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Abstract

Background: Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over
predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single
transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data
adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider
composite regularization upon the various structural features of images and transform coefficients sub-bands.
Therefore, these two points lead to high sampling rates for reconstructing high-quality images.

Methods: In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from
lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a
novel composite regularization reconstruction model is developed to improve reconstruction results from highly
undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total
variation regularization, transform sub-bands coefficients l1 sparse regularization and constraining k-space
measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction
model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands
coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage
algorithm.

Results: Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed
images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI
methods.

Conclusions: The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance
images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary.
The new augmented Lagrangian method provides solutions fully complying to the composite regularization
reconstruction model with fast convergence speed.
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learning, Augmented Lagrangian
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Background
Compressed sensing(CS) was first presented in the liter-
ature of Information Theory as an abstract mathematical
idea [1, 2]. The fundamental idea behind CS is: rather than
first sampling at a high rate and then compressing the
sampled data, directly sensing the data in a compressed
form (at a lower sampling rate) is preferred. CS points
out that a signal can be recovered exactly from a small
set of random, linear and nonadaptive measurements if
it has a sparse representation. Suppose x ∈ C

p denotes
the unknown compressible (N-sparse) signal to be recon-
structed.� denotes a tight frame sparse transformmatrix.
Then x can be sparsely represented as α = �x, where
‖α‖0 = N (N � p). It is possible to measure a relatively
small number of “random" linear combinations of signal
(much smaller than the number of signal samples nomi-
nally defining it) allowing accurate reconstruction, which
is comparable to that attainable with direct knowledge of
theN most important coefficients. Themeasurement pro-
cess is denoted as y = �x, where � ∈ C

m×p (m � p)
denotes measurement matrix irrelevant to the sparse
transform basis. Thus

y = �x = ��−1α (1)

in which ��−1 is termed as the sensing matrix. The
sensing matrix should satisfy three properties including
the null space property, restricted isometry property and
bounded coherence [3]. Given measurements y and the
sensing matrix, the reconstruction problem turns out to
be an optimization problem of the form

argmin
x,α̂

∥∥α̂
∥∥
0 s.t. ��−1α̂ = y (2)

(2) can be solved by various nonlinear reconstruction
approaches.
In magnetic resonance imaging(MRI), the sampled

combinations are simply individual Fourier coefficients
(k-space samples). MRI is a relatively slow imagingmodal-
ity at a limited data acquisition speed. Undersampling
k-space allows speeding up imaging but introduces alias-
ing in the reconstructed magnetic resonance(MR) images
simultaneously, because it violates the Nyquist sampling
theorem. Compared with that by the sinc function inter-
polation using sampled data restricted by Nyquist sam-
pling theorem, CS enables MR image reconstruction with
little or no visual information loss from randomly under-
sampled k-space measurements. Hence, it is natural to
introduce CS into undersampled MRI. The emerging
method to reduce MRI scanning time via CS is termed CS
MRI [4, 5]. Three requirements for successful CSMRI are:
the MR image can be sparsely represented (compressible);
the aliasing artifacts brought by k-space undersampling
are incoherent (noise like) in the transform domain; then
CS solves the general reconstruction formulation using

nonlinear method by constraining both sparsity and k-
space measurements consistency. In CS MRI, incoherent
random, radial and spiral trajectories [4, 6, 7], etc, are used
to acquire measurements from k-space.
Sparsity is of vital importance for reducing artifacts in

CS MRI reconstruction. The generally used sparse rep-
resentation methods are spatial finite difference [4, 8, 9],
discrete wavelet transform(DWT) [4, 8, 9], sharp fre-
quency localization contourlet(SFLCT) [10, 11], discrete
curvelet transform using fast algorithm(FDCT) [12–14],
discrete shearlet transform(DST) [15, 16], sparsity along
temporal axis for dynamic cardiac imaging [17–19] and
the combination of some of these transforms [4, 20, 21].
Dictionary has also been introduced for sparse represen-
tation and adaptive data fitting [22, 23] and it is learnt
from intermediate reconstructed or fully sampled images.
Furthermore, double sparsity model has been proposed
likewise. It combines adaptive dictionary learning(DL)
with predefined sparse priors for signal flexible repre-
sentations, stability under noise and reducing overfitting
[24, 25]. Besides, nonlocal processing [26] methods have
been explored as well based on the similarity of image
patches [27–30] and sparsity originated from this similar-
ity [31, 32]. Established on the above sparse representation
approaches, various CS MRI methods have been pre-
sented for handling the ill-posed linear inverse problem,
including convex, nonsmooth sparse regularization (l1
and total variation) based LDP [4], TVCMRI [33], iterative
thresholding CS MRI based on SFLCT [11], FCSA [21],
NLTV-MRI upon nonlocal total variation(TV) [9], recon-
struction under wavelet structured sparsity(WaTMRI)
studied in [34], reconstruction via using DL [35–37] and
PANO [32] by using variable splitting(VS) and quadratic
penalty reconstruction technique [38] incorporated with
patch-based nonlocal operator, etc. Besides, a novel indi-
vidual MRI reconstruction framework of low-rank mod-
eling for local k-space neighborhoods(LORAKS) [39] was
also proposed. LORAKS generated support and phase
constraints in a fundamentally different way from more
direct regularized methods [4, 40]. Among these recon-
struction methods, DWT based MRI reconstruction gave
rise to feature loss and edge blur with numerous aliasing in
reconstructed images.WaTMRI provided new thought for
CS MRI by making full use of the coefficients structural
relationship. PANO was recently proposed to sparsify MR
images by using the similarity of image patches, achieved
considerably lower reconstruction error and allowed us to
establish a general formulation to constrain the sparsity
of similar patches and data consistency. The availability of
guide image and how the gridding process affect PANO
imaging with nonCartesian sampling remain to be care-
fully analyzed. Besides, LORAKS provided very flexible
implementation and was easily incorporated with other
constraints. Furthermore, 3D dynamic parallel imaging
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has also been presented and was of great significance
for practical MRI applications. 3D dynamic parallel imag-
ing was generally established on TV and sparsity along
temporal axis [17–19] and structured low-rank matrix
completion [41–45].
In this paper, a novel composite sparsity structure is

developed, which is inspired by double sparsity model.
In this composite sparsity structure, uniform discrete
curvelet transform(UDCT) [46] decomposes MR images
hierarchically into one lowpass sub-band and several
other highpass sub-bands. Then an adaptive dictio-
nary is learnt from the hardly sparse lowpass sub-band
coefficients patches. This adaptive DL allows a smaller
amount of calculation with little (or no) decrease of effi-
ciency compared with the double sparsity model. UDCT
has quite similar properties to those of wrapping-based
FDCT, such as C

(
logN

)3N−2 mean square error(MSE)
decay rate for C2-singularities signal with N most impor-
tant transform coefficients in the curvelet expansion,
tight frame property, highly directional sensitivity and
anisotropy in the sense that they both employ alias free
subsampling in frequency domain. Additionally, UDCT
possesses some specialities making it superior over FDCT
in CS MRI applications, such as a smaller redundancy
of 4 and clear coefficients parent-children relationship.
The goal of the proposed composite sparsity structure is
to capture various directional features of images hierar-
chically, provide more flexible and sparse representations
for lowpass sub-band adaptively, and reduce overfitting
and computational complexity simultaneously. Consistent
with this composite sparsity structure, one reconstruc-
tion model is provided. It involves minimizing UDCT
sub-bands coefficients l1 regularization, image and low-
pass sub-band coefficients TV penalty and constraining
k-space measurements fidelity. Then a new fast conver-
gent augmented Lagrangian(AL) reconstruction method
is presented to solve the reconstruction model. It is estab-
lished on the constrained split augmented Lagrangian
shrinkage algorithm(C-SALSA) [47], translates the origi-
nal formulation into another constrained one via VS and
then solves the constrained one by using the variant of
ADMM [48, 49](ADMM-2 [47]). The ADMM-2 result-
ing from our reconstruction problem involves quadratic
problem (which can be solved exactly in closed form), l1
regularization, a shrinkage operation and an orthogonal
projection on a ball.
The remainder of this paper is organized as follows.

Section “Methods” depicts the prior work, the proposed
CS MRI method including the composite sparsity struc-
ture and corresponding reconstruction model, and its
validity in detail. In section “Results and discussions”
some reconstruction results are exhibited for the pro-
posedmethod and current CSMRI techniques. The ability
in handling noise, convergence speed and influences of

the proposed reconstruction model parameters fluctua-
tion are analyzed, etc. Finally, conclusions and future work
are explicit in section Conclusions and future work.

Methods
Compressed sensing MRI prior art
In CS MRI, x ∈ C

p denotes the vector form of the 2D
MR image to be reconstructed and y = Fux denotes the
sensing procedure in k-space, where Fu ∈ C

m×p (m � p)
means undersampled Fourier Encoding matrix and y ∈
C
m represents k-space measurements. Assume � rep-

resents an analytical sparse transform operator or the
inverse of a set of signals learnt from image patches, the
sparse representation is defined as α = �x. Reconstruct-
ing the unknown MR image x from measurements y by
using CS is to solve the constrained CS MRI optimization
problem (3)

min
x

‖�x‖1 s.t.
∥∥Fux − y

∥∥2
2 ≤ ε (3)

where ε ∈ C
m represents the allowed noise vector in

reconstructed image, l1 regularization enforces sparsity of
�x and error constraint fits the reconstruction to the sam-
pled k-space measurements. Finite difference referred to
as TV is typically added into (3) for noise reduction and
spatial homogeneity enhancement. Then the formulation
is

min
x

‖�x‖1 + λTV (x) s.t.
∥∥Fux − y

∥∥2
2 ≤ ε (4)

where λ > 0 denotes the weight of TV regularization.
This becomes problem formulation settled by classical
LDP when � represents DWT. Besides, most state-of-
the-art AL based reconstruction methods consider one
unconstrained problem rather than (4), such as TVCMRI,
FCSA, iterative thresholding CSMRI based on SFLCT and
SALSA [50], etc

min
x

λ1 ‖�x‖1 + λ2TV (x) + 1
2

∥∥Fux − y
∥∥2
2 (5)

Additionally, reconstruction based on explicit DL from
image patches has been explored

min
x,D,�

∑
ij

∥∥Rijx − Dαij
∥∥2
2 + λ

∥∥Fux − y
∥∥2
2 s.t.

∥∥αij
∥∥
0

≤ T0,∀i, j
(6)

(6) is the formulation settled by DLMRI integrating DL
with image reconstruction simultaneously (refer to [35]),
where matrix Rij ∈ C

n×p is an operator that extracts max-
imum overlapped patch xij as a column vector from x,
denoted as xij = Rijx.

∑
ij RT

ijRij ∈ C
p×p represents a diag-

onal matrix, in which the diagonal elements correspond to
pixel locations of x. � is sparse representation set

{
αij

}
ij



Yang et al. BMCMedical Imaging  (2015) 15:28 Page 4 of 17

of all training patches of image. T0 denotes sparse thresh-
old and D the explicit dictionary. Here DL problem is
depicted in detail as a foundation of the proposed sparsity
structure. The DL problem is

min
D,�

∑
ij

∥∥Rijx − Dαij
∥∥2
2 s.t.

∥∥αij
∥∥
0 ≤ T0,∀i, j (7)

Formulation (7) is nonconvex and NP-hard [51, 52]
because it comes down to sparse encoding problem for
fixed D and x. K-SVD [53, 54] is a simple but effi-
cient approach to attack (7). It simultaneously imple-
ments dictionary update step where each atom of D
renews sequentially and corresponding sparse encoding
for image patches that currently use it. The dictionary
atom update involves computing K singular value decom-
positions(SVDs), once for each atom.

Proposedmethod
In this section, a composite regularization CS MRI
method established on a novel composite sparsity struc-
ture is presented. In the sparsity structure, UDCT decom-
poses spatial image into one lowpass sub-band and
several highpass sub-bands. Patch-based dictionary is
learnt from the lowpass sub-band coefficients patches
via Sparse K-SVD [25]. Then a novel composite regular-
ization reconstruction model is thereby established and
solved via VS and ADMM-2. The reconstruction model
involves spatial image and transform coefficients regular-
ization and k-space data fitting. The framework in Fig. 1
shows clearly the implementation process of the proposed
method, in which the unknown MR image x is initialized
with a zero-filling reconstructed image via direct inverse
Fourier transform to k-space measurements, denoted as
x0 = FHu y. UDCT decomposes both the real and imag-
inary parts of x0 into S levels, each level possessing 2κs
directional sub-bands. The real and imaginary parts of
complex-valuedMR image are handled separately because
UDCT can only perfectly deal with real-valued data.
Take the real part of zero-filling reconstructed image for
example, the lowpass UDCT sub-band is divided into

maximum overlapped patches (for dividing method, refer
to [35]) as training database for DL to enhance its spar-
sity. The obtained dictionary Dr (r = 1 (0) denotes result
over real (imaginary) part) is the result of Sparse K-SVD
to the training database. The sparse encodings set are
referred to as the double sparse coefficients for all train-
ing lowpass UDCT sub-band patches over learnt Dr . For
imaginary part, the same procedure is implemented. Let
x0 be the initial intermediate image and (Dr)† the pseudo-
inverse of Dr . The reconstruction step starts afterwards.
All nonoverlapping vector form patches (n × 1 sized) are
arrayed to produce a matrix from lowpass UDCT sub-
band of intermediate image. Results of (Dr)† multiplying
with the above matrix are the representation coefficients
�r
R (differing from double sparse coefficients) of lowpass

UDCT sub-band coefficients over the dictionary. They are
generally not sparse but easier to handle in our recon-
struction approach. The composite regularization recon-
struction formulation is solved by using VS and ADMM-2
based on C-SALSA thoughts in an iterative procedure
(an updated intermediate image for once iteration), which
involves modifying the representation coefficients, UDCT
sub-bands coefficients and k-space measurements. The
proposed method is named as local sparsity enhanced
CS MRI(LSECSMRI). Formulations and implementations
of the proposed sparsity structure and relevant recon-
struction model are described in detail in the following
content.

Composite sparsity structure
To the best of our knowledge, DWT is not applicable for
2D image sparse representation [55, 56] because of its
very limited directions and incapacity to capture geomet-
ric regularity along singularities of surfaces. Multi-scale
geometric analysis(MGA) methods like contourlet trans-
form [56], nonsubsampled contourlet transform(NSCT)
[57], SFLCT, FDCT and DST, etc, conquer the defects
of DWT. Contourlet transform lacks shift-invariance
though, which causes pseudo-Gibbs phenomena around
singularities. The resulting contourlets cannot ensure

Fig. 1 Framework of local sparsity enhanced CS MRI reconstruction
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good frequency localization and exhibit some fuzzy arti-
facts inevitably with a low redundancy of 4/3. NSCT is
overcompletely designed with better frequency selectivity,
regularity and fully shift-invariance. But it possesses very
high redundancy and large time consumption. SFLCT is
a semi-redundant contourlet transform providing flexible
redundancy. It only increases redundancy in the lowpass
filter l0(ω) to reduce pseudo-Gibbs phenomena, which are
mainly induced by down-sample in the lowpass filter. The
redundancy can be 2.33 if we don’t down sample l0(ω) and
1.33 if we down sample it by setting ↓ (d, d) =↓ (2, 2),
where d is the down-sample parameter that determines
the redundancy of contourlet. But SFLCT performs neg-
atively in capturing clear directional features. Similarly,
DST provides low redundancy less than or equal to 2. The
needle-shaped elements of FDCT allow very high direc-
tional sensitivity and anisotropy and are thus very efficient
in representing line-like edges. Nevertheless, FDCT pos-
sesses too high redundancy, which makes it sub-optimal
in sparse representation, either.
UDCT [46] is recently proposed as an innovative imple-

mentation of discrete curvelet transform disposing real-
valued signals. Utilizing the ideas of FFT-based discrete
curvelet transform and filter-bank based contourlet trans-
form, UDCT is designed as a perfect multi-resolution
reconstruction filter bank(FB) and executed by FFT algo-
rithm, possessing advantages of the both. The discrete
curvelet functions in UDCT are defined by a parameter-
ized family of smooth windowed functions that satisfy two
conditions: 1) 2π periodic; 2) their squares form a parti-
tion of unity and the centers of the curvelet functions at
each resolution are positioned on a uniform lattice. More-
over, the lattices of lower scales are subset of those at
higher scales, guaranteeing clear parent-children relation-
ship. UDCT can provide flexible instead of fixed number
of clear directions at each scale to capture various direc-
tional geometrical structures of image accurately. Besides,
the forward and inverse transform form a tight and self-
dual frame with an acceptable redundancy of 4, allowing
the input real-valued images to be perfectly reconstructed.
In terms of the implementation of UDCT, once all the
curvelet windows are computed, the actual forward and
inverse UDCT computations are straightforward. UDCT
has asymptotic approximation properties: for image x
with C2 (C is a constant) singularities, the best N-term
approximation xN (N is the number of most impor-
tant coefficients allowing reconstruction) in the curvelet
expansion is given by [12, 55, 58]

‖x − xN‖22 ≤ CN−2 (
logN

)3 N → ∞ (8)

This property is known as the optimal sparsity. There-
fore, UDCT is considered as the optimal predefined sparse
method and is introduced into CS MRI in this paper.

UDCT belongs to predefined sparse priors, which
implies that it lacks adaptivity. Explicit dictionary rep-
resentations in spatial domain gain a higher degree of
freedom in the training but sacrifice efficiency of the
result. Besides, this kind of explicit dictionary cannot
describe hierarchical structures. Incorporating the advan-
tages of UDCT with DL and compensating for the defects
of each other, an efficient composite sparsity structure is
proposed for local sparsity enhancement. This structure
learns adaptive dictionary over lowpass UDCT sub-band
coefficients patches. For real (imaginary) part of image x,
the DL problem is deduced as

min
Dr ,�r

∑
ij

∥∥Rij(�xr)l − Drαij
∥∥2
2 s.t.

∥∥αij
∥∥
0 ≤ T0,∀i, j

(9)

In (9), � represents UDCT operator. xr denotes real
(imaginary) part if r = 1 (0) and the subscript l denotes
lowpass sub-band. The resulting Dr is thus dictionary for
real (imaginary) part. �r is double sparse representation
set of

{
αij

}
ij. The proposed composite sparsity structure

has some advantages. Compared with predefined sparse
priors, it provides adaptivity and sparser representations
for lowpass sub-band coefficients according to the dif-
ferent structural features of lowpass and highpass UDCT
sub-bands coefficients. Compared with explicit dictio-
nary, it allows hierarchical sparsity (depending mostly on
UDCT) and reduces overfitting and instability in handling
noise. Contrast with double sparsity model, it reduces
the amount of calculations for not training dictionar-
ies over highpass UDCT sub-bands, which are generally
sparse enough. Therefore, the proposed sparse method
can fine fit and hierarchically sparsify MR images with
important characteristics preserved and avoid wasting
time, making a big difference for improved MR image
reconstruction performance. In Fig. 2, an example of dic-
tionary trained by using Sparse K-SVD according to the
proposed sparsity structure is exhibited. The used image
is complex-valued T2-weighted brain image of slice 27
(MR T2wBrain_slice_27 of 256× 256 sized). It is acquired
from a healthy volunteer at a 3T Siemens Trio Tim MRI
scanner, using the T2-weighted turbo spin echo sequence
(TR/TE = 6100/99 ms, 220×220 mm field of view, 3 mm
slice thickness) [37]. The training maximum overlapped
patches are 8× 8 sized and obtained from lowpass UDCT
sub-band coefficients after S = 1 level’s UDCT decompo-
sition for real part of MR T2wBrain_slice_27. One can see
that the resulting dictionary is a highly structured matrix,
implying several favorable properties.

Compressed sensingMRI reconstruction
The proposed reconstruction model and involved recon-
struction procedure are demonstrated in this section.
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Fig. 2 Dictionary training. (a) MR T2wBrain_slice_27, (b) real part lowpass UDCT sub-band coefficients for DL, (c) initial dictionary from 8 × 8 sized
coefficient patches and (d) trained dictionary of 64 × 100. Dictionary atoms are represented using 2 coefficients each

It has been proved that composite regularization per-
forms better than either spatial image TV regularization
or sparse coefficients l1 regularization in reconstruc-
tion [5, 21, 33]. Besides, the lowpass UDCT sub-band
αl is the rough approximation of spatial image to be
reconstructed and contains large amounts of information,
which indicates that TV regularization on lowpass UDCT
sub-band coefficients may further improve edge details
and suppress noise, promoting the reconstruction qual-
ity. According to the different structural features of spatial
image, lowpass sub-band αl and highpass sub-bands αh,
a new composite regularization reconstruction model is
thereby proposed to handle various regularization effi-
ciently in this paper. The reconstruction model can be
denoted as

α̃ = min
�r
R,α

TV
(
�−1α

) + ‖αh‖1 + TV
(
Dr�r

R
) + ∥∥Dr�r

R
∥∥
1

x = �−1α̃ s.t.
∥∥Fux − y

∥∥2
2 ≤ ε (10)

where ε ∈ C
m is proportional to the noise standard devi-

ation and controls the allowed noise level. The subscript
h means highpass UDCT sub-bands coefficients. Spatial
image TV regularization TV

(
�−1α

)
and lowpass UDCT

sub-band coefficients TV regularization TV
(
Dr�r

R
)
reg-

ularize image without smoothing the boundaries, guar-
anteeing clear edge details in the reconstructed result.
UDCT sub-bands coefficients l1 regularization realizes
sparsity and automatic selection of the most important
characteristics. Undersampled k-space data fidelity term
makes the reconstruction fitting the measurements. This
reconstruction model is effective for embedding efficient
composite regularization according to the different struc-
tural features of spatial image, lowpass and highpass
UDCT sub-bands coefficients. Since TV regularization is
capable of maintaining the boundaries of the objects, the
reconstructed edge details can be further strengthened
by two level of TV regularization. Besides, integrating �r

R
modification into lowpass UDCT sub-band coefficients
TV and l1 regularization can guarantee the accuracy of

updated �r
R, reduce the complexity of the reconstruction

model and overfitting significantly.
Basic thought to settle this reconstruction model is

based on C-SALSA. And it is slightly different from
C-SALSA because the designed composite regulariza-
tion contains more than one regularization terms. Since
parameter ε is clearly defined and easy to set, the pre-
vious AL based methods ignore it and introduce other
regularization parameters λ1(2). They are thus inefficient
[47], such as TVCMRI, FCSA and SALSA, etc. While in
the proposed method, the constrained problem (10) is
equivalent to an unconstrained one with a discontinuous
objective based on the thoughts of C-SALSA

min
�r
R,α,x

λ1
[
TV

(
�−1α

) + ‖αh‖1 + TV
(
Dr�r

R
) + ∥∥Dr�r

R
∥∥
1
]

+ λ2LE(ε,I,y) (Fux)
(11)

where λ1 measures the weight of TV and l1 regulariza-
tion, λ2 measures the weight of k-space data fidelity and
E(ε,I,y) is simply a closed ε-radius Euclidean ball centered
at y. As is shown, (11) can be treated as a special case of
Eq.30 in [47] by defining � (·) = TV

(
�−1α

) + ‖αh‖1 +
TV

(
Dr�r

R
) + ∥∥Dr�r

R
∥∥
1. It has the form of Eq.13 in [47]

with J = 5 number of functions. These functions in
(11) are closed, proper and convex (for details, refer to
[47]). Minimization problem (11) is allowed to be decou-
pled into 5 independent and resoluble ones by a particular
mapping way. These 5 independent subproblems include
spatial image TV regularization TV

(
�−1α

)
, lowpass

UDCT coefficients TV regularization TV
(
Dr�r

R
)
, UDCT

sub-bands coefficients l1 regularization
∥∥Dr�r

R
∥∥
1 and

‖αh‖1 and k-space data fidelityLE(ε,I,y) (Fux). Since all the
functions in (11) are closed, proper, convex and [ I � Fu]T
has full column rank (� itself is a full column rankmatrix),
convergence of ADMM-2 involving problem (11) is guar-
anteed according to Theorem1 (Eckstein-Bertsekas, [59]).
The solution of (11) is enforced to approach that of (10) via
slowly taking λ1(2) to very large values by multiplying with
a continuous factor ρ (a continuation process with initial
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values as λ10, λ20 and ρ > 1). Introducing ADMM-2 to
this particular case requires the definition of the Moreau
proximal maps associated with l1 regularization, TV reg-
ularization and LE(ε,I,y). Since the input of regularizer
can be spatial image, UDCT sub-bands coefficients and
representation coefficients, μ is introduced to represent
the input of regularization uniformly. The Moreau proxi-
mal map function of regularization � (μ) : Cp → C

p is
denoted as

��

(
μ̂

) = argmin
μ

1
2

∥∥μ − μ̂
∥∥2
2 + �(μ) (12)

where μ̂ is the result of mapping to μ according to the
mapping relation C

p → C
p. A simple soft threshold

method �λ1�(·) = soft(·, λ1) solves the l1 regulariza-
tion relevant to ‖αh‖1 and

∥∥Dr�r
R
∥∥
1. The available fast

Chambolle’s algorithm [60] handles TV regularization
efficiently. Define ν = Fux via VS technique, then the
Moreau proximal map of LE(ε,I,y) is simply the orthogo-
nal projection of ν on the closed ε-radius ball centered at
y, which can be attacked by

�λ2LE(ε,I,y) (ν) =
{
y + ε

ν−y
‖ν−y‖2

if
∥∥ν − y

∥∥
2 > ε

ν if
∥∥ν − y

∥∥
2 ≤ ε

(13)

In ADMM-2, error minimization with respect to ν

aims at fitting measurements of k-space. Regularization
terms with respect to spatial image, αh and �r

R avoid
overfitting. The fidelity and regularization terms opti-
mization are implemented alternatively. �r

R is modified
from the weighted average between results of TV

(
Dr�r

R
)

and
∥∥Dr�r

R
∥∥
1. Then lowpass UDCT sub-band coefficients

are obtained as the weighted average between results of
TV

(
�−1α

)
and Dr�r

R. The modified highpass UDCT
sub-bands coefficients are obtained as the weighted aver-
age between results of TV

(
�−1α

)
and ‖αh‖1. Then

image in spatial domain is acquired as the result of
inverse UDCT to UDCT coefficients. The subproblem
with respect to E(ε, I, y) can be solved via (13) efficiently.
The ultimate reconstructed image xi (i as counter of itera-
tions for ADMM-2) is the result of the reweighted average
between the above spatial domain image through regu-
larization penalty and result of (13) for once iteration.
Such process reduces reconstruction error and brings
about a high-quality reconstructed image efficiently. The
flowchart for LSECSMRI reconstruction in Fig. 3 exhibits
clearly the reconstruction process based on the proposed
sparsity structure.

Summary of LSECSMRI
In LSECSMRI procedure, � is uniform discrete curvelet
decomposition operator of S levels (s = 1, 2, . . . , S) with

Fig. 3 Flowchart for LSECSMRI reconstruction
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2κs directions for each level, performing on real and
imaginary parts of complex-valued MR data, respectively.
The obtained UDCT sub-bands coefficients, representa-
tion coefficients of lowpass UDCT sub-band coefficients
over Dr and measurements y are sent into the composite
regularization reconstruction model for MR image recon-
struction. The proposed reconstruction method has some
advantages as follows. Firstly, the reconstruction method
handles the lowpass sub-band and highpass directional
sub-bands coefficients regularization separately with dif-
ferent regularization methods, allowing effective recon-
struction. Besides, adding the indicator function of ε

into the objective makes the resulting problem equiva-
lent to the original problem (10) based on the thoughts
of C-SALSA. The resulting problem can be decoupled
into several subproblems, which are easy to solve with
fast convergent algorithms. Additionally, �r

R is modified
by using the result of TV and l1 regularization on low-
pass UDCT sub-band coefficients, which reduces the
computational complexity and overfitting significantly.
Hence, the proposed reconstruction approach provides
accurate solution along with rapid convergence speed.
Superiorities of LSECSMRI are confirmed experimentally
later.

Results and discussions
Experimental setup
Experiments are performed under nonuniform sam-
pling schemes at various sampling rates (defined as
ratio of m

p ∈ [0, 1]) in this section. The perfor-
mance of LSECSMRI is analyzed from 4 different
aspects. Images used in the experiments are complex-
valued MR T2wBrain_slice_27, complex-valued water
phantom acquired at 7T Varian MRI system with spin
echo sequence (TR/TE = 200/100 ms, 80 × 80 mm
field of view, 2 mm slice thickness) [37] and real-
valued MBA_T2_slice006 (image courtesy of http://www.
med.harvard.edu/AANLIB/home.html). Densities of MR
images are normalized to a maximum amplitude of 1

for simulated experiments, via dividing each element
value by the maximum module value of image pixels.
The mainly applied sampling schemes (binary masks
with values of 0 and 1) are Cartesian sampling with
random phase encodes http://www.quxiaobo.org/index_
publications.html, 2D random sampling http://www.eecs.
berkeley.edu/~mlustig/Software.html and pseudo radial
sampling [6], etc. Setting of sampling rate depends on
numerous experiments. It is appropriate if unobvious
visual improvement of reconstructed quality is obtained
with sampling rate going on increasing. In simulation, k-
space measurements are obtained via dot multiplication
between Fourier transform coefficients of raw image and
sampling matrix at given sampling rate. Raw images and
sampling schemes used in experiments are exhibited in
Fig. 4. The proposed algorithm is compared with DLMRI,
iterative thresholding CS MRI based on more redundant
SFLCT(MRSFLCT based CS MRI), LORAKS (rank con-
straint rS = 90 and neighborhood size R = 4 in k-space)
and PANO. All experiments are implemented in MAT-
LAB R2011b of a 64-bit Windows 7 operating system with
an Intel Xeon E5 CPU at 2.80 GHz and 8 GB memory.
Matlab implementations of compared DLMRI,MRSFLCT
based CS MRI, LORAKS and PANO are available from
the authors’ websites http://mr.usc.edu/code.html, http://
www.ifp.illinois.edu/~yoram/Software.html, http://www.
quxiaobo.org/index_publications.html. 8 iterations of DL
and reconstruction alternation procedure are adopted in
DLMRI. Parameters needed in LSECSMRI are manually
and empirically set for optimal reconstruction results via
numerous of tests. Take UDCT decomposition level S
and directional sub-bands in each level 2κs for example,
when they reach certain values, increasing their values
doesn’t lead to significant improvement of reconstruction
quality but increases computational complexity. Trade-off
values are thus obtained by measuring the reconstruction
quality and computational complexity. In practice, first
commonly set S = 3 and 2κs = 12, then reduce and
increase them to observe the changes of the reconstruc-
tion quality. Therefore, to reconstruct images in Fig. 4(a)

Fig. 4 Raw images and sampling schemes. (a) T2wBrain_slice_27, (b) MBA_T2_slice006, (c) water phantom, (d) Cartesian sampling, (e) 2D variable
density random sampling and (f) pseudo radial sampling

http://www.med.harvard.edu/AANLIB/home.html
http://www.med.harvard.edu/AANLIB/home.html
http://www.quxiaobo.org/index_publications.html
http://www.quxiaobo.org/index_publications.html
http://www.eecs.berkeley.edu/~mlustig/Software.html
http://www.eecs.berkeley.edu/~mlustig/Software.html
http://mr.usc.edu/code.html
http://www.ifp.illinois.edu/~yoram/Software.html
http://www.ifp.illinois.edu/~yoram/Software.html
http://www.quxiaobo.org/index_publications.html
http://www.quxiaobo.org/index_publications.html
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and (b), UDCT decomposition of S = 1 and 2κs =
12 acts on intermediate images to obtain 13 coefficient
sub-bands, including one lowpass sub-band and 12 high-
pass directional sub-bands for real and imaginary parts
separately. For reconstructing image in Fig. 4(c), UDCT
decomposition of S = 3 and 2κs = 12 is employed. Size of
dictionary is 64×100. For T2wBrain_slice_27 reconstruc-
tion, initial values of λ1 and λ2 are λ10 = λ20 = 0.005,
continuous factor is ρ = 1.3. For water phantom recon-
struction, λ10 = λ20 = 6, continuous factor is ρ = 1.4.
The preset maximum number of ADMM-2 iterations I =
60 is used as ultimate iteration stop criterion. Numeri-
cal metrics of quality assessment for reconstructed images
are peak signal-to-noise ratio(PSNR) (in dB), trans-
ferred edge information(TEI) [61] and relative l2 norm
error(RLNE) [36].

Comparison with earlier CS MRI methods
The whole performance of LSECSMRI is tested on raw
images in Fig. 4(a)-(c) in this section. The proposed
method is compared with DLMRI, MRSFLCT based
CS MRI, LORAKS and PANO. Computational time is
recorded accordingly. For DLMRI reconstruction, the
recorded computational time is that of the first iteration.
And the computational time of each iteration increases
with iteration number.
Using Cartesian undersampling in Fig. 4(d) at 0.35

sampling rate for raw image in Fig. 4(a), DLMRI, MRS-
FLCT based CS MRI, LORAKS, PANO and LSECSMRI

reconstructed results are demonstrated in Fig. 5.
Figure 5(a)-(c) indicate clearly that DLMRI, MRSFLCT
based CS MRI and LORAKS reconstructed images show
severe edge blurring, aliasing and artifacts, implying
the poor performance of these methods. While PANO
and LSECSMRI reconstructed images exhibit clear edge
details and few artifacts. The local regions of recon-
structed images in Fig. 5(d)-(f ) are scaled up (by a factor
of 2) for detailed observations. They clearly show that
LSECSMRI performs slightly better in reconstructing
clear curve-like details with 1.1dB higher in PSNR, 0.0145
higher in TEI and 0.0109 lower in RLNE compared
with PANO (as areas marked in red arrow show). The
corresponding difference image in Fig. 5(k) indicates
that LSECSMRI reconstructed image obtains the least
reconstruction error at the cost of large amounts of time
consumption. The computational time is not the tough
problem for it can be reduced by using the significant
parallel imaging on graphics processing unit(GPU) like
the ones in [18, 41, 62], which will be considered in our
future work.
Figure 6(a)-(c) presents PSNR, TEI and RLNE indices

versus sampling rates of 2D variable density random sam-
pling scheme separately for DLMRI, MRSFLCT based
CS MRI, LORAKS, PANO and LSECSMRI reconstructed
T2wBrain_slice_27. Figure 6(a)-(c) exhibit that PSNRs and
TEIs of DLMRI, MRSFLCT based CS MRI, LORAKS
and PANO reconstructed images are lower than those
of LSECSMRI reconstructed image overall. When sam-
pling rate is low (between 0.10 and 0.15), LSECSMRI

Fig. 5 Performance of algorithms under Cartesian undersampling scheme at 35% sampling rate. (a)–(e) Reconstructed images using DLMRI,
MRSFLCT based CS MRI, LORAKS, PANO and LSECSMRI, respectively, (f) reconstructed image from fully sampled k-space data, (g)–(k) difference
images between fully sampled MR image and images in (a)–(e) with gray scale of [ 0, 0.25], respectively. PSNRs of them are 31.61, 32.28, 28.53, 36.33
and 37.40. TEIs are 0.6109, 0.6306, 0.4886, 0.7529, and 0.7674. RLNEs are 0.1620, 0.1500, 0.2310, 0.0941 and 0.0832 separately. And computational
time is 56.5 + 80.4sec, 30.5sec, 664.7sec, 296.8sec and 50 + 492sec, respectively
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Fig. 6 Reconstructed T2wBrain_slice_27 indices versus sampling rates of 2D variable density random sampling schemes. (a) PSNR versus sampling
rates, (b) TEI versus sampling rates and (c) RLNE versus sampling rates

reconstructed image obtain slightly higher PSNR, TEI
and lower RLNE compared with that of PANO. While
sampling rate gradually increases (sampling rate in the
range of 0.15 to 0.45), LSECSMRI reconstructed image
achieves considerable higher PSNR, TEI and lower RLNE
than PANO reconstructed image. For instance, the PSNR,
TEI and RLNE are 40.46dB, 0.8446 and 0.0585 sepa-
rately for LSECSMRI reconstructed result at 0.25 sam-
pling rate. To obtain comparable results, the sampling rate
is approximate 0.30 for PANO, 0.45 for MRSFLCT based
method, 0.53 for DLMRI and 0.60 for LORAKS. These

indicate that LSECSMRI can use lower sampling rate
to obtain comparable reconstruction result as the other
four methods under high sampling rates. When sam-
pling rate is high (0.50 and higher), the PSNRs of LSEC-
SMRI reconstructed image are staying at the highest level
among the compared five methods. The TEI and RLNE
curves of PANO and LSECSMRI reconstructed images
are comparable and tend to level off, implying that the
reconstructed MR images have already obtain the most
information from undersampled data and further more
sampled data merely increase the data redundancy and

Fig. 7 Reconstructed MBA_T2_slice006 under Cartesian undersampling scheme at 0.35 sampling rate. (a)–(e) Reconstructed images from DLMRI,
MRSFLCT based CS MRI, LORAKS, PANO and LSECSMRI, (f)–(j) difference images between fully sampled MR image and images in (a)–(e) with gray
scale of [ 0, 0.25], respectively. PSNRs of them are 30.95dB, 30.25dB, 28.33dB, 35.21dB and 35.80dB. TEIs are 0.5806, 0.5872, 0.5218, 0.7513, and
0.7765. RLNEs are 0.1152, 0.1249, 0.1558, 0.0705 and 0.0659 separately. And computational time is 62.7 + 90.5sec, 30.5sec, 711.3sec, 291.2sec and
52.7 + 514.6sec separately
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calculations. The overall results demonstrate that LSEC-
SMRI can obtain excellent sparsity structure and recon-
struction performance from 2D variable density random
undersampling scheme.
Figure 7(a)-(e) exhibit reconstructed results from

DLMRI, MRSFLCT based CS MRI, LORAKS, PANO
and LSECSMRI separately for image in Fig. 4(b) under
Cartesian undersampling scheme at 0.35 sampling rate.
The difference images in Fig. 7(f )-(j) show that LSEC-
SMRI reconstructed image possesses the least artifacts
and reconstructed error among the compared methods.
PSNR of LSECSMRI reconstructed image is 35.80dB,
separately 4.85, 5.55, 7.47 and 0.59dB higher than that
of DLMRI, MRSFLCT based CS MRI, LORAKS and
PANO reconstructed images. RLNE of LSECSMRI recon-
structed image is 0.0659, separately 0.0493, 0.0590,
0.0899 and 0.0046 lower than that of DLMRI, MRS-
FLCT based CS MRI, LORAKS and PANO reconstructed
images. These indicate that LSECSMRI can obtain preem-
inent reconstruction performance among state-of-the-art
methods.
Figure 8 exhibits reconstructed results for complex-

valued water phantom. K-space measurements are
obtained via pseudo radial undersampling scheme at
0.3020 sampling rate. Local regions in Fig. 8(g)-(l) (scaled
by a factor of 2 to visualize details) exhibit that LSEC-
SMRI shows great superiority in reconstructing clear
edges and textures with the least blurring among the
compared five methods. While DLMRI reconstructed
image introduces severe edge blurring and MRSFLCT
based CS MRI reconstructed image exhibits disordered
directions.

Results on noisy data
In this section, the ability in handling noise is demon-
strated for the proposed method. Random gaussian white
noise with standard deviation 5.1 is added to the orig-
inal k-space data. PSNR, TEI and RLNE are 36.19dB,
0.8208 and 0.0956 for fully sampled T2wBrain_slice_27
and 34.90dB, 0.8813 and 0.0731 for fully sampled
MBA_T2_slice006, respectively. In simulation, regulariza-
tion parameters are manually optimized to obtain max-
imum PSNRs, TEIs and minimum RLNEs for the com-
pared five methods.
Table 1 and Table 2 show numerical values of PSNRs,

TEIs and RLNEs for reconstructed T2wBrain_slice_27
and MBA_T2_slice006 under Cartesian sampling scheme
at various sampling rates, respectively. Table 1 and Table 2
exhibit similar change trend. They both show that PSNR
and TEI of LSECSMRI reconstructed result are always
the highest compared with those of the other four meth-
ods reconstructed results when sampling rate is between
0.15 and 0.85, implying superior edge information trans-
fer, low reconstruction error and minimum reconstruc-
tion noise of LSECSMRI reconstructed result. As is
seen, the PSNR is 34.31dB for LSECSMRI reconstructed
T2wBrain_slice_27 at 0.35 sampling rate. To obtain the
comparable result, the sampling rate is approximate 0.40
for PANO, 0.75 for LORAKS, 0.60 for MRSFLCT based
method and over 0.55 for DLMRI. These indicate that
LSECSMRI can use lower sampling rate to obtain com-
parable reconstructed results as the other four methods
at high sampling rates. LORAKS reconstructed result
obtains the highest PSNR, TEI and the lowest RLNE
when sampling rate reaches 0.95, which is a sign that the

Fig. 8 Pseudo radial undersampling at 0.3020 sampling rate for water phantom reconstruction. (a)–(f) Reconstructed images from DLMRI, MRSFLCT
based CS MRI, LORAKS, PANO, LSECSMRI and fully sampled k-space data and (g)–(l) local regions from (a)–(f). PSNRs for images in (a)–(e) are
33.14dB, 34.97dB, 31.83dB, 35.76dB and 35.92dB. RLNEs for images in (a)–(e) are 0.0464, 0.0375, 0.0539, 0.0343 and 0.0336, respectively
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Table 1 Reconstructed T2wBrain_slice_27 quality indices versus Cartesian sampling rates

Sampling rate Indices
Methods

DLMRI MRSFLCT based LORAKS PANO LSECSMRI

0.15

PSNR(dB) 24.42 25.16 23.81 27.39 27.73

TEI 0.1692 0.2939 0.1555 0.3871 0.3879

RLNE 0.3705 0.3404 0.3975 0.2634 0.2533

0.25

PSNR(dB) 26.68 27.47 25.14 30.88 30.97

TEI 0.3271 0.4573 0.2599 0.5869 0.5899

RLNE 0.2858 0.2609 0.3411 0.1761 0.1750

0.35

PSNR(dB) 31.21 31.15 27.83 33.47 34.31

TEI 0.5927 0.5938 0.4022 0.6719 0.6769

RLNE 0.1704 0.1708 0.2484 0.1308 0.1188

0.45

PSNR(dB) 31.63 31.91 28.13 34.88 35.58

TEI 0.6426 0.6629 0.4898 0.7361 0.7330

RLNE 0.1615 0.1566 0.2418 0.1112 0.1025

0.55

PSNR(dB) 34.20 33.59 30.60 36.06 37.16

TEI 0.7326 0.6946 0.6140 0.7714 0.7692

RLNE 0.1202 0.1289 0.1819 0.0970 0.0855

0.65

PSNR(dB) 35.09 35.10 32.22 36.37 38.01

TEI 0.7666 0.7523 0.6865 0.7902 0.7925

RLNE 0.1085 0.1084 0.1509 0.0937 0.0775

0.75

PSNR(dB) 35.88 35.46 34.48 36.56 38.92

TEI 0.7912 0.7681 0.7392 0.8063 0.8105

RLNE 0.0991 0.1040 0.1164 0.0916 0.0698

0.85

PSNR(dB) 36.29 36.22 37.23 36.44 39.63

TEI 0.8134 0.8042 0.8057 0.8118 0.8217

RLNE 0.0945 0.0953 0.0848 0.0929 0.0644

0.95

PSNR(dB) 36.31 36.26 41.86 36.27 40.29

TEI 0.8196 0.8166 0.8612 0.8183 0.8353

RLNE 0.0943 0.0949 0.0498 0.0947 0.0596

significance of sparsity and CS cannot be reflected when
sampling rate approaches whole sampling.

Convergence analysis
Convergence performance of LSECSMRI reconstruction
method is analyzed in this section. It is evaluated by
MSE decline curve versus successive iterations. Images
in Fig. 4(a)-(b) using Cartesian undersampling scheme
at 0.35 sampling rate and Fig. 4(c) under pseudo radial
undersampling scheme at 0.3020 sampling rate are used
for test. LSECSMRI reconstruction is compared with
TVCMRI, FCSA, UDCT based C-SALSA reconstruc-
tion with � in Eq.30 in [47] representing l1 regular-
ization(UDCS_l1) and UDCT based C-SALSA recon-
struction with � in Eq.30 in [47] representing TV

regularization(UDCS_TV). ThemaximumADMM-2 iter-
ation number is I = 70. All the parameters are manu-
ally optimized for maximum PSNRs, TEIs and minimum
RLNEs in reconstruction.
Figure 9(a)-(c) exhibit MSE decline curves versus iter-

ation number by using the compared five reconstruction
methods for reconstructing images in Fig. 4(a)-(c), respec-
tively. The graphs in the second row show theMSE decline
curves in fine scale when iteration number is greater
than 30 for UDCS_l1, UDCS_TV and LSECSMRI recon-
struction separately. It is concluded from Fig. 9(a)-(c)
that LSECSMRI can obtain quite rapid convergence speed
with an apparently low MSE, indicating that LSECSMRI
reconstruction model is rational and the corresponding
reconstruction algorithm is efficient in reconstructing
high-quality images.
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Table 2 Reconstructed MBA_T2_slice006 quality indices versus Cartesian sampling rates

Sampling rate Indices
Methods

DLMRI MRSFLCT based LORAKS PANO LSECSMRI

0.15

PSNR(dB) 22.86 23.64 22.28 26.22 25.59

TEI 0.1486 0.2615 0.1418 0.3614 0.3308

RLNE 0.2924 0.2674 0.3127 0.1985 0.2135

0.25

PSNR(dB) 26.23 26.79 24.55 30.04 30.22

TEI 0.3427 0.4427 0.2720 0.5530 0.5573

RLNE 0.1983 0.1860 0.2406 0.1280 0.1253

0.35

PSNR(dB) 30.49 29.27 27.82 32.38 33.26

TEI 0.5732 0.5585 0.4228 0.6717 0.6703

RLNE 0.1215 0.1397 0.1647 0.0977 0.0883

0.45

PSNR(dB) 30.93 31.16 27.55 33.75 34.91

TEI 0.6500 0.6927 0.4961 0.7561 0.7532

RLNE 0.1155 0.1124 0.1704 0.0835 0.0731

0.55

PSNR(dB) 33.37 33.70 30.30 34.87 36.97

TEI 0.7467 0.7579 0.6375 0.7994 0.7948

RLNE 0.0872 0.0840 0.1241 0.0734 0.0576

0.65

PSNR(dB) 34.33 35.00 31.58 35.34 38.14

TEI 0.8077 0.8296 0.7137 0.8408 0.8329

RLNE 0.0780 0.0723 0.1072 0.0695 0.0503

0.75

PSNR(dB) 34.67 35.10 33.26 35.25 38.52

TEI 0.8338 0.8496 0.7708 0.8526 0.8441

RLNE 0.0751 0.0714 0.0882 0.0702 0.0482

0.85

PSNR(dB) 35.05 35.16 36.73 35.18 39.18

TEI 0.8621 0.8671 0.8383 0.8639 0.8615

RLNE 0.0719 0.0710 0.0592 0.0708 0.0447

0.95

PSNR(dB) 34.98 35.01 39.96 34.99 39.76

TEI 0.8778 0.8769 0.8937 0.8757 0.8766

RLNE 0.0724 0.0722 0.0408 0.0724 0.0418

Parameters in LSECSMRI
Major parameters in LSECSMRI include UDCT decom-
position level (S), number of UDCT directional sub-bands
for each level, size of coefficient patches (n) to train dic-
tionary, number of dictionary atoms (K), initial values
λ10 and λ20 of regularization parameters and the contin-
uous factor ρ. Influence of these parameters fluctuation
on LSECSMRI reconstruction performance is evaluated
by RLNE. The test image is T2wBrain_slice_27. Cartesian
undersampling scheme at 0.35 sampling rate is used to
undersample k-space data of the test image. Experiments
indicate that LSECSMRI performs better when λ1 = λ2
than λ1 
= λ2. Set the initial parameters values as S = 1,
2κs = 12, n = 64, K = 100, λ10 = λ20 = 0.005 and
ρ = 1.3.
Increasing S within the allowed scope of image size

increases the reconstruction error slightly, as is shown in

Fig. 10(a). Figure 10(b) illustrates that appropriate number
of directional sub-bands gives rise to the least recon-
struction error. Reducing and increasing the number both
lead to a drop in the reconstructed quality. While size
of lowpass UDCT sub-band coefficients patches for DL
and number of dictionary atoms seldom affect the recon-
struction error, as is shown in Fig. 10(c) and Fig. 10(d).
One explanation is that the update of �r

R depends mainly
upon the result of TV and l1 regularization on lowpass
UDCT sub-band coefficients. And the TV and l1 reg-
ularization on lowpass UDCT sub-band coefficients are
solved by stably convergent algorithms, which guaran-
tees the validity and stability to dictionary size of the
reconstructed results. Since parameter λ1(2) measures the
weight between regularization and data consistency, it
makes sense to analyze how the initial regularization
parameter λ10 (or λ20) and continuous factor ρ influence
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Fig. 9 Reconstructed MSE decline versus iteration. (a) Reconstructing Fig. 4(a) under Cartesian undersampling at 0.35 sampling rate, (b)
reconstructing Fig. 4(b) under Cartesian undersampling at 0.35 sampling rate and (c) reconstructing Fig. 4(c) under pseudo radial undersampling at
0.3020 sampling rate

the reconstruction. Figure 10(e) and Fig. 10(f ) show influ-
ences of λ10 and ρ on the reconstruction performance
separately. As is exhibited in Fig. 10(e), increasing λ10
reduces the reconstruction error when λ10 is relatively
small (λ10 ≤ 0.005 for T2wBrain_slice_27). Whereas too
large λ10 (λ10 > 0.01) will increase the reconstruction
error. Similar fluctuation trend is obtained for ρ and ρ =
1.3 is suggested for T2wBrain_slice_27 reconstruction.
In short words, a series of experiments indicate that

the proposed CS MRI method owns preeminent spar-
sity structure and reconstruction with rapidly convergent
speed, and thereby outperforms current CS MRI tech-
niques in reconstructing high-quality image with clear
edge details at a low sampling rate. Experiments on
noise, convergence speed and parameters demonstrate its
superiority in suppressing noise, convergence and robust-
ness to parameters fluctuation among current CS MRI
methods.

Conclusions and future work
A novel local sparsity enhanced composite sparsity struc-
ture is presented, in which UDCT decomposes image
to produce structural sparsity and later dictionary is
learnt from the lowpass UDCT sub-band coefficients
to adaptively sparsify images further. Reconstruction

model is then proposed for significant MR images
reconstruction established on the proposed sparse rep-
resentation approach in this paper. Comparing recon-
struction performance indicates that the proposed spar-
sity structure obtains preeminent structural sparsity. The
proposed reconstruction model optimizes sparse regular-
ization and constrains measurements fidelity to recover
original signal efficiently with a rapidly and stably con-
vergent speed. Experimental results on LSECSMRI agree
well with the theoretical analysis, and exhibit superiority
in reconstructing highly undersampled MR images under
a variety of sampling schemes compared with current CS
MRI frameworks. Since the proposed method is simply
tested by three MR images in this paper, its universal-
ity remains to be investigated. Besides, handling the real
and imaginary parts separately doubles the amount of cal-
culations. Further improvements and verifications on the
method are subjects of ongoing research and can be made
from the following three aspects: (1) test the method on
more datasets acquired in real applications; (2) introduce
LSECSMRI into practical 3D MRI application by adding
the sparse regularization term defined along the tempo-
ral axis into the reconstruction model; (3) minimize the
modified reconstruction model by using ADMM based
methods with partially parallel imaging(PPI) on GPU and
faster languages such as C/C++ to speed up the imaging.
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Fig. 10 RLNEs versus LSECSMRI parameters for T2wBrain_slice_27 under Cartesian undersampling at 0.35 sampling rate. (a) S (UDCT decomposition
level), (b) number of directional sub-bands, (c) n (patch size), (d) number of dictionary atoms (K), (e) initial regularization parameter λ10 (or λ20) and
(f) continuous factor ρ when other parameters are fixed
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