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Abstract

Background: To assess the feasibility of texture analysis (TA) based on spectral attenuated inversion-recovery T2
weighted magnetic resonance imaging (SPAIR T2W-MRI) for the classification of hepatic hemangioma (HH), hepatic
metastases (HM) and hepatocellular carcinoma (HCC).

Methods: The SPAIR T2W-MRI data of 162 patients with HH (n=55), HM (n=67) and HCC (n=40) were retrospectively
analyzed. We used two independent cohorts for training (n = 112 patients) and validation (n = 50 patients). The TA
was performed and textual parameters derived from the gray level co-occurrence matrix (GLCM), gray level gradient
co-occurrence matrix (GLGCM), gray-level run-length matrix (GLRLM), Gabor wavelet transform (GWTF), intensity-size-
zone matrix (ISZM), and histogram features were calculated. The capacity of each parameter to classify three types of
single liver lesions was assessed using the Kruskal-Wallis test. Specificity and sensitivity for each of the studied
parameters were derived using ROC curves. Four supervised classification algorithms were trained with the most
influential textural features in the classification of tumor types. The test datasets validated the reliability of the models.

Results: The texture analyses showed that the HH versus HM, HM versus HCC, and HH versus HCC could be
differentiated by 9, 16 and 10 feature parameters, respectively. The model’s misclassification rates were 11.7, 9.6
and 9.7% respectively. No texture feature was able to adequately distinguish among the three types of single
liver lesions at the same time. The BP-ANN model had better predictive ability.

Conclusion: Texture features of SPAIR T2W-MRI can classify the three types of single liver lesions (HH, HM and HCC)
and may serve as an adjunct tool for accurate diagnosis of these diseases.
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Background
Hepatic hemangioma (HH), hepatic metastasis (HM)
and hepatocellular carcinoma (HCC) are regarded as the
main reasons of liver lesions [1]. Clinically, single liver
lesions without symptoms are difficult to diagnosis. Im-
aging examination, especially MRI, is viewed as one of
the most sensitive and specific techniques for evaluating
liver lesions. Diagnosis of these lesions is usually per-
formed by visual inspection characterizing the medical
imaging features such as lesion size, signal intensity and
signal enhancement [2–5]. However, the hallmarks of
the three types of liver lesions on MRI images overlap
each other [3], especially for single lesions in the liver.

The subjective nature of many diagnostic decisions re-
lated to the characterization of hepatic lesions also de-
creases the sensitivity of diagnosis. As a result, clinicians
continuously seek better methods for accurate diagnosis.
One possible remedy for these limitations is texture

analysis (TA) of MRI. TA is not a new technique and
has been studied for medical imaging since 1973. More
recently, TA has been applied to CT, MR and PET stud-
ies [6–8]. While the human eye cannot inspect some
subtle differences in image information (coarseness,
rough and busyness), the TA technique can provide a
great deal of help. TA of medical images provides a
quantitative measure of the imaging features that may
relate to the characteristics of the pathological informa-
tion in the lesions [9]. Preliminary studies of TA
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applications have focused on various tumors [10] where
the TA had been demonstrated to improve the
characterization and diagnosis. Georgiadis [11] showed
that TA based on brain MRI could discriminate between
metastases, gliomas and meningiomas. Holli [12] indi-
cated that MRI texture analysis could differentiate breast
cancer from normal tissue and might be able to distin-
guish between histological types (lobular and ductal) of
invasive breast cancer. Our previous study also demon-
strated that TA of T1 post contrast MRI could capture
features of brain metastases from four types of lung can-
cers. Texture features could be a new tool for oncolo-
gists to accurately diagnose the lesions and guide
therapy based on the pathological image information of
tumors [13].
In most cases, normal liver tissue contains lipid and

chronic liver disease often induces fatty degeneration.
These situations can increase the signal of liver paren-
chyma on T2WI, and affect the contrast between liver
parenchyma lesions and normal liver tissue. The SPAIR
T2-MRI can achieve fat suppression and clear imaging
presentation of the pathological changes based on the
inherent frequency shift between fat and water [14]. The
SPAIR T2W-MRI has been widely used in the clinical
setting to increase the contrast of the image and im-
prove the diagnosis of liver disease. We hypothesize fur-
ther that the textural difference among the three types
of liver lesions can be detected by TA of SPAIR T2-MRI
images. The purpose of this work is to determine the
use of TA on SPAIR T2 images to differentiate the three
types (HH, HM, and HCC) of single liver lesions.

Methods
Data acquisition
The SPAIR T2W-MRI datasets for 162 patients with sin-
gle liver lesions were obtained from our institution from
Aug 2014 to May 2016. The image datasets comprise of
55 HH, 67 HM and 40 HCC, with the diagnosis verified
by postoperative pathology, biopsy or digital subtraction
angiography (DSA). All scans are performed on a 3.0-T
MR scanner (Philips Achieva 3.0-T X-series, Phillips
Healthcare, The Netherlands) and SPAIR T2W-MRI is
obtained in axial planes (slice thickness: 4 mm; slice:24;
gap: 5mm; repetition time [TR]/echo time [TE], 1277.4/
70 millisecond [ms]; flip angle, 233 degrees; matrix size,
256×256; field of view (FOV), 375×375mm). The four
different MRI series in the same image location, includ-
ing diffusion-weighted imaging, T1-weighted MRI,
SPAIR T2-MRI, and T2-weighted MRI are shown in
Figure 1. The figure shows that SPAIR T2-MRI can
achieve more clear imaging presentation of the patho-
logical changes than T2 weighted image. The MIM soft-
ware (commercial softer ware, MIM vista Corp, Cleveland,
OH) counters the same sizes of regions of interest (ROIs)
for all four MRI series.

Image pre-processing
The pre-processing step included selecting slice, con-
touring regions of interest (ROIs) and intensity
normalization. In order to improve robustness of con-
touring ROIs, contours were performed by three se-
nior board certified radiologists who specialize in
abdominal imaging using a semi-automatic module on

Fig. 1. Axial slice of a patient with hepatocellular carcinoma, displayed on four different MRI series. a Diffusion-weighted imaging. b T1-weighted
MRI. c spectral attenuated inversion-recovery T2 weighted magnetic resonance imaging. d T2-weighted MRI. The enhancing lesion (pink) are
manually contoured using MIM software.
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a commercially available software tool (MIM). All radiol-
ogists were blinded to the clinical information of all pa-
tients. To analyze the intra-observer reproducibility, the
parameters were repeatedly measured by a second obser-
ver at an interval of 6 weeks. For each lesion, the ROI
was defined and delineated around the largest cross-
sectional area of the lesion inner outline. The equipment
voltage changes and subtle differences in parameter set-
ting can lead to variation of gray level intensities. In order
to correct for these variations, two steps were used. The
first step was filtering the image using a Wiener filter to
reduce image noise and normalize tumor intensities in
the same range. The second step was deciding which gray
levels would be included in the range. Voxel intensity
values were generally resampled in four discrete values
(16-128):
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The ‘Range’ represents four different normalized
values (16,32,64,128), Iis the gray level intensity, and Θ
is a pixels set in the ROI. Our previous studies shown
that no statistically significant differences in choosing
discrete values [15]. In this study, we also did some re-
lated experiments. The results showed that all textural
parameters describing local heterogeneity were insensi-
tive to the chosen discretization values, but several re-
gional heterogeneity parameters calculated on intensity-
size-zone matrices were sensitive to the chosen
discretization value. The low-intensity large-zone em-
phasis was characterized by a mean difference of
31%±15% and 61%±18% using 16 and 128 values, re-
spectively. On the other hand, the intensity and size
variability of uniform tumor areas were largely inde-
pendent (SD differences < 20%) of the discretization
values, with no statistically significant differences. And
several regional heterogeneity parameters calculated on
intensity size–zone matrices were sensitive to the chosen
discretization value, with statistically significant differ-
ences for using different discretization values (SD values
> 20%). The 32 discrete values were chosen in the re-
sampling normalization process. The detailed descrip-
tion for four different normalized values is shown in
supporting information.

Texture analysis
In the texture feature extraction module, many features
are extracted for classification. Generally, texture con-
tained important information which is used for the clas-
sification and analysis of many types of images. Texture
features refers to the spatial relationships and arrange-
ment of the pixels of an image. Visually, these spatial
distribution and arrangement of the pixels are shown as

variations in the intensity patterns or gray tone. There-
fore, texture features mainly reflect gray tones of the
image. The human eye can recognize texture by percep-
tual experience, such as roughness, periodicity, busyness
and uniform, but it is quite a difficult task to feel a nice
distinction for similar texture. From the SPAIR T2W-
MRI images in this study, six different texture feature
sets are extracted separately from intensity histogram
features (IHF), gray level co-occurrence matrix (GLCM),
gray level gradient co-occurrence matrix (GLGCM),
gray-level run-length matrix (GLRLM), Gabor wavelet
transform texture (GWTF), and intensity-size-zone
matrix (ISZM) (a total of 233 features). The used texture
features are briefly outlined in Table 1.

Detailed feature description
The histogram feature of image is the one dimensional
statistics value that reflects the distribution of gray-level
value. The mean, variance, percentiles, skewness, kur-
tosis, energy and entropy are the common features of
the gray-level histogram. The environment changes of
equipment may inflect gray-level value, so we only select
three features (variance, skewness, and kurtosis) that do
not vary along with gray-level changes. The selected fea-
tures show the change trend of gray-level value. Al-
though the histogram feature has obvious advantage in
showing the distribution of value, it has limitation in
reflecting spatial relationships or correlations between
pixels. In order to overcome the above defect, the fol-
lowing features are studied.
The GLCM, describing pair-wise arrangement of pixels

with the same gray-level, is used to highlight local het-
erogeneity information. The GLCM describes the ar-
rangement of pixels with the same gray scale. The
number of pair-pixel with the same gray-level in a pre-
defined direction and distance is counted and summa-
rized in the matrix.
In the first step of computing the GLCM, selection of

a special ‘direction’(d) and a ‘distance’(θ) is needed. In
this study, an 8-connexity (neighboring pixels in all di-
rections including 0∘ , 45∘ , 90∘ , 135∘and their opposite di-
rections) and 4 distances (i.e., 1, 2, 4, 8 pixels distance)
are chosen. Then each distance and direction can get
the same textural parameters, but the lesion can be
depicted better in a special ones. Then, 80 textual pa-
rameters (the calculated mean and variance of the four
directions) are calculated according to the Haralick [16]
features in order to obtain the regional isotropy
properties.
The gradient can show the spatial variation between

gray-level pixels in the image. A high gradient value
shows a steep variation in that point, whereas a low gra-
dient does a smooth variation. The difference of the gray
level value between neighbor pixels is described as the
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gray level gradient of the pixel which is derived from the
gray image. The GLGCM, which describes the corre-
sponding relation between the gray value and the gradi-
ent of each pixel in predefined direction, is acquired
from the original image and the corresponding gray
image. Besides, 15 textual parameters highlight local var-
iations of pixel intensities and its gradient are extracted
from GLGCM according to the Haralick features [16].
Detailed features extractable from GLGCM are included
in Additional file 1: Table S1.
A set of features based on gray level run lengths

matrix (GLRLM) is also employed. A gray-level run-
length is defined as a measure of contiguous gray levels
along a specific orientation. The length of runs mainly
depends on how rough the image. GLRLM depicts dis-
tribution of gray in a specific line of image. In a coarse
texture, we will expect that relatively long runs occur
relatively often, whereas a fine texture should contain
primarily short runs. The run length features are defined
as follows [17]. For example, given the special direction,
GLRLM measures how many times there are runs of
two or more consecutive pixels with the same value. For
each ROI, we calculated the GLRLM in each one of the
four 2D directions (0∘ , 45∘ , 90∘ , 135∘). Then, for each of
the four directions, the same eleven descriptors can also

be calculated for the GLRLM for image. The final values
of per descriptor are the four values obtained from the
four orientations. A summary of the features extractable
from GLRLM is included in Additional file 1: Table S2.
The Gabor transform feature, a special case of the

short time Fourier transform, is used to reflect spatial
relationship of image in different scale and frequency
domain. The wavelet analysis can be interpreted as
image decomposition in a set of independent, spatially
oriented frequency channels. In this study, we choose 5
numbers of wavelet scales and 8 numbers of filter orien-
tations. 40 mean square energy parameters and 40 mean
amplitude parameters are extracted.
Finally, ISZM is used to characterize the regional in-

formation of the size and intensity of pixel zones with
the same gray value (homogeneous zones). Mathematic
definitions of regional heterogeneity formulas use in this
study are summarized in Florent Tixier [15]. The ISZM
is similar to GLRLM encoding algorithm; the difference
is that GLRLM reflected gray variation in each one of
the four directions (0∘ , 45∘ , 90∘ , 135∘), while the ISZM
characterizes the regional information and intensity of
pixel zones with the same gray value. Detailed features
extractable from GLRLM are shown in Additional file 1:
Table S3.

Table 1 TA features grouped by texture type

Texture type

IH GLCM GLGCM GLRLM(0°,45°,90°,135°) GWTF ISZM

Variance Energymean/variance Small gradient emphasis Short run emphasis S_gabor-00 Small zone emphasis

Skewness Entropymean/variance Large gradient emphasis Long run emphasis S_gabor-01 Large zone emphasis

Kurtosis Contrastmean/variance Gray inhomogeneous Grey-Level Non-uniformity S_gabor-02 Intensity variability

Correlationmean/variance Gradient gray
inhomogeneous

Run-Length Non-uniformity S_gabor-03 Size zone variability

Homogeneitymean/variance Gradient energy Low Gray-Level Run emphasis S_gabor-04 Zone percentage

Sum Variancemean/variance Mean Gray High Gray-Level Run emphasis ... Low intensity emphasis

Cluster shademean/variance Mean Gradient Short Run Low Gray-Level emphasis S_gabor-47 High intensity emphasis

Cluster tendencymean/variance Gray variance Short Run High Gray-Level emphasis A_gabor-00 Low-intensity small-zone
emphasis

Inverse difference momentmean/variance Gradient variance Long Run Low Gray-Level emphasis A_gabor-01 High-intensity small-zone
emphasis

Inverse Variancemean/variance Gradient correlation Long Run High Gray-Level emphasis A_gabor-02 Low-intensity large-zone
emphasis

Gray entropy Run Percentage A_gabor-03 High-intensity large-zone
emphasis

Gradient entropy A_gabor-04

Mixture entropy A_gabor-05

Gradient difference
moment

...

Gradient inverse difference moment A_gabor-47

5 numbers of wavelet scales, 8 numbers of filter orientations, =0,1,2,3,4 and =0,1,2,3,4,5,6,7
S_gabor-00 represents mean square energy features of ν=0 and μ=0
A_gabor-01 represents mean amplitude in scale of ν=0 and μ=1
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233 textual parameters which include 142 parameters
representing the local gray level variations (IHF, GLCM,
GLGCM and GLRLM), 80 parameters describing the
spatial relationship of image (GWTF) and 11 parameters
charactering regional pixel arrangements (ISZM) are ex-
tracted from the 4 different texture matrices and Gabor
transformation. Table 1 shows the detailed results.

Statistical analysis
Statistical analysis is performed using SPSS19.0 (IBM,
Armonk, New York, United States) for Windows. The
differences of each feature in pair-wise comparison of
the three subsets (HH, HM, and HCC) are investigated
using Kruskal-Walls test. A P<0.05 is considered statisti-
cally significant. We use receiver operating characteristic
(ROC) curve and the area under the curve (AUC) ana-
lysis to assess the discriminatory power of significant
texture features in differentiating three subtypes.

Feature selection methods
In this study, a large number of features (233 features
for six categories) are selected. Three main important
reasons to do features filter include reducing the model’s
training time, improving the robustness of the model
and enhancing the model’s reliability and behavior. Note
that not all the features need to be evaluated, as many
features are low repeatability and high redundancy.
The chosen parameters had three properties, reprodu-

cibility, high degree of differentiation and low redun-
dancy. To assess the texture features reproducibility, we
obtained test-retest scans from 15 independent patients.
The reproducibility of feature parameters was an import-
ant property in repeated experiments. The concordance
correlation coefficient (CCC) can meet the above pur-
pose with value >=0.9 in this study. Another consider-
ation was selecting the features with a high degree of
differentiation, using a defined “dynamic range” (DR)
metric. Similar to CCC, DR>=0.9 implied that the fea-
ture had a large dynamic range [18]. The R2 values close
to 1 mean the features are correlated parameters. The
procedure is repeated recursively to cover all the fea-
tures. We also compute the R2 between the remaining
features to quantify the dependency. For the above rea-
sons, it is necessary to reduce the number of features to
provide a reliable feature set, which will be used for tex-
ture discrimination and classification. Using the above
methods, 38 texture parameters were generated with
highly reproducibility.

Classifiers Models analysis
All classifiers are implemented using R package caret v
(6.0-71) [19], allowing accessibility with many machine
learning algorithms. R package caret is a set of functions
that attempted to streamline the process for creating

predictive models. K-nearest neighbor (KNN, the K is
the neighbor numbers, the 5 neighbors were chosen in
this study; distance metric was Euclidean distance) clas-
sifier model, Back propagation artificial neural network
(BP-ANN) classifier model (the number of hidden layers
was 1.), support vector machine (SVM, the SVM type
was C-SCM; the kernel was RBF) and Logistic regression
are used for improving accuracy for classifier [20].
The classification method can potentially affect the

stability of the models. The relative standard deviation
(RSD) and a bootstrap approach are used to quantify
stability of a classifier model [20]. The stability measure
method is first proposed by Yu et al. [21]. We first se-
lected 38 representative features based the above feature
selection method and used them to compute the classi-
fier stability. For each classification method, we all did
the train step (half of training cohort) and validate step
(the other half of training cohort). The AUC value was
used to describe the performance on the validation step.
For each feature selection method, the bootstrap ap-
proach was done in the training cohort’s subsample and
reported the median±std values in the results. RSD is
usually used to characterize the model’s stability. The
follow equation defines it

RSD ¼ σAUC
μAUC

� 100 ð2Þ

where σAUC and μAUC are the standard deviation and
mean of the AUC values respectively. The higher stabil-
ity models have relatively lower RSD values than lower
ones [22]. Classifiers were trained using the 10 fold cross
validation of training cohort (the 112 patients) and their
predictive performance was evaluated in the validation
cohort (the 50 patients) using area under ROC curve
(AUC).
The R software (R Core Team, Vienna, Austria,

version 3.2.3) and Matlab R2013b (Mathworks, Natick,
Massachusetts, USA) did all the analysis.

Results
Figure 2 shows three types of MR images with HH, HM,
HCC illustrating how the visual observation of different
tumor can challenging.

Classification and statistical results
As discussed above, the reproducibility of quantitative
imaging texture features, CCC, DR and R2 were com-
puted for all texture parameters. Using the above
methods, 75 texture parameters were generated with
highly reproducibility.
The Kruskal-Walls test was also performed to all con-

sidered features with the results showing that 9 texture
parameters could differentiate between HH and HM, 16
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texture parameters could differentiate between HM and
HCC, and 10 parameters could differentiate between
HH and HCC. The 9 texture parameters were mean of
energy and homogeneity in distance 2, SRE0/45(the pa-
rameters of Short Run Emphasis were in 0 degree and
45 degree), SRHGE0/45/90 (the parameters of Short Run
High Gray-Level Emphasis were in 0 degree, 45 degree
and 90 degree), small zone emphasis, and high-intensity
small-zone emphasis, showed a significant difference
between HH and HM. To discriminate between HH
and HM, we analyzed the mean of energy with ROC
curves and found a cut-off of 0.89, indicating that the
liver lesions whose mean of energy was higher than
0.89 were most likely from HH (sensitivity=70.6%,
specificity =90.5%, AUC=0.734; P=0.014). The detailed
data were shown in Table 2. Additionally, we found that
there was no statistical significance between HH, HM and
HCC (P>0.05). Similar results were shown in two other
categories, HM and HCC, HH and HCC. A summary of
detailed results is in Additional file 1: Table S4.
After further processing of the above results, the vec-

tor dimension was further reduced. To further evaluate
the models’ accuracies, the KNN, BP-ANN, SVM and

Logistic regression models were used. The RSD, K-fold
cross-validation and MCC evaluated classifier models
stability and accuracies. Results are shown in Table 3. By
inspecting the results illustrated in Table 3, we can see
that the BP-ANN model displayed the highest classifica-
tion accuracy over the other models in the three groups
(HH and HM; HM and HCC; HH and HCC), and other
classifier models had no obvious difference. The Logistic
regression model had a relatively higher stability with a
lower RSD value than other methods. The artificial judg-
ment did not show better results than other models.

Discussion
The image attributes usually include gray intensity,
morphology and texture. Image texture feature can be
defined as the spatial arrangement of pixel intensities in
an image and quantitated in mathematical. However, hu-
man visual assessment of texture is usually subjective. In
addition, it is difficult for the human observer to quanti-
tate textural patterns, whereas the TA methods can
provide an effective method to depict these textures
[23, 24]. The feasibility of texture analysis in the
evaluation of liver disease based on various imaging

Fig. 2. SPAIR T2W-MRIs from patients with a hepatic hemangioma, b hepatocellular carcinoma, c hepatic metastase. The analyzed tumor
region is displayed in the top left corner

Table 2 Sensitivity and specificity for ability of textural to differentiate between HH and HM

Feature Parameters P S.E. AUC 95% CI Sensitivity Specificity

GLCM Energymean 0.014 0.090 0.734 56.65%-82.45% 0.706 0.905

Homogeneitymean 0.012 0.075 0.782 64.23%-88.32% 0.619 0.941

GLRLM SRE0/45 0.016 0.062 0.825 61.45%-84.72% 0.933 0.667

0.021 0.057 0.812 62.12%-86.32% 0.824 0.867

SRHGE0/45/90 0.012 0.068 0.801 61.45%-84.72% 0.762 0.867

0.024 0.059 0.822 62.25%-87.33% 0.813 0.762

0.016 0.102 0.792 58.63%-84.36% 0.922

ISZM Small zone emphasis 0.009 0.074 0.851 73.23%-88.23% 0.932 0.762

High-intensity small-Zone emphais 0.007 0.067 0.832 71.23%-85.35% 0.810 0.733

Abbreviations: AUC area under the curve, CI confidence interval, SRE Short Run Emphasis, SRHGE Short Run High Gray-Level Emphasis. SRE0/45/90/135 and SRHGE0/45/
90/135 depicted the parameters of SRE and SRHGE in four directions, for SRE0/45, two directions (0 degree and 45 degree) were calculated for SRE
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features have also been widely explored in computed
tomography (CT), MRI and ultrasound [25, 26]. Ra-
man [27] showed that texture analysis of CT images
could distinguish the 3 liver lesion types (focal nodu-
lar hyperplasia, hepatic adenomas and hepatocellular
carcinomas) from normal liver with high predicted
classification performance accuracy. Mayerhoefer [26]
showed that texture analysis based on MR images
could classify liver cysts and hemangiomas. Xian [28]
performed texture analysis based on ultrasonography
images to identify malignant and benign liver tumors.
This study analyzed the usefulness of texture analysis
based on SPAIR T2W-MRI images in classification of
the three subtypes of single liver lesions (HH, HM
and HCC) and showed the potential role of textural
parameters in accurate detection and diagnosis of
liver lesions. To our knowledge, this is the first study
to focus on the role of texture analysis based on
SPAIR T2W-MRI images in classification of a small
subset (HH, HM, and HCC) of the single liver lesion.
As a noninvasive inspection, the textural analysis
based on SPAIR T2WI-MRI images deserves further
exploration. In clinical trials of liver lesions, different
pathological categories need special treatment
methods. If we can be accurate in classifying certain
ones, the treatment of the liver lesions can be indi-
vidualized and more effective.
The results demonstrate the possibility of using TA

based on SPAIR T2W-MRI to differentiate different
pathological types of liver lesions. The IHF feature, the
GLCM feature, GLGCM feature, Gabor wavelet feature,
and ISZM feature analyzed have been applied in other
oncology studies as well [8, 29–31]. Global features are
extracted from the intensity histogram of the tumor re-
gion, whereas GLCM, GLGCM, GLRLM, ISZM textures
are matrix-based features. The GLCM, which described
pair-wise arrangement of voxels with the same gray
value, was used to highlight local heterogeneity informa-
tion. In this study, we only find the statistical signifi-
cance in distance 2, which characterize local tumor area
heterogeneity. As the above mentioned texture

parameters, such as Energymean (2), Homogeneitymean (2)

can be applied to differentiate HH and HM and Homo-
geneitymean (2), Inverse difference momentmean (2) and
Inverse Variancemean (2) can be applied to differentiate
HM and HCC. Moreover, the Contrastmean (2) and
Inverse Variancemean (2) can serve as quantitative indexes
to classify HH and HCC. The GLGCM texture features
charted the variation of area gray value. The GLGCM
was acquired from the original image and the corre-
sponding gray gradient image, and used to describe the
dependency relationship between the gray value and the
gradient of each voxel in predefined direction. The
image gradient shows gray intensity variation. The small
gradient emphasis is dominant in the homogeneous
image. On the contrary, to coarse image, the value of the
large gradient emphasis is dominant. Small gradient em-
phasis and gradient nonhomogeneity not only can clas-
sify HH and HCC but can also differentiate between
HM and HCC. Meanwhile, some parameters (large gra-
dient emphasis and gradient entropy) have high discrim-
inatory power in between HM and HCC.
The GLRLM is a way of charactering the image, always

across a predefined direction, for set of pixels having the
same gray-level value. The short-run emphasis is a
measure of the proportions of runs that have short
lengths. It will have large values in coarse textures. The
short run high gray-level emphasis measures the corre-
lated relationship between short runs and high gray level
values. The SRE (short run emphasis), SRHGE (short
run high gray-level emphasis) in different directions
(two directions were 0 degree and 45 degree for SRE;
three directions 0 degree, 45 degree and 90 degree for
SRHGE ) can differentiate HH and HM. The LRE (long
run emphasis) and LRLGLE (Long Run Low Gray-Level
emphasis) in different directions (two directions were 0
degree and 90 degree for LRE; three directions 0 degree,
45 degree and 135 degree for LRLGLE) can different HM
and HCC. The LRE which is in two directions (0 degree
and 45 degree) can different HH and HCC.
The above texture features mainly depict the depend-

encies of pixels in a 2D geometry space. The Gabor

Table 3 Summary of classification results obtained by 10 fold cross-validation on three classification groups by BP-ANN, KNN, SVM
and logistic regression model
Models HH VS.HM HM VS. HCC HH VS. HCC

Acc% Sens % Spec % Mcc RSD % AUC % Acc % Sens % Spec % Mcc RSD % AUC % Acc % Sens % Spec % Mcc RSD % AUC %

BP-ANN 88 89 86 0.86 5.5 89 90 97 92 0.79 5.8 91 90 96 85 0.80 6.4 91

KNN 85 86 85 0.75 3.8 86 87 87 88 0.76 4.6 88 85 57 90 0.77 4.3 83

SVM 83 81 86 0.75 6.1 84 83 70 93 0.77 6.0 84 88 42 95 0.83 5.2 86

Logistic regression 79 81 78 0.83 2.6 80 87 87 88 0.73 1.9 85 88 86 90 0.78 3.8 89

Radiologist 87 81 86 0.76 - - 90 96 85 0.78 - - 92 100 85 0.70 - -

Abbreviations: BP-ANN back-propagation artificial neural network, KNN K-nearest neighbor, SVM Support vector machine, HH hepatic hemangioma, HM hepatic
metastases, HCC hepatocellular carcinoma. Area Under the ROC Curve, Accuracy, Sensitivity, Specificity and relative standard deviation are denoted as AUC, Acc,
Sens, Spec and RSD respectively
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transform can get image features in frequency domain.
The different frequencies and orientations of Gabor fil-
ters can extract meaningful texture features from image
[32]. In this study, A_gabor-13, 15, 23 (A_gabor-13,
amplitude in scale of ν=1 and μ=3) has the ability to dif-
ferentiate HM and HCC. Some other parameters (e.g.,
A_gabor-22, -23) have the same capability about HH
and HCC.
Additional file 1: Table S5 summarizes the features

corresponding to variability in the area size or gray in-
tensity of homogeneous areas in detail, which can also
be indicators of regional tumor heterogeneity. These pa-
rameters highlight the joint distribution of intensity
values and region sizes within the tumor.
These results might be attributed to the ability of tex-

ture analysis to indirectly capture the microscopic fea-
tures of these lesions, which was completely different for
each entity. For example, HH was composed of multiple
vascular channels lined by a single layer of endothelial
cells supported by a thin fibrous stroma and HCC was
malignant tumor with the tumor cells demonstrated
marked cytological atypia and irregular distribution [33].
These pathological features could not by visual inspec-
tion of the image of the tissue, whereas they might be
presented as the variety in the arrangement of pixels
which might be detected by texture analysis on medical
images.
To compare diverse classifier model performance and

obtain more robust classification model, four models of
KNN, BP-ANN, SVM and Logistic regression were used.
The k-fold cross validation, MCC and RSD ensure the
reliability and stability of the model. The results showed
TA can be a valuable clinical technique to distinguish
various liver lesions. The same TA method was also used
on three other series,but the SPAIR T2-MRI sequences
obtained more robust results. The reason may be that
fatty degeneration can increase the signal of liver paren-
chyma on T2WI and affect the contrast between liver
parenchyma lesions and normal liver tissue, there is no
advantage in the other three series. The only use of 2D
slice has some limitations compared to 3D TA methods.
Because the 2D slice might not be sufficient to capture
any heterogeneities present across the tumor volume. In
addition, 3D slice can capture inter-slice features that
are completely ignored in the traditional 2D approach.
Because the slice gap and slice thickness are too large,
this study is not suitable for 3D TA methods. In our fu-
ture study, the 3D TA methods will be applied.

Conclusions
The differences in gene expression conduce the patho-
logical types. Texture features are the outward manifest-
ation of pathological types. The TA can quantize the
arrangement of tumor cells with different pathological

types. The differences of texture may be related to tumor
gene expression and biological behavior. Our study gives
a new method to differentiate liver pathological types
using SPAIR MR images. Our study is limited by several
factors, including the retrospective nature of the assess-
ment of a relatively small group of patients. Therefore,
the predictive accuracy and stability of the textural pa-
rameters should be validated in a larger, prospective pa-
tient cohort. Multi-center research in the future may
also be needed. With prospective cohorts, we expect
higher reliability would be gained in future studies.

Additional file

Additional file 1: The description of the appendix. The appendix includes
the supporting information for the study. It includes detailed description for
features formula and other statistical results. (DOCX 1179 kb)
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A_gabor-13: Amplitude in scale of =1 and =33DThree dimensional;
ANOVA: Analysis of variance; AUC: The area under the curve; BP-ANN: Back
propagation artificial neural network; CCC: Concordance correlation
coefficient; CT: Computed tomography; DR: Dynamic range; DSA: Digital
subtraction angiography; Energymean(2): The mean of energy in distance 2;
Energyvariance(2): The variance of energy in distance 2; FOV: Field of view;
GLCM: Gray level co-occurrence matrix; GLGCM: Gray level gradient co-
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MCC: Matthews correlation coefficient; ROC: Receiver operating characteristic;
ROI: Regions of interest; RSD: Relative standard deviation; SPAIR T2W-
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