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Abstract

Background: The aim of this study was to use texture analysis (TA) of breast magnetic resonance (MR) images to
assist in differentiating estrogen receptor (ER) positive breast cancer molecular subtypes.

Methods: Twenty-seven patients with histopathologically proven invasive ductal breast cancer were selected in
preliminary study. Tumors were classified into molecular subtypes: luminal A (ER-positive and/or progesterone
receptor (PR)-positive, human epidermal growth factor receptor type 2 (HER2) -negative, proliferation marker Ki-67
< 20 and low grade (I)) and luminal B (ER-positive and/or PR-positive, HER2-positive or HER2-negative with high Ki-67≥
20 and higher grade (II or III)). Co-occurrence matrix -based texture features were extracted from each tumor
on T1-weighted non fat saturated pre- and postcontrast MR images using TA software MaZda. Texture parameters and
tumour volumes were correlated with tumour prognostic factors.

Results: Textural differences were observed mainly in precontrast images. The two most discriminative texture parameters
to differentiate luminal A and luminal B subtypes were sum entropy and sum variance (p = 0.003). The AUCs were 0.828 for
sum entropy (p = 0.004), and 0.833 for sum variance (p = 0.003), and 0.878 for the model combining texture features sum
entropy, sum variance (p = 0.001). In the LOOCV, the AUC for model combining features sum entropy and sum variance
was 0.876. Sum entropy and sum variance showed positive correlation with higher Ki-67 index. Luminal B types were
larger in volume and moderate correlation between larger tumour volume and higher Ki-67 index was also observed
(r = 0.499, p = 0.008).

Conclusions: Texture features which measure randomness, heterogeneity or smoothness and homogeneity may
either directly or indirectly reflect underlying growth patterns of breast tumours. TA and volumetric analysis may
provide a way to evaluate the biologic aggressiveness of breast tumours and provide aid in decisions regarding
therapeutic efficacy.
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Background
Breast cancer is known to be a heterogeneous disease
that can be classified using several clinical and patho-
logical features. Breast cancer classification may help in
predicting clinical outcome, and it also has a significant
role in targeting the treatment to those who are most
likely to benefit. Different subtypes can be defined by
using genetic array testing or approaches using immuno-
histochemical analyses [1]. Some of the most important
factors that are related to prognosis are tumour size,
histologic grade, nodal status, estrogen and progesterone
receptors (ER, PR), human epidermal growth factor
receptor type 2 (HER2) expressions and proliferation
marker Ki-67 [2, 3]. Hormone receptor-positive breast
cancers are usually classified into luminal A -like sub-
type and luminal B -like subtype with or without HER2
overexpression. The luminal A subtype is shown to
express high levels of hormone receptor and has more
favorable prognosis while, the luminal B-like subtype
presents with a worse prognosis. The immunohisto-
chemical surrogate of molecular subclasses of breast
cancers proposed by the Saint Gallen Consensus Meet-
ings [1, 4] is used to classify patients in different risk
categories. In discriminating between luminal A and B
subtypes, Ki-67 labeling index has been shown to be
useful [5, 6]. In the era of personalized medicine, it is be-
coming more and more important to make a distinction
between luminal A and luminal B cancers to ensure effi-
cient treatment. The classification of molecular subtypes
is done by means of genetic analysis, which is rather
costly and requires specialized technical expertise.
Therefore it might be beneficial to find a cost and time
effective alternative means of classifying breast cancers
into distinct molecular subtypes.
Breast MRI has a high sensitivity [7, 8] in diagnosing

breast cancer but image interpretation still provides
challenges. These challenges include misinterpretation
due to technical factors [9] as well as hormonal status of
the patient, difficulties in interpretation surgical [10, 11]
or therapeutic interventions and [12], overlapping in the
MRI appearance of some benign and malignant diseases
and over-or underestimation of the lesions size [13, 14].
Breast MRI examinations generate a vast volume of
image data and computer aided diagnosis systems such
as texture analysis (TA) are developed to assist with le-
sion detection and classification. MR images contain
pixel grey level variations which cannot be evaluated
visually but could be detected with image analysis
methods, such as TA. TA methods evaluate the spatial
location and signal intensity characteristics of pixels in
the images. It is a mathematical method that describes
the grey level dependence between the image pixels. It
offers a way to calculated mathematical values for tex-
ture features which can be used in characterizing the

underlying structures of the observed tissues [15].TA
has been studied as a one method to increase the specifi-
city of breast MRI with promising results [16–20].
Breast tumors are usually heterogeneous in structure. Bi-

opsy may often not be sufficient in assessing intratumoral
heterogeneity since it does not always represent the
complete phenotypic variation within a tumor. Therefore,
a non-invasive method of assessing whole tumour hetero-
geneity might be beneficial [21]. Many studies have sug-
gested that intra-tumoral heterogeneity can be quantified
by using image texture analysis such as co-occurrence
matrix (COM). Many researches have exploited texture
features for distinguishing malignant from benign tumors
from MR images [16–18, 22]. Though many researches
had exploited COM texture features to quantify tumor
heterogeneity for distinguishing malignant from benign
tumors, only few very recent studies [20, 23, 24] have
investigated COM feature correlation with pathological
prognostic factors in invasive breast cancer. In a recent
study by Sutton et al. [25] shape, texture and histogram
based features were applied in differentiating breast cancer
molecular subtypes with encouraging results. They divided
the subtypes in ERPR+, ERPR-/HER2+ or triple negative.
Since TA has proven to be potential tool in discriminating
benign and malignant breast cancers, different histological
types and even aid in discriminating different molecular
subtypes we hypotized that it could even differentiate
molecular subtypes luminal A and luminal B. Luminal A is
associated with lower Ki-67 rate than subtype luminal B.
Ki-67 on the other hand is associated with a higher expres-
sion of vascular endothelial growth factor in tumor cells
[26] and thereby luminal B type cancers might show more
heterogeneous textural appearance in MR images enabling
the discrimination of the two types by the means of TA.
Larger tumors are generally associated with a poorer

prognosis than smaller tumors, so tumour size can be
considered as another important prognostic marker.
Evaluating breast tumour size is important when deter-
mining cancer type and extent of subsequent surgical
and oncological management. There are various
methods to determine tumour size including palpation
on physical examination and breast-imaging studies such
as mammography, ultrasound, and MRI. Because of its
superiority in assessing soft tissues, breast MRI is
recommended to be performed also in cases where the
actual tumour size cannot be estimated with other
modalities [27]. In breast MR images the estimate of
tumour size is usually done by measuring the largest
diameter from a single slice. Volumetric analysis has also
been proposed especially when studying the effectiveness
of treatment [28].
Our aim was to further study the relationship between

textural features and tumour volumes measured from
breast MRI and molecular subtypes luminal A and B.
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Since one significant difference between luminal A and
luminal B subtypes is a higher cell proliferation rate in
luminal B types, we studied correlation between textural
features, tumour volume and Ki-67. We focused our
study on analyzing precontrast MR images in contrast to
many previous studies which have mainly focused on
analyzing texture features from postcontrast images
[16–18]. Many newly diagnosed breast cancer patients
undergo breast MRI and if molecular subtypes could be
reliably estimated from breast MRI and provide prog-
nostic information in addition to diagnostic imaging, the
utility of preoperative breast MRI would increase.

Methods
Patient population
From a total of 50 consecutive adult patients referred to
the Department of Plastic and General Surgery, Turku
University Hospital, Turku, Finland, 27 patients were
chosen in this texture analysis study. Women were eli-
gible to participate in the study if they were 18 years of
age or older and if they had received a diagnosis of uni-
lateral invasive ductal breast cancer based on complete
mammography and ultrasound workup of both breasts
and ultrasound-guided core needle biopsy. Preopera-
tively, all patients underwent routinely breast MRI. The
study protocol was approved by the Ethical Review
Committee of the Hospital District of the South-West
Finland. All patients gave a written consent for the
study. Exclusion criteria for texture analysis study were
that images were taken with the same MR scanner using
the same coil and imaging sequence, no visible artifacts
on MR images or lesion size less than 7 mm. Luminal A
subtype (15 / 27) was defined as being ER positive,
HER2 negative, and Ki-67 low (< 20% cells positive) and
luminal B (12/27) subtype as being ER positive,HER2
negative or positive, and Ki-67 high (≥ 20% cells positive).
From total of 50 patient only 27 met our criteria. Eight
patients were excluded for not being purely ductal carcin-
omas, 2 were not imaged with the same MR system, 4
were not ER positive, with 6 patients the lesion size was
too small and 3 had visible artifacts on MR images.

Tumor Histology and Immunohistochemistry (IHC)
analysis
Tumor type was determined on the core needle biopsy
performed before chemotherapy or surgery. Four μm
thick serial paraffin section were cut from tumour tissue
and stained with haematoxylin and eosin. The breast
cancer histology was assessed according to the World
Health Organization classification [29] and tumour grad-
ing was based on the recommendations made by Elston
and Ellis in 1991 [30]. Tumour grades are classified as:
grade 1 is well-differentiated, grade 2 is moderately-
differentiated and grade 3 is poorly-differentiated.

Immunohistochemical staining of needle core biopsies
for estrogen and progesterone receptors (ER, PR), Ki-67
and HER2 were performed from subsequent sections.
Four different ready-to-use rabbit monoclonal antibodies
were used from Ventana Medical Systems/Roche Diag-
nostics: Estrogen Receptor (SPI, rabbit), Progesterone
Receptor (IE2, rabbit), HER2 (4B5, rabbit) and Ki-67
(30–9, rabbit) with BenchMark XT immunostainer and
ultraVIEW Universal DAB Detection Kit (Ventana/
Roche, Tucson, Arizona, USA). The percentage of nuclei
with immunoreactivity to ER, PR and Ki-67 was classi-
fied as continuous data from 0 to 100%. ER-positive and
PR-positive cases showed staining in at least 10% of the
tumour cell nuclei. Ki-67 was defined as low if ≤ 20% Ki-
67 was detected and as high if > 20% Ki-67 was detected.
HER2 expression was evaluated as membrane staining of
invasive tumour cells and scored from 0 to 3. Carcin-
omas revealing 2+ or 3+ immunostaining were retested
for HER2 gene amplification with chromogenic in situ
hybridization (CISH) to determine HER2 positivity.
Tumour size was taken to be the diameter of the largest
focus in surgical specimens. Axillary lymph node status
was achieved through sentinel lymph node biopsy or
axillary lymph node dissections. Table 1 presents the
lesion characteristics for the 27 invasive ductal, ER posi-
tive (luminal A and B types) cases that were entered into
the texture analysis.

MRI acquisition
MR imaging was carried out on 1.5 T MRI scanner
(Magnetom Avanto, Siemens Healthcare, Erlangen,
Germany) using the following sequences: T2 weighted

Table 1 Lesion characteristics

Parameter Patients
(luminal A types)

Patients
(luminal B types)

Histological type

Invasive ductal 15 12

Histological grade

grade 1 8 0

grade 2 7 5

grade3 0 7

Ki-67

< 20 15 0

≥ 20 0 12

lymph node status

negative 11 8

positive 4 4

diameter (mm)

7 - 15 mm 9 4

≥ 15 mm 6 8

Ki-67, proliferation marker
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fat saturated axial-, T1 weighted fat saturated dynamic-,
T1 weighted non fat saturated series in dynamic phase
and diffusion imaging. Images from T1 weighted non fat
saturated dynamic sequence (1.5 T: TR/TE = 8.1 ms/
4.72 ms, acquisition time: 8.56, FOV: 320 mm, matrix
448 × 448, slice thickness 1 mm, in-plane voxel size
0.7 mm, flip angle 25 deg., number of slices 144) were
used in texture analysis and volumetric measurements.
The first frame was acquired before injection of paramag-
netic contrast agent (Gd, 0.1 mmol/kg body, Dotarem®),
followed by 5 measurements. Un-enhanced images were
subtracted from the contrast-enhanced images on a pixel-
by-pixel basis, creating five subtraction series.

Image analysis
Texture analysis
The dynamic T1-weighted series for TA was chosen. We
focused our analyses mainly on T1-weighted pre-
contrast images but analyzed also the first sequence of
T1-weighted postcontrast images for a comparison.
Image slices were chosen on the basis of optimal repre-
sentation of the largest tumour area.
Circular standard size regions of interest (ROI) of radius

5 pixels were positioned by hospital physicist with a special
interest in developing quantitative radiology methods in
clinical use. An experienced senior radiologist provided as-
sistance for ROI settings. These regions of interest were
placed into the area of the lesion where the enhancement
was strongest in the first non-subtracted postcontrast
image and same ROI placement was used also in pre-
contrast images (Fig. 1). Standard size ROIs were used since
a previous study has shown some texture features to be
dependent on ROI size [31]. ROI size was chosen to ensure
sufficient number of pixels for texture feature calculations
and to fit all analyzed lesions to avoid partial volume effect.
The grey level normalization of each standard circular ROI
was performed using method which normalizes image in-
tensities in the range [μ-3σ, μ + 3σ], where μ is the mean
grey level value and σ the standard deviation, to minimize
the influence of contrast variation and brightness [32].
For TA we used a specialized program MaZda package

version 4.6 (The Technical University of Lodz, Institute
of Electronics). MaZda allows computation of texture
parameters based on image histogram, co-occurrence
matrix, run-length matrix, image gradients, autoregres-
sive model and wavelet analysis [33]. In this study we
used the 2D co-occurrence (COM) based parameters
since, according to our experience, they have shown po-
tential in breast MRI TA studies. The co-occurrence
matrix is a second order histogram of an image and it
relates into groups of pixels or pixel pairs. The basic
element of grey level co-occurrence matrix is the count
of the pixel pairs which have a certain grey level value in
given direction and pixel distance. Rather than using

gray level co-occurrence matrix directly in texture ana-
lysis, the co-occurrence matrices can be converted into
scalar measures of texture, which can be used to meas-
ure the textures of images and regions In total, 11
COM-based (angular second moment, contrast, correl-
ation, sum of squares, inverse difference moment, sum
average, sum variance, sum entropy, entropy, difference
variance and difference entropy) were calculated with
the distance of one pixel and in four directions (0°, 45°,
90°, and 135°). The four directional components of each
parameter were averaged into one parameter in order to
enhance the robustness of the method. Angular second
moment is a measure image uniformity. This feature ob-
tains a high value, when a grey level distribution in the
image is either constant or periodic. Thus a higher value
for this feature indicates that the image is homogenous.
Also feature inverse difference moment measures image
homogeneity. When inverse difference reaches high
values, image can be considered to be smooth. Contrast
measures the local variations in the image. The lowest
contrast value can be obtained when the pixels have the
same or very similar grey level values. Correlation mea-
sures the grey level linear dependencies in the image. It
measures how well correlated one pixel is with its neigh-
bor over the whole image. If an image has a large areas
of similar intensities, correlation will be high. Sum of
squares is the variance of the co-occurrence matrix and
the values are somewhat similar to the values of histo-
gram variance. Sum average gives the average of sums of
two pixel values in the image of interest. The pixel pairs
which are used in calculation are the ones used in form-
ing the co-occurrence matrix, thus the sum average is
not dependent on the direction or the on the pixel dis-
tance used in calculations. Entropy- based features

Fig. 1 Standard size circular region of interest (ROI) loaded over
T1-weighted MR image in MaZda after image normalization. The
tumour is grade 3 invasive ductal carcinoma in left breast
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indicate the complexity and randomness within the
region of interest. Difference variance and difference
entropy are based on differences calculated between two
pixel values [33].

Tumour volume
Volumetric analysis was done with image postprocessing
software ImageJ, which is a public domain, Java-based
image processing program developed at the National
Institutes of Health [34]. In all T1-weighted subtracted
images tumour mass was manually outlined on the com-
puter monitor. The area of tumour in each slice was
multiplied by the slice profile, and total tumour volume
was automatically calculated by summation of the adja-
cent volumes.

Statistical analysis
Statistical analysis was performed using commercially
available software (SPSS, v. 22.0; Chicago, IL). Because
of skewed distribution of the data, the independent
Mann–Whitney U-test was used to determine whether
the texture features calculated from pre- or postcontrast
images were significantly differing between luminal A
and luminal B cancers. To further evaluate how different
and able to separate both groups TA parameters were,
empirical ROC curves were generated for the parameters
which presented significant differences between luminal
A and luminal B types. The area under the curve (AUC)
which measures how well a parameter can distinguish
between two diagnostic groups (AUC close to 1 indicate
a very informative test) was calculated. The texture fea-
tures which proved to be statistically different between
luminal A and B types and were not strongly correlated
with each other were used as an entry in a binary logistic
regression. Additional ROC curve was computed to
assess the accuracy of a predictive model. ROC curves
were used to identify optimal cutoff values in distin-
guishing luminal types. In order to assess the
generalization error, leave-one-out cross validation
(LOOCV) was performed. Spearman correlation was
used to study how texture features correlated with Ki-67
or grade or volume. The values of r, 0–0.19 is regarded
as very weak, 0.2–0.39 as weak, 0.40–0.59 as moderate,
0.6–0.79 as strong and 0.8–1 as very strong correlation.
The resulting p-values less than 0.05 are considered to
be statistically significant.

Results
Texture features and volumes between luminal A and
luminal B
Luminal A and B types presented differing textural ap-
pearance. Most of the texture features calculated from
precontrast images were significantly different. Postcon-
trast images however did not yield so promising results

(Table 2). Luminal types were also significantly differing
in volume (p = 0.041), luminal B types tended to be
slightly larger.
The AUC obtained from the ROC curves were calcu-

lated for all significantly differing texture features and
obtained values were near 0.7 in all analyses. The texture
features sum entropy and sum variance presented the
highest AUC (Sum entropy, 0.828; Sum variance, 0.833).
These two features were used in a binary logistic regres-
sion as they did not have strong correlation with each
other (r = 0.447, p = 0.022). Additional ROC curve was
computed to assess the accuracy of a predictive model
with these two most discriminative texture parameters.
The results of ROC curve analysis representing the
complete data set for sum entropy, sum variance and
the model combining these parameters are shown in
Fig. 2 and Table 3. The combination of sum entropy and
sum variance resulted in an AUC equal to 0.878 to cor-
rectly characterize luminal B type (p = 0.001). For com-
bination of these two parameters, a cutoff value of 0.497
resulted in a sensitivity of 91.7% and specificity of 86.7%
to separate both groups. The diagnostic values barely de-
creased in the cross validation: The LOOCV resulted in
91.3% sensitivity and 86% specificity. Adding tumour
volume in the prediction model did not yield any better
outcome. As for comparison empirical ROC curves were
generated also TA features calculated from postcontrast
images, even though they did not statistically differ be-
tween luminal A and B types. The AUC obtained from
the ROC curves were all under 0.5 (Sum entropy, 0.327;
Sum variance, 0.327).

Correlations between texture features and prognostic
features
There were 8 G1 lesions, 12 G2 lesions and 7 G3 lesions.
A higher grade tumours showed tendency to be a
slightly larger in volume (p = 0.05). No notable correla-
tions were observed in TA parameters calculated from
pre-or postcontrast images between different grade tu-
mours. Only one feature, difference variance, showed
moderate negative correlation with tumour grade (r =
−0,469, p = 0.03) other correlation coefficients were all
under 0.4 and p values over 0.05.
Moderate correlation between tumour volume and Ki-

67 index was observed (r = 0.499, p = 0.008), indicating
that larger tumours had higher Ki-67 index. Most TA
parameters calculated from precontrast images corre-
lated with Ki-67 index. Sum entropy and sum variance
both correlated with Ki-67 index (sum entropy: r = 0.607,
p = 0.001; sum variance: r = 0.5, p = 0.008). Sum entropy
also seemed to correlate positively with tumour volume
(r = 0.637, p < 0.001). Entropy-based TA features from
postcontrast images seemed also correlated with Ki-67
index. However correlations were only moderate (sum
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entropy: r = 0.447, p = 0.40; entropy: r = 0.391, p = 0.44;
diff entropy: r = 0.5, p = 0.07).

Discussion
We showed in this study that texture analysis could dis-
criminate luminal A and luminal B types of ductal car-
cinomas. In this study we combined TA and tumour
volumetric analysis in studying if we can differentiate
the two ER positive cancers; luminal A and luminal B
types. Malignant tumours possess more heterogeneous
tissue architecture [35] and therefore might reflect a
wider and more heterogeneous range of pixel values in
MR images. Our hypothesis was that more aggressive

cancers might also present greater degree of textural
heterogeneity in the MR images.
Several calculated texture features from T1-weighted

precontrast images were significantly different (p < 0.05)
between luminal A and B types. Significantly differing
features in our study; angular second moment, contrast,
correlation, sum variance, sum entropy, difference vari-
ance and difference entropy are all one way or another,
measures of heterogeneous textural appearance. Accord-
ing to our study luminal B type cancer have in fact more
heterogeneous appearance in MR images than luminal A
types. Especially entropy-based features or features
representing heterogeneous and random textural pat-
terns have also shown potential in discriminating benign
and malignant breast tumours in breast MR images in
previous studies [17–19]. Most previous studies have ap-
plied texture analysis in postcontrast MR images [16–20,
22]. By calculating texture features from postcontrast
images one may captivate mostly the texture pattern
caused by the spreading and distribution of the contrast
media. One of our aims was specifically to study the tex-
tural appearances and differences between luminal A
and B types in precontrast MR images, to reveal the
underlying tissue architecture. In our study T1-weighted
postcontrast images did not show significant textural dif-
ferences between luminal A and B types. One possible
reason for this might be ROI size, which was relatively
small. The signal from the contrast media might have
partially masked the real underlying texture pattern.
Luminal A and luminal B types showed also difference

in tumour volume (p = 0.041). Luminal B types were
larger in volume than luminal A types. Larger tumours
tended to correlate positively with entropy based
features (entropy r = 0.682, p < 0.001 and sum entropy r
= 0.637, p < 0.001) and negatively with angular second

Table 2 Textural differences between luminal types A and B. Calculated from pre- and postcontrast images

Precontrast postcontrast

Texture feature p-value Higher value in
group A/B

p-value Higher value in
group A/B

Texture difference between
luminal A and luminal B

Angular second moment 0.016 luminal A 0.212 luminal A

Contrast 0.025 luminal A 0.322 luminal A

Correlation 0.007 luminal B 0.212 luminal B

Sum of squares 0.126 luminal B 0.527 luminal B

Inverse different moment 0.829 luminal A 0.118 luminal B

Sum average 0.093 luminal B 0.595 luminal B

Sum variance 0.003 luminal B 0.145 luminal B

Sum entropy 0.003 luminal B 0.145 luminal B

Entropy 0.021 luminal B 0.231 luminal B

Difference variance 0.007 luminal A 0.595 luminal A

Difference entropy 0.021 luminal B 0.118 luminal B

Significant p-values (p < 0.05) are given in bold face

Fig. 2 ROC curves of texture analysis parameters in distinguishing
between luminal A and luminal B types. Sum entropy (dotline), Sum
variance (dash line), and predictive model combining sum entropy
and sum variance (solid line) are shown. Diagonal line represents
AUC of 0.50. The ROC curves represent the complete data set, please
refer to text for LOOCV results. AUC values are given in Table 3.
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moment (r = − 0.65, p < 0.001). Since entropy is a meas-
ure of randomness and heterogeneity of the studied re-
gion and correspondingly angular second moment
represents homogeneity of the given region, it appeared
that larger tumours are more heterogeneous and com-
plex on their texture appearance. The Ki-67 index is cor-
related with a high mitotic count and recurrent disease
[36]. In our study, a high Ki-67 index was related to
higher values in entropy based features (sum entropy: r
= 0.607, p = 0.001).
Since histologic grade is a characteristic feature when

evaluating tumour aggressiveness, we studied also the ef-
fect of histological grade on tumour volume and texture
features. A slightly greater tumour volume was observed
in higher grade tumours. However, since only one texture
feature correlated with tumour grade (difference variance,
r = −.419, p = 0.3), we may think that tumour grade is not
a dominant factor on revealed textural differences.
MRI texture analysis has been used in discriminating

benign and malignant lesions [16] classifying the under-
lying breast cancer subtypes [20, 37] and also evaluating
treatment response [38, 39]. There seems to be a grow-
ing interest in studying the potential of TA in shedding
light to histopathologic features [20, 24, 40] and provid-
ing further information on the biologic aggressiveness of
breast tumours. Tumour heterogeneity and its relation-
ship with pathology have been studied [16, 20]. Ahmed
et al. recently observed textural differences between
triple negative breast cancers and other types in
contrast-enhanced MRI [41] and in their work Bhooshan
et al. showed that co-occurrence textural features mea-
sured in contrast-enhanced MRI could distinguish in
situ ductal carcinoma and invasive ductal carcinoma,
and also invasive ductal carcinoma with positive lymph
node. The authors found that lesion heterogeneity,
which can be presented using texture features, was an
indicator of malignancy [42]. In a more recent study by
Bhooshan et al. [43] applied texture analysis of DCE-
MRI breast images with other computerized methods
such as kinetic features in an attempt to distinguish be-
tween invasive ductal carcinoma lesions of Grade 1,
Grade 2, and Grade 3 with very encouraging results.
According to our study the proliferation rate and, in

some extend the size of the tumour, correlated with the
texture features. Our previous study [31] has shown that

many, especially entropy-based features, are dependent
of ROI size. Therefore in this study we used standard
size and shape ROIs to eliminate the possible effect of
ROI size to our texture measurements. Though it was
not in fact an immense discovery that larger and higher
grade tumours possess more heterogeneous textural ap-
pearance, it is an interesting finding that luminal A and
B types proved to be different in volume and in texture.
The study did not have a very large patient group due to
the fact that we wanted to select homogeneous material.
Nevertheless we were still able to identify statistically
significant differences in textural features between lu-
minal A and luminal B subtype. We acknowledge that
the limitation of this study is the small sample size and
texture features which were approaching significance
also in T1-weighted postcontrast images may become
statistically significant with a larger sample size. Features
calculated from postcontrast images which did achieve
smallest p-values were features which represent hetero-
geneous patterns and were in fact the same ones which
did statistically differ in precontrast images (Table 2). It
is necessary to also note that this study contained high
number of comparisons and since p-values are not cor-
rected for multiple comparisons there might be some
false positive findings due to random variability. A future
study of interest would be to further assess the perform-
ance of texture features especially with MR images with-
out contrast media, with larger data set and proper
classification analysis with an appropriate training set.
Also the use of other MR sequences would be one of
our future interests. Combining information from both
T2-weighted and T1-weighted MR images for distin-
guishing different kind of breast lesions might be advan-
tageous. Also another limitation of this preliminary
study is that due to the small sample size we did not
perform a separate validation set for the logistic regres-
sion model and the performance of the model remains
somewhat unclear. A further evaluation of the model
needs to be explored in future work on a larger data set
and also combining magnetic resonance (MR) imaging
kinetic and morphologic features to the analysis.

Conclusions
In conclusion, our results indicate that textural features of
pre-contrast T1w images may be used for sub- typing of

Table 3 ROC curve AUC values of texture features sum entropy, sum variance and their combination (precontrast images)

texture feature AUC, Mean ± SD p-value AUC, Mean ± SD
(LOOCV)

Sum entropy 0.828 ± 0.079 0.004 0.827 ± 0.065

Sum variance 0.833 ± 0.081 0.003 0.832 ± 0.076

Sum entropy + Sum variance 0.878 ± 0.72 0.001 0.876 ± 0.077

Significant p-values (p < 0.05) are given in bold face
AUC area under the curve, LOOCV leave-one-out cross validation
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breast cancer. Texture features which measure random-
ness, complex or smoothness and homogeneity are the
ones which seem to differentiate luminal A and luminal B
types. These MR image texture features may either
directly or indirectly reflect underlying growth patterns
and, therefore, may prove useful in decisions regarding
therapeutic efficacy and in the monitoring and follow-up
of breast cancers during and after treatment. Differentiat-
ing between luminal A and luminal B breast cancers is
nowadays important for treatment planning. The immu-
nohistochemical classification of breast cancer as a clinical
tool is supported because it can be used at a reasonable
cost. However, biopsy represents just a small area of the
tumour volume. Thus, a non-invasive analysis like TA
offers a method to assess the whole tumour volume and
could be of great value in assisting in treatment decision.
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