of both melanoma and NMSC but
did not report NMSC-specific performance metrics. We
have reported only the NMSC-specific results in studies
that classified both melanoma and NMSC. Furthermore,
while some studies tested multiple models, we have re-
ported only the model that achieved the highest
NMSC-specific performance in each study. References
cited in the studies identified from the literature data-
bases served as an additional source of included articles.
The selection protocol has been illustrated in the
PRISMA flow diagram in Fig. 1.

Quality assessment
The overall quality of each included study was rated accord-
ing to a modified version of the Levels of Evidence from The
Rational Clinical Examination, shown in Table 1 [12]. The
original rating scheme specifies the highest level of evidence
as blinded, independent studies that compare the diagnostic
tool in question against a criterion standard in a large, con-
secutive sample of patients suspected of having the target
condition. Given that all of the included studies were con-
ducted in silico, the interpretation of this definition was
modified as follows: (i) blinding was equated to no overlap
of images between training and test sets, (ii) independence
was equated to avoiding the selective use of images contain-
ing features of interest in the test set, and (iii) test sets were
considered consecutive if they were obtained from a clinic
or set of clinics in which all lesions for which there was any
suspicion of malignancy were included. The reporting qual-
ity, risk of bias, and applicability of each study was further
assessed using the Quality Assessment of Diagnostic Accur-
acy Studies (2nd edition, QUADAS-2) tool [13].

Results
The database searches returned 8657 total results, of
which 2285 were found to be unique after
de-duplication. The titles and abstracts of the unique
studies were reviewed, and 2211 articles were deemed ir-
relevant and excluded. Manual review of the references
cited within the remaining 74 studies identified seven
additional studies of potential relevance, for a total of 81
studies, which were read in their entirety for assessment
of eligibility. Of these 81 studies, 42 were excluded due
to disqualifying methodologies or insufficient reporting
of results. Thus, a total of 39 studies were ultimately
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included in the review. The characteristics of the in-
cluded studies are shown in Table 2.
[Table 2. Overview of literature search].

Skin lesion databases
Twenty exclusively on NMSC, whereas the other 17 stud-
ies also included classification of melanoma [14–30]. The
size of NMSC test sets ranged from as few as ten lesions
[22] to as many as 710 [23]. All studies acquired their

images either directly from clinics or from publicly avail-
able datasets >composed of clinically-obtained and anno-
tated images, with the exception of nine studies that used
images of unverifiable origin from online repositories [14,
19, 21, 22, 24–26, 31, 32]. Among the studies using
clinically-obtained image sets, all NMSC images repre-
sented biopsy-proven lesions, and seven studies also used
exclusively biopsy-proven benign lesions for their com-
petitive sets [15–17, 23, 28, 30, 33].

Fig. 1 PRISMA flow diagram of study selection. Abbreviation: PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Table 1 Levels of evidencea

Level of evidence Definition

1 Independent, blinded comparison of the classifier with a biopsy-proven standard among a large number of consecutive
lesions suspected of being the target condition

2 Independent, blinded comparison of the classifier with a biopsy-proven standard among a small number of consecutive
lesions suspected of being the target condition

3 Independent, blinded comparison of the classifier with a biopsy-proven standard among non-consecutive lesions suspected
of being the target condition

4 Non-independent comparison of the classifier with a biopsy-proven standard among obvious examples of the target
condition plus benign lesions

5 Non-independent comparison of the classifier with a standard of uncertain validity
aModified from Simel and Rennie [12]
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Eight studies used test sets comprising all lesions exam-
ined in a clinic or set of clinics during a specific time frame
for which there was any suspicion of malignancy, thus

constituting a consecutive sample [15, 17, 30, 34–38]. Two
studies, while they did use a set of clinically-obtained images
spanning a broad variety of benign lesions suggestive of a

Table 3 QUADAS-2 summary

Risk of Bias Applicability Concerns

Patient Selection Index Test Reference Standard Flow and Timing Patient Selection Index Test Reference Standard

Abbas, 2016 [14] High Low High Low Low High High

Ballerini, 2012 [43] High Low Low Low Low Low Low

Chang, 2013 [15] Low Low Low Low Low Low Low

Cheng, 2011 [34] Low Low Low Low High High Low

Cheng, 2012 [36] Low Low Low Low High High Low

Cheng, 2013 [37] Low Low Low Low High High Low

Cheng, 2013 [40] Unclear Low Low Low Low Low Low

Choudhury, 2015 [24] High Low High Low High High High

Chuang, 2011 [33] High Low Low Low Low Low Low

Dorj, 2018 [25] High Low High Low Low High High

Esteva, 2017 [16] High Low Low Low Low Low Low

Ferris, 2015 [17] Low Low Low Low Low High Low

Fujisawa, 2018 [18] High Low Low Low Low High Low

Guvenc, 2013 [47] High High Low Low High High Low

Han, 2018 [23] High Low Low Low Low High Low

Immagulate, 2015 [31] High Low High Low Low High High

Kefel, 2012 [49] High Low Low Low High High Low

Kefel, 2016 [38] Low Low Low Low Low Low Low

Kharazmi, 2011 [48] High High Low Low High High Low

Kharazmi, 2016 [50] High High Low Low High High Low

Kharazmi, 2017 [51] High Low Low Low Low Low Low

Kharazmi, 2018 [52] High Low Low Low Low Low Low

Lee, 2018 [29] High Low Low Low Low High Low

Maurya, 2014 [19] High Low High Low High High High

Mishra, 2017 [39] Unclear Low Low Low Low Low Low

Møllersen, 2015 [30] Low Low Low Low Low Low Low

Shakya, 2012 [41] High High Low Low High High Low

Shimizu, 2014 [20] High Low Low Low Low High Low

Shoieb, 2016 [26] High Low High Low Low High High

Stoecker, 2009 [35] Low Low Low Low Low High Low

Sumithra, 2015 [21] High Low High Low High High High

Upadhyay, 2018 [27] High Low Low Low Low Low Low

Wahab, 2003 [32] High Low High Low Low High High

Wahba, 2017 [22] High Low High Low Low High High

Wahba, 2018 [42] High Low Low Low Low Low Low

Yap, 2018 [28] High Low Low Low Low High Low

Zhang, 2017 [44] High Low Low Low Low Low Low

Zhang, 2018 [45] High Low Low Low Low Low Low

Zhou, 2017 [46] High Low Low Low Low Low Low

Abbreviation, QUADAS-2 The Quality Assessment of Diagnostic Accuracy Studies [13]
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consecutive sample, did not explicitly report that this set
represented all lesions of suspected malignancy seen in
those clinics [39, 40]. The rest of the studies used sets of
NMSC lesions and benign mimics chosen by the experi-
menters. Among the studies using non-consecutive sets,
three used actinic keratoses (AKs) as their benign mimic
[19, 24, 25], two used seborrheic keratoses (SKs) [16, 41],
one used nevi [22], four used SKs and nevi [20, 28, 33, 42],
three used AKs, SKs, and nevi [14, 31, 43], one used AKs,
SKs, nevi, lentigines, and poromas [18], two used AKs, SKs,
nevi, dermatofibromas, and vascular lesions [27, 29], one
used AKs, SKs, nevi, dermatofibromas, lentigines, warts, and
vascular lesions [23], two used SKs, nevi, and psoriasis [44,
45], one used SKs, nevi, psoriasis, eczema, and seborrheic
dermatitis [46], one used SKs, bullae, and shingles [21], one
used eczema and impetigo [26], one used hypersensitivity
vasculitis and discoid lupus erythematosus [32], and six used
benign lesions of unspecified type [47–52]. The three studies
that qualified for review by using only AKs as their benign
class did so incidentally, as they had designed their experi-
ments as tests of classification between malignancies, in
which they counted this pre-cancerous lesion as a true can-
cer alongside melanoma, CSCC, and BCC [19, 24, 25].

Methods of feature extraction
Fourteen studies used classifiers trained to detect known
dermoscopic features of NMSC lesions. Features of inter-
est included telangiectasia and other vascular features [34,
36, 39, 40, 48, 50–52], semitranslucency [35, 38–40], pink
blush [38, 40], ulceration [40, 49], blue-grey ovoids [40,
47], dirt trails [37, 40], scale and scale-crust [41], purple
blotches [40], and pale areas [40]. Four studies also incor-
porated classification based on anatomic location of the
lesion and patient profile characteristics including age and
gender [28, 39, 40, 51]. Three of these studies also in-
cluded lesion size [39, 40, 51], two included patients’ geo-
graphic location [39, 40], one included ethnicity [40], and
one included whether the patient had noted a change
in the lesion and whether the patient was concerned
about the lesion [39]. The 25 studies that did not use
specific features instead utilized global analysis to ex-
tract color and texture features of the entire lesion
area [14–33, 42–46].
Five studies featured fully automated analysis of raw

pixel data with no preprocessing, which they accom-
plished by using a model that was pre-trained with over
1 million images [16, 18, 23, 44, 45]. Eleven studies in-
volved some amount of preprocessing but achieved au-
tomated segmentation of lesion and feature borders
[20–22, 27, 29, 30, 37, 39, 42, 49, 51]. Eight studies did
not provide sufficient information regarding preprocess-
ing methods to assess the degree of automation [14, 19,
25, 26, 28, 31, 32, 40]. The remaining 15 studies relied
on manually outlined lesion or feature borders.

Methods of classification
The most common ML method was the artificial neural
network (ANN), being used in several variations by 20
studies [14, 16, 18, 23, 25, 27–29, 32–37, 40, 44–46, 49,
51]. Variants of the decision tree, namely the decision for-
est classifier and random forest classifier, were used by
four studies [17, 48, 50, 52]. Logistic regression, a linear
classification model that may be considered among the
simplest forms of ML, was used by four studies [38, 39,
41, 47]. Seven studies used multiclass support vector ma-
chines [15, 19, 24, 26, 31, 42]. One study used a k-nearest
neighbors algorithm [43], one used a hybrid model of
MSVM and k-NN classifiers [21], one used a unique
model of layered linear classifiers [20], and one used a hy-
brid model of linear and quadratic classifiers [30].
Thirty-five of the studies used separate image sets for

training and testing or employed cross-validation. The
remaining four studies had overlap between training and
test sets and thus cannot be considered blinded or inde-
pendent experiments [41, 47, 48, 50]. Four studies, while
they did employ cross-validation, used only images of
BCCs that contained specific features of interest that
their classifiers were designed to detect, rendering the
experiments non-independent [34, 36, 37, 49]. These
findings are reflected in the quality ratings shown in
Table 2 and the QUADAS-2 summary in Table 3.

Diagnostic accuracy
All included studies reported at least one NMSC-specific
classifier performance metric or provided results in the
form of a graph or confusion matrix from which this in-
formation could be determined. The most commonly
used metric of classifier performance was area under the
receiver operating characteristic (AUROC) curve, which
was reported by 17 studies [14, 16, 23, 34–38, 40–42,
47–52]. AUROC values ranged from 0.832 [52] to 1 [41],
with both extremes reported in studies of BCC-specific
classification.
Eleven studies reported accuracy [19, 22, 24–28, 31,

33, 46, 47], four studies provided a confusion matrix
from which accuracy could be calculated [43–46], and
one study provided a graph from which accuracy could
be estimated but did not provide an exact numerical fig.
[39]. Sensitivity was reported or derivable from a confu-
sion matrix in 22 studies [14, 15, 17, 18, 20, 22, 23, 25–
30, 32, 33, 42–46, 51, 52], and 15 of these studies also
provided specificity data [14, 22, 23, 25, 26, 28, 30, 33,
42–46, 51, 52]. The highest accuracy, specificity, and
sensitivity were reported by two BCC studies that
achieved 100% for each of these metrics [22, 42]. Not-
ably, one of these studies used a test set of only ten
images, the smallest of all the included studies [22]. An-
other study achieved 100% sensitivity in combined BCC
and CSCC classification, however the corresponding
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specificity of this test was 12%, the lowest of all the in-
cluded studies [30]. The lowest accuracy and sensitivity
were 72% [39] and 38% [46], respectively, both of which
represented BCC-specific classification. Moreover, one
study reported only F-measure, which is a metric that
reflects both precision and recall, with a value of 0.581
for CSCC-specific classification [21].
Six studies tested the performance of their classifier

against dermatologists [15–18, 23, 46]. Two of these stud-
ies were not focused primarily on NMSC classification
and thus did not include NMSC lesions in the test [17,
46]. Esteva et al. conducted two experiments comparing
the performance of an ANN classifier against a group of
21 board-certified dermatologists using sets of 135 biop-
sy-proven lesion images (65 NMSC, 70 SK). In the first ex-
periment, the dermatologists were asked whether or not
they would biopsy the lesion and, in the second experi-
ment, if they thought the lesion was benign or malignant.
The results of these trials were presented as receiver oper-
ating characteristic (ROC) curves, and in both cases, the
performance of the majority of the dermatologists fell be-
neath the classifier ROC curve, indicating that the classi-
fier had outperformed them on average [16]. Similarly,
Han et al. tested an ANN classifier against 16 board-certi-
fied dermatologists using a set of 460 benign and malig-
nant lesions, including 25 BCCs and 25 CSCCs. The
dermatologists were asked to select the correct diagnosis
for each lesion from 12 possible choices. Results were pre-
sented as disease-specific ROC curves, which again
showed lower average performance by the dermatologists
compared to the ANN classifier for both BCC and CSCC
classification [23]. Chang et al. compared a MSVM classi-
fier against the performance of 25 board-certified derma-
tologists using a set of 769 benign and malignant lesions,
which included 110 BCCs and 20 CSCCs. Dermatologists
were able to correctly classify 88.2% of BCCs and 85% of
CSCCs as malignant, compared to the MSVM classifier,
which correctly classified 90% of BCCs and 80% of CSCCs
[15]. Lastly, Fujisawa et al. compared the performance of
an ANN classifier against 13 board-certified dermatolo-
gists by having each dermatologist classify a different set
of 140 images randomly selected from a set of 1142 lesion
images spanning 14 diagnoses, including 249 BCCs and
189 CSCCs. The ANN classifier was able to correctly clas-
sify 80.3% of the BCCs and 82.5% of the CSCCs, whereas
the dermatologists correctly classified 64.8% of BCCs and
59.5% of CSCCs [18]. Of note, none of these studies in-
cluded P-values for these comparisons, so it is uncertain if
the reported differences in performance relative to derma-
tologists were statistically significant.

Discussion
The use of AI is rapidly expanding in dermatology and
society in general. As the world population and average

human life span continue to rise, access to rapid skin
cancer screening is becoming increasingly important.,
Digital image-based ML models present an intuitive and
promising means of extending the reach of dermatolo-
gists to meet this growing need. Though computerized
analysis of skin lesions has been an active area of re-
search for nearly 30 years, NMSC has been relatively
understudied. Indeed, perhaps the most striking finding
of this review is the relative paucity of NMSC-specific
image analysis research. In contrast, a systematic review
of automated melanoma detection that was conducted
10 years ago and restricted to only dermoscopic litera-
ture identified 30 studies [8], nearly the same number as
in the present review.
Most of the studies in this review structured their ex-

periments as computational proofs of concept and thus
did not adequately account for criteria that are tradition-
ally used to evaluate diagnostic studies. In particular, 29
studies did not use a consecutive sample [14, 16, 18–29,
31–33, 41–52], four studies were not independent [34,
36, 37, 49], four studies were neither blinded nor inde-
pendent [41, 47, 48, 50], and nine studies used reference
standards of uncertain validity [14, 19, 21, 22, 24–26, 31,
32]. Only seven studies used exclusively biopsy-proven
lesions as their benign mimics, which can only be ac-
complished by strictly including lesions that are clinic-
ally suspicious for malignancy [15–17, 23, 28, 30, 33].
While this methodology can be seen as contributing to a
higher level of evidence, its absence does not harm valid-
ity in studies using lesions that are benign only by clin-
ical examination, given that biopsy of such lesions in the
absence of symptoms is not only inconsistent with stan-
dards of care but also unethical. Three studies included
only AKs as a benign mimic [19, 24, 25]. While this le-
sion is technically benign, it is considered a precursor of
CSCC [53]. This same limitation affected several studies
reporting NMSC-specific performance metrics in experi-
ments that included melanoma in the test set [14, 18–
21, 23–26, 28, 29, 35]. In this case, there is no clinical
value in counting a melanoma that has been classified as
non-NMSC as a “true negative” unless it is concurrently
classified as a malignancy. In contrast, two studies, while
they did include melanoma in their test sets, designed
their classifiers for binary classification of lesions as be-
nign or malignant rather than multiclass classification,
thus avoiding this issue [15, 27]. Another two studies
presented multiclass classifiers that were able to achieve
95% or greater sensitivity for both melanoma and NMSC
detection [30, 42].
Another important limitation in most of the reviewed

studies was the need for extensive preprocessing of im-
ages. Lesion border detection was a particularly challen-
ging preprocessing step, which most of the studies
performed by hand. Only five studies presented a fully
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automated model, bypassing the need for any hand--
crafted features by using a classifier that was pre-trained
with an image set that was orders of magnitude larger
than that of the other studies [16, 18, 23, 44, 45]. This
sort of data-driven solution is perhaps the most promis-
ing approach to the challenge of variable clinical presen-
tations and imaging conditions.
A few studies were robustly designed as blinded, in-

dependent experiments using consecutive samples and
thus attained the highest level of evidence possible
for studies of their size [15, 17, 30, 35, 38, 40]. How-
ever, one of these studies was primarily focused on
melanoma detection and used only 14 NMSC lesions
in its test set, reducing its applicability [17]. Most
studies reported accuracy metrics greater than 90%,
which is higher than the average clinical accuracy of
dermatologists published in large, multicenter studies
[54, 55]. The most compelling evidence to this end
was provided by the four studies in this review that
directly tested NMSC classifiers against groups of der-
matologists, demonstrating higher accuracy by the
ML models [15, 16, 18, 23].
The major limitation of all the studies in this re-

view is that they were conducted entirely in silico.
Until a NMSC detection system is designed with
complete human-computer interface and tested in ac-
tual clinical trials as has been done for melanoma in
the case of MelaFind [56, 57], the applicability of
these classifiers remains theoretical. Moreover, only
one of the included studies reported the run times of
its model, which were 0.58 s and 3.02 s for BCC and
CSCC classification, respectively [27]. While these
values are favorable, the computational times of other
classifiers cannot necessarily be assumed to be com-
parable. Given that it is not uncommon for a patient
to present to a dermatologist with multiple NMSC le-
sions and benign mimics in a single visit, it is critical
for computer-aided diagnostic systems to perform not
only accurately but also rapidly.

Conclusion
The overall quality of evidence for the diagnostic
accuracy of digital image-based ML classification of
NMSC is moderate. While nearly all included studies re-
ported high diagnostic performance, the majority had
considerable methodological limitations. Common issues
included the use of non-consecutive samples, overlap-
ping training and test sets, and non-biopsy proven refer-
ence standards. Nevertheless, several studies did provide
high level evidence for ML classifiers capable of accur-
ately discriminating NMSC from benign lesions in silico.
Further research is needed to test the viability of these
models in a clinical setting.
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