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Abstract

several independent components related to one task.

power and computational time.

data analysis.

Background: Although independent component analysis (ICA) has been widely applied to functional magnetic
resonance imaging (fMRI) data to reveal spatially independent brain networks, the order indetermination of ICA
leads to the problem of target component selection. The temporally constrained independent component analysis
(TCICA) is capable of automatically extracting the desired spatially independent components by adding the
temporal prior information of the task to the mixing matrix for fMRI data analysis. However, the TCICA method can
only extract a single component that tends to be a mix of multiple task-related components when there exist

Methods: In this study, we proposed a TCICA with threshold (TCICA-Thres) method that performed TCICA outside the
threshold and performed FastICA inside the threshold to automatically extract all the target components related to
one task. The proposed approach was tested using simulated fMRI data and was applied to a real fMRI experiment
using 13 subjects. Additionally, the performance of TCICA-Thres was compared with that of FastiICA and TCICA.

Results: The results from the simulation and the fMRI data demonstrated that TCICA-Thres better extracted the task-
related components than TCICA. Moreover, TCICA-Thres outperformed FastICA in robustness to noise, spatial detection

Conclusions: The proposed TCICA-Thres solves the limitations of TCICA and extends the application of TCICA in fMRI

Keywords: ICA, fMRI, Temporally constrained ICA, FastICA, Threshold, Task-related component

Background

Functional magnetic resonance imaging (fMRI) is a
powerful technique to indirectly reveal the neural repre-
sentation of various cognitive processes. Both univariate
methods and multivariate methods have been widely ap-
plied to fMRI data analysis. Because the multivariate
methods do not treat each voxel independently and con-
sider the relationships between voxels, they have
attracted more and more attention in fMRI data analysis
compared to the univariate methods. Among the various
multivariate methods, independent component analysis
(ICA), a kind of blind source separation method, is
powerful at detecting independent brain networks from
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fMRI data [1]. Although both spatial ICA and temporal
ICA can be used to extract the spatially independent
components and temporally independent components,
respectively, spatial ICA is much more widely used than
temporal ICA [2].

ICA is a data-driven method that can separate the in-
trinsic independent sources from data without any prior
information. The semiblind ICA methods and constrained
ICA (CICA) have been proposed to improve the perform-
ance of ICA by adding some prior information. The semi-
blind ICA imposes regularization on certain estimated
time courses using the paradigm information [3, 4]. In
contrast to semiblind ICA, CICA can automatically esti-
mate the target components in a predefined order by add-
ing constraints to the classical ICA algorithm [5, 6]. The
prior information can be added to either the source matrix
[5] or the mixing matrix [7] as constraints. CICA has been
applied to the fMRI data analysis in several studies. In Lu’s

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-018-0300-6&domain=pdf
http://orcid.org/0000-0002-1841-5832
mailto:yaoli@bnu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Long et al. BMC Medical Imaging (2019) 19:6

study, the temporally independent component that was
related to the task was estimated from fMRI data by CICA
using temporal constraints on the source matrix without
separating all of the sources [5]. Moreover, the desired
spatially independent components were extracted from
fMRI data by CICA using spatial constraints on the
sources matrix [8]. To improve the convergence of CICA,
Wang et al. (2011) proposed learning-rate-free CICA algo-
rithms that were applied to separate spatially independent
component from fMRI data using a temporal constraint
on the mixing matrix [9]. Recently, Wang (2014) proposed
a temporally and spatially constrained ICA (TSCICA) by
using the temporal constraints on the mixing matrix and
spatial constraints on the source matrix to extract the de-
sired spatially independent components from fMRI data
[10]. Rodriguez et al. (2015) proposed general nonunitary
constrained ICA, which they applied to extract the
spatially independent component from complex-valued
fMRI data by using the temporal constraint on the mixing
matrix [11].

Task fMRI data generally contain one or more spatially
independent components that are related to the same
task [2]. It should be noted that CICA with the temporal
constraint as used in the previous studies could only ex-
tract one task-related component and failed to extract
all the spatial components that were related to the same
task from the task fMRI data in the above studies. How-
ever, one or more task-related spatial components can
be separated by spatial ICA [2]. For task fMRI data, the
temporal prior information is usually derived from the
convolution of the task paradigm with the hemodynamic
response (HRF). If more than one spatial component is
related to one task, the ICA contrast function will con-
tain more than one extreme point that are close to the
temporal reference of the task. When temporal CICA
(TCICA) adds the temporal constraint to the cost func-
tion of ICA using the Lagrange multiplier method dur-
ing fMRI data analysis, the optimal surface of the cost
function is changed to retain an extreme point close to
the temporal reference and remove all the irrelevant ex-
treme points so that the desired task-related component
can be extracted. Because the time course of each
task-related component is highly correlated with the
temporal reference of the task, the target component ex-
tracted by TCICA may mix several task-related compo-
nents. Accordingly, TCICA is not able to fully extract all
the spatially independent components that are related to
one task from fMRI data. Although our previous study
[10] proposed a temporally and spatially constrained
ICA method, TSCICA fails to work when the spatial
prior information is unavailable. Moreover, TSCICA can-
not separate all the components that are related to the
same task because it is difficult to obtain the spatial
prior information of all the task-related components.
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Therefore, the applications of TCICA and TSCICA are
largely limited.

This study aimed to apply ICA to task-related activity
by adding some constraints in the mixing matrix, which
should lead to increased chance of detectability and a gain
in computation time. We proposed the TCICA with
threshold (TCICA-Thres) method, which was able to
automatically extract all the spatially independent compo-
nents related to one task without estimating all the inde-
pendent components from fMRI data. The basic idea of
TCICA-Thres is to perform TCICA outside the threshold
to remove all the irrelevant extreme points and perform
FastICA inside the threshold to keep all the extreme
points close to the temporal reference. Using simulated
and real fMRI experiments that contained one task, we in-
vestigated the robustness, the feasibility and the stability
of the proposed method and compared TCICA-Thres
with FastICA and TCICA. The results from both the sim-
ulated and real fMRI experiments demonstrated that
TCICA-Thres extracted all the components that were re-
lated to a task, while TCICA could not. Moreover,
TCICA-Thres showed better performance than FastICA
in both detection power and computation time. It should
be noted that this study used spatial ICA for the
TCICA-Thres, FastICA and TCICA methods.

Methods
TCICA
The spatial ICA model of fMRI data can be expressed by (1).

X = AS (1)

where Xy , v is the observed fMRI signal data, Ax . c is
the mixing matrix and Sc v is the source matrix. K rep-
resents the number of scans, V represents the number of
voxels, and C represents the number of total independ-
ent components. ICA seeks an unmixing matrix W.

The temporal CICA (TCICA) method is modeled as
the following constrained optimization problem [7]:

{EFW)-EF W) s. t. g(w)
:s(w,r;)—f < 0, h(y)
=E{y’}-1=0 (2)

Max](y)

where J(y) denotes the contrast function of the Fas-
tICA algorithm; &(w, r;) is the closeness measure be-
tween the unmixing vector w and r,, where r, is the
transformation of the temporal reference r, into the
unmixing space; and € is a threshold that can distinguish
one desired unmixing vector w from the others. The
temporal reference signal r, can be constructed from the
convolution of the task paradigm with HRF.



Long et al. BMC Medical Imaging (2019) 19:6

TCICA-Thres

Assume the total number of source signals is M and that
there are L task-related components (1 <L <M) whose
time courses are highly correlated with the temporal ref-
erence 1, Because the extreme points close to the tem-
poral reference usually correspond to the task-related
components, the basic idea of TCICA-Thres is to keep
all the extreme points of the task-related components by
using the FastICA contrast function inside the threshold
and the TCICA contrast function outside the threshold.
The proposed TCICA-Thres method automatically ex-
tracts the L desired components from the observed data
in a predefined order instead of estimating all of the M
components, as standard ICA does.

For the negentropy J(y) in eq. (2), v is a Gaussian vari-
able and is unrelated to the variable y. The first-order
derivative of J(y) is 2a(E{f(y)} - E{f(v)}). Therefore, the
maxima of Negentropy J(y) = a[E{f(y)} —E{f(v)}]2 are ob-
tained at certain optima of E{f(y)}, and the objective
function of FastICA can be simplified as J(y) = E{f(y)}
[12]. Therefore, the proposed TCICA-Thres method can
be formulated in the framework of CICA and FastICA:

maximize J(y) = E{f(y)} (3)

. / , <0, p (w,r;) < threshold
SubJECt to g(W7 r[) - S(Wy rt) _6{_0’ p (w,r;) >threshold

(4)
h(w) = E{w*}-1=0 (5)

where p(w, r;) is the correlation coefficient between the
unmixing vector w and r’; , where 7’ is the transformation
of r, into the unmixing space. If p(w,r,) computed in (4)
is below the threshold, the inequality constraint g works,
and the estimated w will be corrected to be close to the
predictive model. Otherwise, the correction term g does
not work. Based on the constraints of the eq. (4) and (5),
TCICA-Thres can estimate the optimal solution of eq. (3)
using Lagrange multipliers. The corresponding augmented
Lagrange function L of TCICA-Thres is given by:

L =J()-G(w,r,4)-H(w,)) (6)
where

Scx% [maxZ{ﬂerg(w,r;)?O}—/,tz] p(w,r:) <threshold

G(w, r;v/") = {

0, p(w,ri)>threshold
(7)
H = A[E(w)-1] ®)

G(w,r,, ) transforms the original inequality constraint
of the temporal reference signal into equality constraint;
p and A are the positive Lagrange multipliers that are
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the weights of the temporal inequality and equality con-
straint, respectively; y is the positive penalty parameter;
se=1/(1 +m) is a smoothing function that en-

sures the smooth connection of the constraint function
G at the threshold point.

The gradient descent learning algorithm, which was
used to solve the optimization problem, and the proced-
ure of the TCICA-Thres algorithm are presented in the
Appendix of the Additional file 1.

Simulation of single-subject analysis
In this section, the simulated fMRI experiments were per-
formed to investigate the robustness and the feasibility of
the proposed TCICA-Thres method and further compare
the performance of TCICA-Thres with FastICA at different
noise levels. Moreover, the TCICA-Thres methods using
different temporal references were applied to investigate
the robustness of TCICA-Thres to the temporal references.
Principal component analysis (PCA) was applied to each
simulated dataset to reduce dimension with 99.9% of the
total variance of the mixed signals retained prior to ICA.
This ensured all the informative components were in-
cluded. The nonlinear function f{:) in Eq. (4) and Eq. (12)
used f{)) = y*/3. For the TCICA-Thres method, the learning
rate n was set to 107 *x (0.5 x cos(t x (k-1)/99) + 0.5)",
where n is set to 2 and k is the iterative step. The use of this
value for n of the learning rate was validated in the follow-
ing simulation. Generally, the learning rate n is set as a
fixed value. The learning rate in this study decreased grad-
ually with the increase in the iterative step to ensure stable
convergence. For the TCICA-Thres method, the threshold
of p was set to 0.5, the penalty parameter y was set to 0.1 x
4% [9], and the Lagrangian multipliers p and A were ini-
tialized to 1 [10]. The correlation was used as the closeness
measure such that (w;,r,;) = ~E{w;,r,;}. According to
our previous study [10], the threshold § was initialized to
0.9 and was adjusted according to the correlation coeffi-
cient of the estimated w; and 7, during each iteration. The
termination criterion was set to ||Aw||<10™* for
TCICA-Thres and FastICA. A maximum of 100 iterations
was allowed for each ICA decomposition run of
TCICA-Thres and FastICA. The core FastICA algorithm
was downloaded from the internet [13]. The TCICA-Thres
was developed in MATLAB (MathWorks, Natick, MA,
USA) based on the FastICA algorithm. Receiver operating
characteristic (ROC) analysis was applied to compare the
spatial detection power of the different methods.

Generation of simulated data

The SimTB toolbox [14] was used to generate fMRI-like
simulated datasets with different contrast-to-noise ratios
(CNRs). Each dataset consisted of 200 x 200 pixels. We
assumed that the simulated experiment included one
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task that induced two spatial components. The entire
270-s session consisted of four 30-s task blocks and five
30-s rest blocks. In reality, many complicated factors
may cause the time courses of the components that are
related to one task to be different. For simplicity, we fur-
ther assumed that the time courses driving different
spatial components that were related to the same task
only differed in the shape of HRF in the simulation. The
spm_hrf function in the software SPM8 (Statistical Para-
metric Mapping) [15] was used to generate the HRFs.
Two ROIs were generated by using the SimTB toolbox
(see Fig. 1A). The activated regions of the first and sec-
ond task-related component were supposed to be the
ROI1 and ROI2, respectively. The simulated fMRI re-
sponses of the two ROIs were generated by convolving
the task paradigm with the two different HRFs (see Fig.
1C). The seven vector parameters of the two HRFs of
ROI1 and ROI2 were set to P2=[14 8 2 2 6 0 32] and
P1=[6 16 1 1 6 0 32], respectively. Each dataset con-
tained Rician noise with a specific CNR. The CNR varied
from 0.05 to 0.15, with an increment of 0.01. Ten simu-
lated datasets were generated for each noise level, and a
total of 110 simulated datasets were produced.

Generation of temporal references

To investigate the robustness of the proposed method to
the accuracy of the temporal reference, thirteen tem-
poral references that were derived from the convolution
of the experimental paradigm with different HRFs were
generated. The correlation coefficients between each of
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the thirteen temporal references and the true time
course underlying the second component were 0.3199,
0.3335, 0.3527, 0.3779, 0.4095, 0.4469, 0.4891, 0.5542,
0.6165, 0.7069, 0.7867, 0.8548 and 0.9248, respectively.
Here, we called the temporal reference set TRef.

Robustness to the noise magnitude

In this simulation, one temporal reference with correlation
coefficient (CC) =0.8548 from TRef was considered.
TCICA-Thres was applied to each dataset to automatically
extract the two desired task-related components. Add-
itionally, FastICA was applied to each dataset, and the
task-related components were selected by using the tem-
poral correlation between the time course of each compo-
nent and the temporal reference. The two components
with the highest temporal correlation coefficients were se-
lected as the task-related components. Meanwhile, the
ROC area of each task-related component was obtained
for each TCICA-Thres/FastICA application. To investigate
how the noise level affected the performance of
TCICA-Thres and FastICA, the mean ROC areas across
10 datasets were calculated at each noise level. Moreover,
the difference of the ROC area between TCICA-Thres
and FastICA at each noise level was examined by the non-
parametric Wilcoxon test for paired samples.

Determination of the parameter of the learning rate

All 110 simulated datasets with different CNRs were
used in this simulation. To avoid an endless loop, the
learning rate in the TCICA-Thres algorithm was reduced

a The pre-defined ROIs

C Time courses for ROIs

reference used in the simulation of multi-subject analysis

Fig. 1 Generation of simulated data. (a) The predefined ROI for simulation of single-subject analysis. (b) The predefined ROI for simulation of
multi-subject analysis. () The time courses of simulated fMRI responses that are added to the two ROIs. (d) The time course of temporal

b The pre-defined ROIs for group ICA

ROI1

d temporal reference
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as the iterative step increased. The learning rate in
TCICA-Thres was set as 10~ * x (0.5 x cos(pix(k-1)/99) +
0.5)", where k is the iteration step. The parameter #n var-
ied from 1 to 12, with an increment of 1. For a particular
n, TCICA-Thres that used the temporal reference with
CC=0.85 from TRef as a constraint was applied to each
dataset to automatically estimate the two task-related
components. The ROC area of each TCICA-Thres pro-
cessing was calculated. For each n, the mean of 110
ROC areas of each task-related component was calcu-
lated, and the sum of the mean ROC areas of the two
task-related components was obtained.

Robustness to temporal reference

In this experiment, the 20 simulated datasets with high
noise level (CNR = 0.08) and low noise level (CNR = 0.14)
were used to investigate the impacts of different temporal
references on the performance of TCICA-Thres. The
TCICA-Thres method that used the thirteen temporal ref-
erences from TRef in sequence was applied to each data-
set to automatically extract the desired two task-related
components. For each temporal reference, the mean value
of 10 ROC areas across the 10 simulated datasets at each
of the two CNR levels was calculated to evaluate the sta-
bility of the proposed method.

Activation pattern comparison for TCICA-Thres, TCICA,
FastICA and GLM
One simulated dataset with CNR=0.1 was used in this
experiment to investigate the differences between
TCICA-Thres, TCICA, FastICA and GLM. TCICA-Thres
and TCICA that used the temporal reference with CC = 0.85
from TRef as the temporal constraint were applied to the
simulated dataset to extract the task-related components.
FastICA was directly applied to the simulated datasets. After
the TCICA-Thres, TCICA and FastiICA processing, the
task-related components were transformed into Z score. The
activated regions were determined by selecting the voxels
with Z scores higher than 2. Moreover, GLM analysis in
SPM8 was applied to the dataset by using the temporal refer-
ence with CC = 0.85 from TRef as the regressor.

A one-sample t-test was performed to estimate the ac-
tivated brain regions. The significance level of the t-test
was set to p < 0.001 without correction.

Simulation of multi-subject analysis

For multi-subject analysis, temporal concatenation was in-
tegrated with TCICA-Thres. In this section, a human fMRI
resting data-based simulation was performed to examine
the feasibility of the group TCICA-Thres method.

Participants
Ten right-handed college students (five females, five
males; age: 22.5 + 3.1 years) with normal vision took part
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in the experiment. Subjects relaxed with their eyes
closed and remained still for 270s during the entire
fMRI scan. All participants gave written consent accord-
ing to the guidelines set by the MRI center of Beijing
Normal University. The experiment was approved by the
Institutional Review Board of the State Key Laboratory
of Cognitive Neuroscience and Learning in BNU.

Imaging parameters

Brain scans were performed using a 3.0-T Siemens
whole-body MRI scanner. A single-shot T2*-weighted
gradient-echo, echo planar imaging (EPI) sequence was
used for functional imaging acquisition with the follow-
ing parameters: repeated time (TR) = 2000 ms, echo time
(TE)=30ms, flip angle=90°, field of view (FOV)=
200 x 200 mm, matrix = 64 x 64, and slice thickness = 3.6
mm. Thirty-three axial slices parallel to the line connect-
ing the anterior and posterior commissures were ob-
tained in an interleaved order to cover the entire
cerebrum and part of the cerebellum.

Pre-processing

Each participant’s functional images were first realigned
to remove head motion. Then, the images were spatially
normalized into the standard MNI template space and
resliced into 3 x 3 x 4 mm voxels. Finally, the normalized
images were smoothed by an 8 x 8 x 8 mm? full width at
half-maximum (FWHM) Gaussian kernel.

Generation of simulated data

The preprocessed fMRI resting datasets of 10 subjects
were used to generate the simulated datasets. The same
experimental paradigm as the above simulated experi-
ments were used in this simulation. Two spatial compo-
nents were assumed to be related to the same task. The
activated regions of the first and second task-related com-
ponents were assumed to correspond to ROI1 and ROI2,
respectively (see Fig. 1B). The ROIs were constructed
using the 3D ROI tool in MRIcro software. The time
course activating the ROI1/ROI2 was produced in the
same way as the above simulation (see Fig. 1C). A total of
10 simulated data sets, one for each subject with different
SNRs, were generated. Considering the size and shape
variation of the activated regions across subjects, 90% of
voxels within each ROI of each subject were randomly se-
lected as activated. All ten datasets had the same mini-
mum signal change (0.3%) relative to the mean intensity
value of the individual voxel. The maximum signal change
of each dataset randomly varied from 1.0 to 1.1%.

Group ICA processing

The group TCICA-Thres, group FastICA and group
TCICA methods were applied to the simulated data of
ten subjects. The number of ICA components was set to
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26 according to the minimum description length (MDL)
criteria. Each subject’s data was reduced to 26 time points
using PCA, and the reduced data of all subjects were
concatenated together in the temporal space. The aggregate
data set was further reduced to the dimension of 26 using
PCA. The reduced data were then decomposed by
TCICA-Thres and TCICA to automatically extract the
task-related components and by FastICA to extract all the
ICs. The temporal reference that was used in the
TCICA-Thres and TCICA methods are shown in Fig. 1D.
After Thres-ICA/TCICA/FastICA processing, the individ-
ual time courses and spatial maps for every subject’s func-
tional data were reconstructed by back reconstruction. The
mean time course of each independent component that
was separated by FastICA was calculated across the 10 sub-
jects. To identify the task-related components for FastICA,
the temporal correlation between the mean time course of
each component and the temporal reference was calculated.
The two components with the highest temporal correlation
coefficients were selected as the task-related components.
Moreover, the subsequent group analysis of the task-related
components that were estimated by TCICA-Thres and Fas-
tICA were conducted using the one-sample t-test in the
software SPM8 to identify the brain regions that were sig-
nificantly engaged in each task-related component.

GLM in SPM8 was applied to each subject’s dataset by
using the task paradigm as the regressor. After the individual
GLM analysis, a random-effects model was applied to per-
form the group analysis. The brain regions that were signifi-
cantly activated by each task were estimated by using the
one-sample T test. The statistical results for TCICA-Thres,
FastICA, TCICA and GLM were corrected for multiple
comparisons via a family-wise error (FWE) at p < 0.05.

The real fMRI experiment

In this section, a real fMRI experiment was performed to fur-
ther demonstrate the feasibility of the proposed method and
to compare the performances of TCICA-Thres and FastICA.

Participants

Thirteen volunteer participants (seven females and six
males, mean age 22 + 1 years) participated in the fMRI ex-
periment. All of the subjects were right-handed and had
normal vision. The handedness of each subject was con-
firmed in focused interviews using the Edinburgh inven-
tory [16]. All participants gave written consent according
to the guidelines set by the MRI center of Beijing Normal
University. The experiment was approved by the Institu-
tional Review Board of the State Key Laboratory of Cogni-
tive Neuroscience and Learning in BNU.

Imaging parameters
Brain scans were performed at the MRI Center at Beijing
Normal University using a 3.0-T Siemens whole-body
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MRI scanner. A single-shot T2*-weighted gradient-echo
EPI sequence was used for functional imaging acquisi-
tion using the parameters TR/TE/flip angle = 2000 ms/
30 ms/90° acquisition matrix = 64 x 64; FOV =240 mm;
and slice thickness =3.6 mm with interslice gap=0.6
mm. Thirty-three axial slices parallel to the AC-PC line
were obtained in an interleaved order to cover the entire
cerebrum and cerebellum.

Experimental design

The entire 270-s session consisted of five 30-s rest
blocks that were alternated with four 30-s task blocks.
During the rest blocks, the subjects relaxed with eyes
opened. During each task blocks, 15 object pictures were
displayed in the center of the screen. The subjects were
required to press the button with their left middle finger
if any picture repeated itself consecutively and press the
button with their right middle finger if any picture did
not repeat itself. Each stimulus was presented for 500 ms
and followed by a 1500 ms blank screen.

Preprocessing
The same preprocessing steps as the simulation of
multi-subject analysis were applied to the fMRI data of
each subject.

Data analysis

The temporal reference was derived from the convolu-
tion of the task paradigm with the HRF that was gener-
ated by SPM using the default parameters. The number
of ICA components was set to 28 according to the
MDL. Both group Thres-ICA and TCICA were applied
to identify the brain regions that were engaged in each
task-related component using the same processing steps
as the simulation of multi-subject analysis.

The GLM analysis was also applied to each dataset
after processing by a high-frequency filter and by global
scaling using the software SPMS8. After the individual
GLM analysis, a random-effects model was applied to
perform the group analysis. The brain regions that were
engaged in each task were estimated by using the
one-sample T test. All of the statistical results of the
ICA methods and GLM were corrected for multiple
comparisons via an FWE at p <0.05.

To compare the stability of TCICA-Thres and Fas-
tICA, we used a quantitative evaluation of the compact-
ness of the clusters of independent component
estimation. For each subject, the TCICA-Thres and Fas-
tICA estimation were repeated 20 times, and the cluster
quality index of each method was calculated using the
ICASSO software package. A cluster quality index close
to 1 indicates that the result is consistent and stable.
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Results

Simulation of single-subject analysis

Robustness to noise magnitude

The mean ROC areas of the two task-related compo-
nents at various noise levels are shown in Fig. 2A and B.
It can be seen that the mean ROC areas of both
TCICA-Thres and FastICA increased with the increase
in the CNR. For IC1, TCICA-Thres exhibited higher
ROC areas than FastICA at all noise levels (see Fig. 2A).
For IC2, TCICA-Thres showed larger ROC areas than
FastICA at the medium noise levels and similar ROC
areas at the low and high noise levels (see Fig. 2B).
Moreover, the mean computation time of ICA process-
ing at the various noise levels are shown in Fig. 2C. It
can be seen that TCICA-Thres took much less time to
extract the task-related components than FastICA at all
the noise levels.

Determination of the parameter n of the learning rate

The variation of the sum of the two ICs’ ROC areas with
n is presented in Fig. 2D. The results showed that the
sum of the mean ROC areas of the two ICs was the
greatest when n was equal to 2. Thus, 2 was selected as
the optimal value of n in TCICA-Thres for both the en-
tire simulation and the real fMRI experiment.

Robustness to temporal reference

Figure 3 shows the mean ROC areas of the two ICs that
were extracted by TCICA-Thres for various temporal
references. It can be seen that the mean ROC area of
IC2 increased with the increase in the CC between the
temporal reference and the time course underlying IC2
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for both the low noise level (CNR =0.14) and the high
noise level (CNR=0.08) (see Fig. 3B). When CC was
below 0.55, the mean ROC area of IC2 dropped fast.
However, the mean ROC of IC1 showed slight variation
when CC between the temporal reference and the time
course underlying IC2 increased. Because the correlation
between each temporal reference in TRef and the true
time course underlying IC1 was 0.9884, 0.9896, 0.9911,
0.9927, 0.9944, 0.9957, 0.9960, 0.9917, 0.9809, 0.9441,
0.8888, 0.8196 and 0.7548, the mean ROC area of IC1
decreased for the last temporal reference.

Comparison of TCICA-Thres, TCICA, FastICA and GLM

Figure 4 shows the activated regions that were estimated
by GLM and the activated regions of the task-related
components that were extracted by TCICA-Thres,
TCICA and FastICA. For TCICA-Thres and FastICA,
the activated region of IC1/IC2 largely overlapped with
the ROI1/ROI2, and the time course of IC1/IC2 was
highly correlated with the temporal response that was
added to the ROI1/ROI2 (see Fig. 4A, B, D and E). Thus,
the two task-related components were successfully ex-
tracted by Thres-ICA and FastICA from the simulated
dataset. Compared to FastICA, Thres-ICA detected lar-
ger activated regions for IC1 and IC2. In contrast, the
activated regions of the task-related component that was
extracted by TCICA contained both ROI1 and ROI2
(see Fig. 4C), which indicated that TCICA merged the
two task-related components into one IC and failed to
fully separate the two task-related components. Because
GLM can detect all the regions that were engaged in the
same task, the activated regions included both ROI1 and
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ROI2 (see Fig. 4F). Moreover, compared to TCICA and
GLM, TCICA-Thres and FastICA detected less false ac-
tivation than TCICA and GLM.

Simulation of multi-subject analysis

Figure 5 shows the group spatial activation of GLM and
the group activation of the task-related components that
were extracted by TCICA-Thres, FastiCA and TCICA.
Both TCICA-Thres and FastICA successfully extracted
the two task-related components. The activation maps
of the two task-related components largely overlapped
with the two predefined ROIs (see Fig. 1B) for
TCICA-Thres and FastICA (see Fig. 5A-D). However,
TCICA only detected one task-related component,
which mainly overlapped with the predefined ROI1 (see
Fig. 5E). GLM detected the activated regions in both
ROI1 and ROI2 (see Fig. 5F).

The real fMRI experiment

Figure 6 shows the real fMRI data. The activated brain re-
gions detected by GLM were mainly located in the parts
of the visual cortex that were engaged in object perception
and the parts of the motor cortex that were responsible
for the motor output of judgment (see Fig. 6A). The acti-
vated visual cortex mainly included the middle occipital
gyrus, the lingual gyrus and the fusiform gyrus. The acti-
vated motor cortex mainly contained the primary motor
cortex, the premotor cortex, the supplementary motor
cortex and the cerebellum. Two task-related components
were extracted by TCICA-Thres and FastICA automatic-
ally. For TCICA-Thres and FastICA, the activation map of
IC1 consisted of the visual cortex, and the activation map
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of IC2 consisted of the motor cortex (see Fig. 6C-F). For
IC2, TCICA-Thres detected activation in the primary
motor cortex, the premotor cortex, the supplementary
motor cortex while FastICA only detected activation in
the supplementary motor cortex. It can be inferred that
IC1 was engaged in the visual processing and perception
of objects and IC2 participated in the decision of finger
tapping. Thus, the activated brain regions that were de-
tected by GLM were distributed into the two task-related
components that were extracted by TCICA-Thres and
FastICA. It should be noted that the activated regions of
IC2 for FastiICA were much smaller than those for
TCICA-Thres. For IC1, TCICA detected a smaller acti-
vated region in the visual cortex than FastICA. Moreover,
TCICA only successfully separated one task-related
component (see Fig. 6B). The activation map of the
task-related component contained some visual cortex and
a small supplementary motor cortex.

To compare the results that were estimated by GLM,
TCICA-Thres and FastICA, we generated activation
masks of the three methods. For GLM, the activation
mask was created by setting the activated voxels to 1 and
the non-activated voxels to 0. For TCICA-Thres and Fas-
tICA, the activation mask of IC1 was added to that of IC2
to generate one activation mask. The spatial correlation
coefficients of the activation mask between GLM and
TCICA-Thres/FastICA for all the subjects are shown in
Fig. 7A. It can be seen that the TCICA-Thres result
showed higher correlation with the GLM result than the
FastICA result for all subjects except for subjects 2, 3 and
4. The means and standard deviations of the spatial correl-
ation coefficients that were obtained by TCICA-Thres and
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activation of IC1 (c) and IC2 (d) estimated by FastICA. (e) The spatial activation of IC estimated by TCICA. (f) The activation detected by GLM
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FastICA are displayed in Fig. 7B. To further examine the
differences in the spatial correlation coefficients between
TCICA-Thres and FastICA, the nonparametric Wilcoxon
test for paired samples was used to examine the difference
between the two methods. The nonparametric Wilcoxon
test indicated that TCICA-Thres results had significantly
higher correlation with GLM results than with FastICA
results (p < 0.01).

Figure 7C shows the mean of the cluster quality indi-
ces across all subjects of the two ICs extracted by
Thres-ICA and FastICA. To examine the difference in
the stability of the target IC estimation between the two

methods, the nonparametric Wilcoxon test for paired
samples was performed. The results showed that the sta-
bilities of TCICA-Thres were significantly higher than
FastICA for IC2 (p < 0.01).

Discussion

In this study, we proposed the TCICA-Thres method that
combined the TCICA method and the FastICA method
through a threshold to automatically extract all the com-
ponents related to the same task. The robustness and
feasibility of the method under conditions of different
noise levels and different temporal references were
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demonstrated, and the validity of the group TCICA-Thres
method was confirmed. The results from both simulated
and fMRI data suggest that TCICA-Thres was able to suc-
cessfully extract all the task-related components and out-
performed FastICA in spatial detection power and
computation time.

In spite of the wide application of ICA to fMRI data,
ICA needs to estimate all of the independent components
from a dataset, which results in high computational-time
costs and the requirement to select the desired compo-
nents [17]. When TCICA is applied to fMRI data to ex-
tract the spatially independent components by adding the
temporal constraint on mixing matrix, TCICA cannot suc-
cessfully extract all the independent components that are
related to the same task. For TCICA, the optimal surface
of the cost function tends to merge all the extreme points
that are close to the temporal reference into one extreme
point due to the impact of the temporal constraint. As a
result, the desired component that is extracted by TCICA
method generally is the mixing of multiple task-related
components. To separate all the task-related components
automatically, TCICA-Thres combines the advantages of
both TCICA and FastICA. TCICA-Thres sets a threshold
to judge if the estimated parameter is close to the tem-
poral reference. When the iteration is near the temporal
reference, TCICA-Thres replaces the cost function of
TCICA with the cost function of FastICA to keep all the
extreme points close to the temporal reference. Otherwise,
TCICA-Thres uses the cost function of TCICA to remove
the extreme points that are far from the temporal refer-
ence. Therefore, TCICA-Thres can automatically extract
all the components related to the same task without esti-
mating all the components. Moreover, it should be noted
TCICA-Thres is different from TSCICA, which was pro-
posed in our previous study [10]. TCICA-Thres only uses
the temporal constraint, while TSCICA uses both the tem-
poral and spatial constraints.

The simulated data indicate that TCICA-Thres esti-
mated all the independent components related to the
task at all the noise levels. Compared to FastICA,

TCICA-Thres showed higher spatial detection power at
all noise levels for IC1 and at the middle noise levels for
IC2 (see Fig. 2A and B). Moreover, TCICA-Thres took
much less time to extract the desired components than
FastICA (see Fig. 2C). These results suggest that
TCICA-Thres had better robustness to noise and better
computation efficiency than FastICA. Furthermore,
TCICA-Thres kept a high performance and showed
slight variations when CC between the temporal refer-
ence and the time course underlying the component was
higher than 0.55 (see Fig. 3B). Moreover, the mean ROC
area of TCICA-Thres dropped below 0.6 for CC less
than 0.35. These results indicate that the TCICA-Thres
method has a good robustness to the temporal reference.
Because the temporal reference only helps TCICA-Thres
remove the irrelevant extreme points, the performance
of TCICA-Thres does not largely depend on the tem-
poral reference. As long as the temporal reference shows
a correlation with the task, TCICA-Thres can easily get
rid of most extreme points that are unrelated to the task.
When the iteration is close to the temporal reference,
FastICA will help TCICA-Thres extract all the final
task-related components. For the fMRI data, the tem-
poral reference is usually derived from the convolution
of the task paradigm with the ideal HRF. Although it is
impossible to know the true HRF that underlies the
fMRI data, the inaccuracy of temporal reference will not
have much impact on the performance of TCICA-Thres
in the fMRI data analysis. In this study, correlation that
depends on delays may not be ideal to assess temporal
match. The same oscillating frequency (perfectly related
with task) with a little shift could give a lower correl-
ation coefficient. In this study, TR (=2s) was not ad-
equate to sample task-related delays. The observed time
course will be different from the true time course that
drives each IC. Therefore, correlation is not ideal to
measure the temporal match between the reference
function and the time course underlying each IC.

The advantage of ICA over GLM is that ICA is power-
ful for identifying spatially distributed brain networks
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without any prior hypothesis regarding the data [2].
However, the TCICA-Thres and TCICA methods, which
introduce temporal prior information into the ICA algo-
rithm, are not purely exploratory anymore. Our simu-
lated data indicate that the TCICA-Thres and FastICA
method can successfully extracted all the target brain
networks participating in the task from fMRI data, al-
though the task activated two networks (see Fig. 4A-B).
In contrast to FastICA, TCICA-Thres can automatically
separate the task-related ICs without estimating all the
components. Moreover, the brain network that was esti-
mated by TCICA included the activated regions of both
IC1 and IC2, which suggests that TCICA failed to effi-
ciently dissociate the two task-related components.
GLM identified all regions that were activated by the
task, even when the estimated regions responded to two
different time courses that were correlated to the same
task. In contrast to GLM and TCICA, TCICA-Thres and
FastICA detected much fewer falsely activated regions.
Therefore, the simulated data demonstrated that
TCICA-Thres had the strength of automatically separat-
ing all the brain networks that were engaged in the same
task. Although GLM also detected the activated brain
regions that overlapped with both ROI1 and ROI2, the
activated regions that were detected by GLM were larger
than those by TCICA. If there is one task-related com-
ponent, it is easy for TCICA to find the extreme point
that is close to the temporal reference. However, when
fMRI data contain more than one components that are
related to the same task, temporal reference may con-
strain TCICA in finding the extreme point that is close
to the temporal reference. Because the task-related com-
ponent that was extracted by TCICA was not the true
task-related sources in fMRI data, it showed smaller acti-
vation than TCICA-Thres, FastiICA and GLM.

Both simulated and real fMRI data demonstrated the
feasibility of the group TCICA-Thres by combining
TCICA-Thres with the temporal concatenation methods.
For the simulated data, TCICA-Thres and FastICA suc-
cessfully extracted two task-related ICs (see Fig. 5). The
activated regions of IC1 and IC2 largely overlapped with
the predefined ROI1 and ROI2 (see Fig. 1B). In contrast,
TCICA only extracted one task-related IC, whose acti-
vated regions overlapped with ROI2 (see Fig. 5E). More-
over, GLM detected the activated regions in both ROI1
and ROI2 (see Fig. 5F). For the fMRI data, TCICA-Thres
automatically estimated one task-related component that
was engaged in visual processing and the other
task-related component that was engaged in motor out-
put. The two task-related components were also be identi-
fied by FastICA. Because the activated regions of IC1 and
IC2 for TCICA-Thres and FastICA covered almost all the
regions that were engaged in the task, the two methods
successfully extracted all the ICs that were related to the
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task. In contrast, TCICA could only extract one
task-related component, which consisted of most activated
regions of IC1 and a few activated regions of IC2. Al-
though the activated regions that were detected by
TCICA-Thres and FastICA largely overlapped with the re-
gions that were estimated by GLM, the activated motor
cortex of IC2 that was estimated by TCICA-Thres was
much larger than that by FastICA. As a result, the activa-
tion pattern of TCICA-Thres showed a higher correlation
with that of GLM than it did with FastICA. In addition,
TCICA-Thres showed better stability than FastICA, espe-
cially for IC2. The results from the real fMRI experiment
further verify that TCICA-Thres outperformed TCICA
and FastICA in spatial detection power.

To avoid an endless loop, the learning rate of
optimization algorithms is usually set to decrease as the
iterative step increases. Because TCICA-Thres needs to
switch the cost function between TCICA and FastICA
during the iteration, the learning rate cannot be of expo-
nential form, which would decrease too rapidly with the
iterative step. In this study, the learning rate in
TCICA-Thres was set as 10* x (0.5 x cos(pix(k-1)/99) +
0.5)". The learning rate used in this study decreased
slowly at the beginning of iteration, rapidly in the middle
of iteration and slowly again at the end of iteration. The
parameter n, which controlled the decreasing speed of
the learning rate, was determined by the simulated data.
In this study, we chose n=2 as the optimal value ac-
cording to the ROC results from the simulation. More-
over, the mean ROC area varied slightly when # varied
from 1 to 4 (see Fig. 2D). Thus, the results would be
stable for n ranging from 1 to 4, although 2 was selected
as the optimal value of # in the study. The results from
both simulated and fMRI data confirm that this rule
worked well.

TCICA-Thres showed good stability for all the sim-
ulated and real datasets, except for the fMRI data of
one subject. When applying TCICA-Thres to this sub-
ject, the algorithm went back and forth rapidly be-
tween constrained TCICA and FastICA in many
iterative steps. Although the algorithm showed fre-
quent rapid switches between TCICA and FastICA,
the iteration finally stabilized in the FastICA stage.
Because the learning rates became very slow after
many switches, the TCICA-Thres algorithm could not
converge within the maximum 100 iteration steps. To
avoid the slow learning rate and solve the nonconver-
gence issue, we reset the iteration step to 1 and reset
the unmixing matrix W to the value of the iteration
that switched from TCICA to FastICA the last time
after the TCICA-Thres algorithm stabilized in the
FastICA stage. The criterion that was used to judge if
the iteration of TCICA-Thres stabilized in FastICA
was if the iteration time of FastICA was larger than
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5. After such processing, the TCICA-Thres algorithm
estimated the stable task-related components from the
fMRI data of the subject.

The essence of TCICA-Thres is to introduce the tem-
poral constraint when the correlation coefficient p be-
tween the unmixing vector w and r; , where r; is the
transformation of the temporal reference r, into the
unmixing space, is smaller than the threshold. For the
TCICA-Thres method, the threshold of p is an important
parameter that is similar to the weight between the
TCICA part and the FastICA part. A bigger p indicates a
higher weight of TCICA and a smaller weight of Fas-
tICA. However, it is impossible in most applications to
obtain accurate prior temporal information in fMRI data
before ICA processing. Therefore, a bigger threshold
does not mean better results. On the other hand, if the
threshold is too small, more irrelevant components may
be included during FastICA iteration for TCICA-Thres.
Taking these aspects into consideration, the threshold of
p was set to an empirical value of 0.5, which meant that
TCICA and FastlCA had the same weight in the
TCICA-Thres algorithm. Moreover, because the number
of components that are related to a task in fMRI data is
unknown, the threshold is also used to determine
whether the extracted IC is related to the task. The esti-
mated component was considered a task-related compo-
nent when the correlation coefficient between the
temporal reference and the time course of IC was
greater than 0.5. Otherwise, the TCICA-Thres algorithm
will terminate. The TCICA algorithm is terminated
when the correlation between the time course of IC and
the temporal reference is lower than 0.5. The results
from both simulated and real fMRI experiments demon-
strate that the value of threshold works well.

It should be noted that there are some limitations to
the current study. First, the threshold of the correlation
coefficient p was set to an empirical value of 0.5. It is
worthwhile to investigate an optimal p in the future.
Second, the proposed TCICA-Thres method cannot be
used in the resting fMRI data because the resting data
do not have temporal prior information.

Conclusions

We demonstrated the feasibility and robustness of the
TCICA-Thres method, which incorporated both TCICA
and FastICA methods by using a threshold. The perfor-
mances of the proposed method and FastICA were com-
pared using both simulated and fMRI data. The results
indicate that TCICA-Thres is capable of automatically
extracting all the task-related components and has better
spatial detection power, computation efficiency and ro-
bustness to noise than FastICA. Moreover, TCICA-Thres
displays good robustness to temporal prior information.
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