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Abstract

Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to
characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits
from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that
specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source,
flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models,
including data-driven nested model analysis.

Results: ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide
reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility
of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown
using DCE-MRI studies of the human brain and a murine tumor model.

Conclusion: A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical
and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for
changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future
studies using DCE-MRI.
A public release of ROCKETSHIP is available at https://github.com/petmri/ROCKETSHIP.
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Background
The utility of dynamic magnetic resonance imaging
(MRI) studies to diagnose diseases, characterize their
progression, and evaluate treatment response is a topic
of vigorous research. In particular, physiological informa-
tion garnered from techniques such as diffusion MRI,
blood oxygen-level dependent (BOLD) MRI, iron-oxide
imaging, dynamic susceptibility MRI (DSC-MRI) and
dynamic contrast-enhanced MRI (DCE-MRI) [1] are being

explored as imaging biomarkers in virtually all aspects of
medicine, especially in oncology and neurological diseases.
DCE-MRI involves the rapid serial acquisition of T1-

weighted images before, during and after intravenous
injection of a contrast agent (CA). The physiological prop-
erties of the tissue of interest are inferred by analyzing the
image signal change kinetics induced by the CA within
the tissue region of interest (ROI). Given the inherent
leakiness of tumor blood vessels (which enhances the sig-
nal observed at the tumor site due to more CA leakage)
[2], the majority of DCE-MRI studies have focused on
oncology applications [3]. Studies have especially focused
on using DCE-MRI to characterize tumor phenotypes or
to evaluate the response of tumors to therapy [4]. The use
of DCE-MRI has also been explored in other fields such
as obstetrics [5] and the neurosciences [6, 7].
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Although several individual studies have demonstrated
the promise of DCE-MRI as an imaging biomarker, wide-
spread clinical adoption of this technique remains limited.
This is in part because implementation and standardization
of DCE-MRI is challenging. Differences in hardware such
as the MRI field strength, coil setups and sequence types
available at different institutions can affect the quality of
the images acquired and constrain the choice of certain
parameters such as the volume of interest, spatial and
temporal resolution. The choice of contrast agent, each
with unique pharmacokinetic properties and thus behavior
in vivo [8], also vary greatly between studies. These factors
can significantly affect the quality of the parametric maps
generated from imaging data [9].
Widespread variability also exists in the processing and

analysis of DCE-MRI data. Both semi-quantitative [10, 11]
and quantitative parameters [12] are used to analyze the
acquired signal intensity time curves. Several studies have
demonstrated the utility of either type of parameters to
characterize tumor tissues or monitor treatment response
[13, 14]. However, challenges remain in determining the
specificity of different parameters to the underlying physi-
ology, development of robust quantification techniques
for quantitative model fitting (such as the assignment of a
robust arterial input function [15] or T1 measurement of
tissues [16]), and the selection of appropriate equations or
models to fit the acquired data [17].
Recent studies have sought to address and understand

these issues. For example, both Cramer et al. [18] and
Montagne et al. [6] demonstrated that the Patlak method
may accurately estimate the vascular permeability in the
intact or near intact blood brain barrier (BBB); a chal-
lenge given the low permeability values being consid-
ered (Ktrans < 0.3 mL/100 g/min) [19–21]. In particular,
Montagne et al. were able to demonstrate significant
differences in permeability within grey and white matter
between human subjects with no cognitive impairment,
mild cognitive impairment, and with age [6] using Patlak
analysis. Two-compartment models have been shown to
be more appropriate at higher permeability [18, 22]. Ewing
et al. have explored the use of nested model-selection to
determine the appropriate physiological models to fit both
preclinical and clinical DCE-MRI data [23, 24], while
Jackson et al. recently showed good correlation of
semi-quantitative metrics with parameters derived from
an extended Tofts model in patients with Type 2 Neuro-
fibromatosis [13]. Importantly, these studies suggest that
robust analysis of DCE-MRI data may be disease and
organism specific and that a data-driven approach that con-
siders a library of processing and analytical methods may
be necessary and appropriate for DCE-MRI analysis [12].
Exploration of these different types of DCE-MRI pro-

cessing and analyses would be facilitated with standard-
ized software. Software standardization can reduce biases

and errors that may arise from the type of processing algo-
rithm used for fitting and enable more consistent compar-
isons between studies. Moreover, availability of a flexible,
easily modifiable and extensible software suite allows the
researcher/clinician to examine how various factors dis-
cussed above may apply to their specific DCE-MRI study.
To date, numerous software packages are available for

DCE-MRI analysis. These include general purpose phar-
macokinetic analysis packages such as PMOD (pmod.com),
WinSAAM [25], JPKD (pkpd.kmu.edu.tw/jpkd) or SAAMII
[26]. These packages are often complex to use, are only
commercially available and/or require significant pre-
processing of the data to adjust for DCE-MRI usage.
DCE-MRI specific software packages also exist, includ-
ing commercially available packages licensed for clinical
use [27]. While these are often user friendly and directly
integrated with PACS databases, details about each pack-
age’s implementation and certain options involved in the
fitting algorithms may be unavailable. This can lead to a
wide variability in output results [27]. Other packages
available include PMI (https://sites.google.com/site/plares-
medima/), pydcemri (github.com/davidssmith/pydcemri),
DCEMRI.jl [28], Jim (Xinapse Systems Ltd), BioMap
(maldi-msi.org), PermGUI/PCT [29], Toppcat [30], DCEM-
RIS4 [31], dcetool (http://thedcetool.com/), dcemri (http://
dcemri.sourceforge.net/), DATforDCEMRI [32], DCE@
UrLAB [33] and UMMPerfusion [34]. Table 1 provides a
summary of the capabilities of these packages. While geared
for DCE-MRI, most of them are limited in the range of fit-
ting methods, models and parameters that can be analyzed.
A number of the packages (developed using IDL and C)
are built around a graphical user interface (GUI) that
needs to be recompiled each time a new functionality is
implemented or a setting changed, which can make mod-
ule development and individualized changes non-trivial
for a novice user. None of the currently available packages
in Table 1 enable recently developed data-driven methods,
such as nested-model selection, that analyze the appropri-
ateness of the models and parameters being used and
generated [23, 24, 35–37]. To circumvent these con-
straints, groups often develop in-house software for their
studies [38–41], with limited availability for other users.
This hinders adoption of these methods for widespread
use and testing.
Here, we describe the development of a software suite,

ROCKETSHIP (available for download at https://github.-
com/petmri/ROCKETSHIP), which is implemented in the
widely available MATLAB software environment. ROCK-
ETSHIP is designed to be modular, easily extensible and
modifiable, and provides tools to process multiple types of
parametric MRI datasets. In particular, ROCKETSHIP
focuses on the processing and analysis of DCE-MRI data
from both human and animal studies, including T1 map
generation and arterial input function (AIF) processing
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Table 1 Comparison of existing DCE-MRI packages*

Software
package

Language Operating
system

License Models included Fitting Other MRI-relevant features Input/output Location

dcemriS4 R Linux,
Windows,
Mac OS

BSD - Standard Kelty
- Single-compartment
model
- Extended Kety

- Non-linear least squares
- Bayesian estimation

- motion correction and
co-registration
- B1 mapping
- T1 mapping
- AIF fitting
- DWI fitting
- Pixel processing
- Job report for later
retreival
- Access to R functions

- DICOM
- NIFTI
- Raw data

http://dcemri.sourceforge.net

dcetool C, Plugin
for
ClearCanvas

Windows Proprietary - Tofts
- Adiabatic tissue homogeniety
- Thorwarth- Extended Tofts
- Semi-quantitative metrics
(Slope/AUC)

Proprietary - DICOM
- Raw data

http://thedcetool.com/

PMI IDL Windows GNU GPL - Uptake models
- Steady-state
- Patlak
- Model-free deconvolution
- Tofts- Extended Tofts
- 2CXM
- 2C filtration model for kidney
- Dual-inlet models for Liver
- Semi-quantitative metrics
(Slope/Signal enhancement)

- Non-linear Least squares
- Truncated singular value
decomposition

- ROI and pixel processing
- AIF/time series visualization/
editing
- Access to IDL functions

- DICOM
- Raw data

https://sites.google.com/site/
plaresmedima/

UMMPerfusion C, OsiriX
plugin

Mac OS BSD - Model free deconvolution - Truncated singular value
decomposition

- ROI and pixel processing
- Job report for later retreival
- AIF/time series visualization/
editing

- DICOM http://ikrsrv1.medma.uni-
heidelberg.de/redmine/projects/
ummperfusion

Pydcemri Python Linux,
Windows,
Mac OS

GNU GPL - Tofts
- Extended Tofts

- Non-linear Least squares - Access to python functions - Raw data https://github.com/welcheb/
pydcemri

DCEMRI.jl Julia Linux,
Windows,
Mac OS

MIT - Tofts
- Extended Tofts
- Plasma only

- Non-linear Least squares - ROI and pixel processing
- T1 mapping
- Batch processing
- Access to Julia functions

- Matlab data https://github.com/davidssmith/
DCEMRI.jl

DCE@UrLAB IDL Windows BSD - Tofts
- Hoffmann
- Larsson
- Fast exchange limit
reference region

- Non-linear Least squares - ROI and pixel processing
- Access to IDL functions

- DICOM
- Bruker
- Raw data

http://www2.die.upm.es/im/
archives/DCEurLAB/
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Table 1 Comparison of existing DCE-MRI packages* (Continued)

DATforDCEMRI R Creative
Commons

- Tofts
- Semi-quantitative metrics
(AUC, MRT
- mean residence time)

- Numerical
deconvolution

- Pixel processing
- Access to R functions

- R readable data
formats

https://github.com/cran/
DATforDCEMRI

TOPPCAT Javascript,
ImageJ
plugin

Linux,
Windows,
Mac OS

BSD - Patlak - Non-linear
Least squares

- T1 mapping
- Access to ImageJ
functions

- ImageJ readable
data formats

https://dblab.duhs.duke.edu/
modules/dblabs_topcat/

Jim Java Linux,
Windows,
Mac OS

Proprietary - Tofts
- Extended Tofts
- One
compartment
- Fermi
- 2CXM
- Semi-quantitative
metrics (AUC)

Proprietary - ROI and pixel
processing

- DICOM
- Analyze
- Bruker
- Commercial
formats

- Raw data

http://www.xinapse.com/
Manual/index.html

PermGUI Matlab Windows Creative
Commons

- Patlak - T1 mapping
- ROI and pixel
processing

- DICOM
- Analyze
- NIFTI

http://www.quantilyze.com/
permgui/

BioMap IDL Linux,
Windows,
Mac OS

Proprietary - Extended Tofts - Non-linear
Least squares

- T1 fitting - DICOM
- Analyze
- TIF/PNG

http://www.maldi-msi.org/

ROCKETSHIP Matlab Linux,
Windows,
Mac OS

GNU GPL - Tofts
- Extended Tofts
- Fast exchange regime
(FXR)
- 2CXM
- Tissue uptake
- Nested-model selection
- Patlak
- Semi-quantitative metrics
(AUC)

- Non-linear
Least squares

- T1 mapping
- ROI and pixel
processing

- AIF fitting/import
- DWI fitting
- Job report for
later retreival

- AIF/time series visualization/
editing

- Batch processing
- Access to Matlab functions
- Model fit comparisons with
statistical metrics

- Drift correction

- DICOM
- Analyze
- NIFTI
- Raw data
- Matlab data

https://github.com/petmri/
ROCKETSHIP

*Excludes commerical packages for clinical use, AUC: area under curve, DWI: diffusion-weighted imaging
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and analyses with a library of common pharmacokinetic
modeling methods as well as recently developed statisti-
cally driven nested model methods. Implementation of
ROCKETSHIP in a commonly used language (MATLAB)
for image analysis should allow both novice and advance
users to utilize and extend the software for their specific
DCE-MRI applications.
We test the robustness of this software tool using sim-

ulations and demonstrate the utility of ROCKETSHIP to
analyze preclinical and clinical DCE-MRI data from
different disease models.

Implementation
All components of ROCKETSHIP were implemented in
the MATLAB environment, specifically MATLAB release
2014a. Detailed description of each component can be
found in source code comments and documentation that
is accessible at the project’s github page (https://github.-
com/petmri/ROCKETSHIP). In this section, we describe
the general architecture of the software suite, and high-
light the key aspects of the software and the algorithms
currently implemented in the software.

Architecture design and GUI description
A simplified schematic outlining the design of ROCKET-
SHIP is shown in Fig. 1. The software is divided into
discrete modules to separate processing and analysis
components of the pipeline. Initially, a fitting module
GUI is available for the user to generate voxel-wide
parametric maps directly from imaging data. Common
MRI parameters such as T2 (and T2*) and T1 relaxation
times, and apparent diffusion coefficients (ADC) from
diffusion MRI data can be estimated with different fit-
ting methods. A summary of the equations used is in
Appendix A. Additional user specified fitting functions
can be easily implemented without major modifications
to the GUI.

ROCKETSHIP is particularly focused on the process-
ing and analysis of DCE-MRI data. Within the DCE-
MRI module (Fig. 2), sub-modules are implemented that
focus on:

1) Preparation of the dynamic datasets for DCE-MRI
analysis. This involves options for intensity data to
concentration versus time curves conversion using
T1 maps, selection of the AIF or reference region
(RR) and the ROI, noise filtering and signal intensity
drift correction over the dynamic time course (Fig. 2a).
A summary of how these are implemented is provided
in Appendix B.

2) AIF or RR processing with temporal truncation.
This sub-module allows the appropriate AIF/RR to be
selected. The raw or fitted AIF (currently limited to
bi-exponential fitting) from an individual dataset can
be used (Fig. 2b). Alternatively, multiple AIFs/RRs can
be combined to form a population-averaged AIF/RR.
A summary of the implementation is provided in
Appendix C. As time duration and temporal resolution
can be critical for analysis, options to modify these
factors are included.

3) Derivation of DCE-MRI parametric maps (Fig. 2c).
Multiple pharmacokinetic models and semi-quantitative
metrics can be fitted using ROCKETSHIP. In the
current implementation, the Tofts, extended Tofts,
Patlak, shutter-speed, two-compartment exchange,
tissue uptake models and the area-under-curve (AUC)
metric can be calculated (Table 1). Details about these
models are summarized in Appendix D. Apart from
these stand-alone models, a nested model method is
also implemented.

Nesting is based on the hierarchy inherent within the
two-compartment exchange model; the algorithm was
developed, tested and described in detail by Ewing et al.
[12, 23, 24, 37]. First, DCE-MRI data are fitted to the
zero-order model, which describes the case where there
is insufficient evidence of filling of the vasculature with
CA [23, 37]. Next, the initial fit is compared to the data
fitting using the one parameter steady-state model:

C tð Þ ¼ v Ca tð Þ ð1Þ

Where C(t) is the concentration of the CA in the voxel
of interest at time t, v is the volume fraction of the indica-
tor distribution space and Ca(t) is the concentration of the
CA in the arterial compartment at time t. Here, v can
represent the plasma volume fraction (vp) in a voxel that
is highly vascularized with no vascular/extravascular ex-
change, the extravascular volume fraction (ve) in a weakly
vascularized voxel, or v = vp + ve in a fast-exchange sce-
nario. A statistical F-test is used to evaluate the likelihood

Fig. 1 Design outline of ROCKETSHIP. The software suite consists of a
fitting module to generate T1, T2/T2* and ADC maps, and DCE-MRI
module with sub-modules for each stage of DCE-MRI data processing
and analysis
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that an observed improvement of fit to the data, using
a model with higher number of parameters, warrants
the use of additional parameters [42]. A p-value <0.05
is used as a criterion to increase the number of parame-
ters in the model fit.
In the current implementation, the Patlak model repre-

sents the two-parameter form of the two-compartment
model with the extended Tofts model with three parame-
ters being at the top of the nested hierarchy [23, 24, 37].
Options to smooth the dynamic signal time course

and to fit specific ROIs versus voxel-by-voxel fitting are
also available in the DCE-MRI sub-module (Fig. 2c).

4) While models belonging to the same hierarchy
can be folded into the nested model fitting
option, it may be desirable to compare non-
nested models or make comparisons with different
statistical tests. The fitting analysis sub-module
allows for visual and statistical assessment of
goodness-of-fit (Fig. 2d). Model fits with 95 %
prediction bounds of the fit are shown graphically
along with the raw data for each voxel/ROI. Fits
between models can be compared using the F-test
[42, 43], fraction of modeled information (FMI)
and fraction of residual information (FRI) [35],
and the Akaike information criterion [7, 43].
These results can be exported to an Excel
(office.microsoft.com/en-us/excel) spreadsheet
for offline analysis.

Estimation of model parameters
All curve fitting functions in ROCKETSHIP are imple-
mented using MATLAB’s Curve Fitting Toolbox. T1, T2
and ADC signal equations can be linearized and fitted
with linear regression (See Appendix A). Alternatively,
these parameters can be directly fitted with non-linear
methods. ROCKETSHIP uses the trust region algorithm
provided in the Curve Fitting Toolbox to perform non-
linear least squares regression. For T1, T2 and ADC regres-
sion, the parameters are hard-coded to have non-negative
value constraints. Robust curve fitting is dependent on ap-
propriate starting parameters for the fitting routine [44].
To facilitate this process, a preferences text file defining
parameter constraints and convergence criteria, such as
fitting tolerances and maximum numerical of iterations, is
provided to allow easy editing of these variables. This text
file is read by ROCKETSHIP when AIF and model fitting
sub-modules are run.
During testing of ROCKETSHIP, it was found that Ktrans

fitting often converged to local minima instead of the
desired global minimum solution. To address this, Ktrans

was fitted using multiple starting values with the fit value
converging with the lowest residual used as the final value.
Other variables were less sensitive to the starting position
and thus a single initial value was used to fit each of those
variables.
Voxel-wide fitting is performed in parallel using func-

tions provided by MATLAB’s Parallel Computing Toolbox
for increased performance.

{
DCE module

A

B C D

A:
- Define parameters 
- Signal to C(t)

B:
- Derive AIF/RR
- Timing parameters

C:
- Generate 
  DCE-MRI maps

D:
- Goodness of fit
  analyses

DCE sub-modules

Fig. 2 DCE-MRI processing module GUI. GUI modules reflect the schematic outlined in Fig. 2. The “root” DCE module is shown on the left, which launches
each sub-module in the pipeline. a defines the sub-module that converts raw image data to concentration time curves. The data are passed to the next
sub-module, which allows temporal truncation of the dynamic data and fitting or importing of the AIF (b). DCE-MRI maps are derived using the next
sub-module (c). Models can be generated in real time, or the user input can be saved as a data structure job to be run in batch later. Options are
provided to perform voxel-by-voxel fits as well as defined ROIs. Raw data curves can be fitted as is, or after being passed through a time smoothing
filter. Finally, goodness-of-fit analysis of the fits can be performed with the final sub-module (d)
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Inputs and outputs
To enable processing of both preclinical and clinical data,
the software can read and write both NIFTI/Analyze and
DICOM formats. ROIs can be input to ROCKETSHIP as
image files drawn in other image visualization programs
such as MRIcro (www.mricro.com) or as. roi files gener-
ated from ImageJ (imagej.nih.gov/ij).
Datasets can be processed through the pipeline individually.

A batch mode is also available to generate multiple paramet-
ric maps in the fitting and DCE-MRI model fitting modules.
Text files logging outputs from each module are stored

and emailed to the user upon task completion. Data from
each module in the processing pipeline are also stored in
files to facilitate debugging, transfer between users and
allows processing pauses between modules.

Results
Validation of ROCKETSHIP software with simulation
Precision and accuracy of individual kinetic model fitting
The robustness of ROCKETSHIP was evaluated with
simulations. Simulated datasets containing two (Tofts,
Patlak models), three (Extended Tofts) and four parame-
ters (two-compartment exchange model, 2CXM) were
generated using MATLAB. The ability of ROCKETSHIP
to recover the appropriate DCE-MRI parameter values
from simulated data at different SNR and time resolutions
was evaluated. To achieve this, curves were generated
using specific parameter values defined in Table 2. For
each parameter permutation Rician noise at different
SNRs was added to the signal intensity versus time curves
and fitted. This process was repeated with new noise 100
times in a Monte-Carlo manner to estimate the accuracy
and precision of the fits. Resultant curves were fitted with
ROCKETSHIP using the same model that was used to
generate the curves. The population AIF published by

Parker et al. was used in all simulations [15]. Default
fitting options were used. The accuracy of the fitted
parameters were evaluated with the concordance correl-
ation coefficient (CCC) [45].
Figure 3 shows plots comparing fitted Ktrans values to the

values used to generate the simulated curves for different
models. At high SNR and short time resolution, there is
good concordance between simulated and fitted values. This
is reflected in the CCC comparisons (Tables 3, 4 and 5).
Fitting using ROCKETSHIP was generally able to recover
parameter values with high accuracy and precision, as
demonstrated by the small error bars seen in Fig. 3 and the
high CCC values for the fitted to actual value comparisons
across multiple models and with different parameters.
Results shown in Fig. 3 and Tables 3, 4 and 5 demonstrate
that ROCKETSHIP perform on par or better compared to
QIBA simulation fittings using the Tofts model with
DCE@UrLAB and DCEMRI.jl both qualitatively (com-
pared to figures generated by DCE@UrLAB [33]) and
quantitatively (CCC ≥ 0.9 in general for Ktrans and ve
recovery using Tofts model, similar to or better than the
reported CCCs generated by DCEMRI.jl [28]). As with all
curve fitting algorithms, the accuracy of the fit will be
dependent on a number of factors [18], including SNR,
sampling resolution and the number of parameters being
fitted (Fig. 4, Tables 3, 4 and 5).

Accuracy of model selection using nested model analysis
The data-driven, nested model analysis function in ROCK-
ETSHIP was also tested. Simulation curves reflective of
each level of nesting (steady-state, Patlak and extended
Tofts models) were generated as above. The resultant
curves were fitted using the nested method.
Simulation results using the nested model fitting are

shown in Fig. 5 and Table 6. The nested model fitting was

Table 2 Fitting parameters for simulation studies

Generating
model

Fitting
model

Acquistion
duration (min)

Time
resolution (s)

SNR Ktrans
(1/min)

ve vp Fp
(1/min)

τi (s)

Patlak Patlak 10 0.5, 6 5, 100 0.01, 0.02, 0.05, 0.1,
0.2, 0.35

N/A 0.001, 0.005 0.01 0.02
0.05 0.1

N/A N/A

Tofts Tofts 10 0.5, 6 5, 100 0.01, 0.02, 0.05, 0.1,
0.2, 0.35

0.01, 0.02, 0.05, 0.1,
0.2, 0.5

N/A N/A N/A

Ex-Tofts Ex-Tofts 10 0.5, 6 5, 100 0.01, 0.02, 0.05, 0.1,
0.2, 0.35

0.01, 0.02, 0.05, 0.1,
0.2, 0.5

0.001, 0.005 0.01 0.02
0.05 0.1

N/A N/A

2CXM 2CXM 10 0.5, 6 5, 100 0.01, 0.02, 0.05, 0.1,
0.2, 0.35

0.01, 0.02, 0.05, 0.1,
0.2, 0.5

0.001, 0.005 0.01 0.02
0.05 0.1

0.5, 1,
5

N/A

Tissue
uptake

Tissue
uptake

10 0.5, 6 5, 100 0.01, 0.02, 0.05, 0.1,
0.2, 0.35

N/A 0.001, 0.005 0.01 0.02
0.05 0.1

0.5, 1,
5

N/A

FXR FXR 10 0.5, 6 5, 100 0.01, 0.02, 0.05, 0.1,
0.2, 0.35

0.01, 0.02, 0.05, 0.1,
0.2, 0.5

N/A N/A 0.1,
0.5, 2

Steady-state Nested 10 0.5 5, 100 N/A N/A 0.005, 0.1 N/A N/A

Patlak Nested 10 0.5 5, 100 0.01, 0.35 N/A 0.005, 0.1 N/A N/A

Ex-Tofts Nested 10 0.5 5, 100 0.01, 0.35 0.01, 0.1 0.005, 0.1 N/A N/A
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able to recover the appropriate model for the majority of
the fitting curves. Accuracy of the nested model fitting
was shown to be dependent on SNR. Lower SNR led to
more model misclassification of voxels.

In vivo examples
Preclinical data set
DCE-MRI was performed on an athymic BLABL/c nude
mouse bearing a HER2-expressing BT474 human breast
cancer tumor. A 17β-estradiol pellet (Innovative Research
of America) was implanted subcutaneously into the back
of the mouse one day prior to orthotopic inoculation
(6th and 9th mammary fat pad) of 5 × 106 cells in matrigel
(BD Biosciences). The tumor volume was ≈ 200 mm3 at the
time of imaging. Mouse care and experimental procedures
were carried out in accordance with protocols approved
by the Institutional Animal Care and Use Committee at
Caltech.
Imaging was performed using a Biospec (Bruker-Biospin

Inc. Billerica, MA) 7 T MRI scanner and a custom-built
birdcage coil. The mouse was anesthetized during the ses-
sion with 1.3-1.5 % isoflurane/air mixture. Body temperature
was maintained at 36-37 °C with warmed air through the
bore. A variable flip angle method was used to generate T1
maps. Gradient echo images (FLASH, FA = 12°, 24°, 36°, 48°,
60°, matrix size = 140 × 80, voxel size = 0.25 × 0.25 mm2,
slice thickness = 1 mm, TR/TE = 200/2 ms) centered on the
tumor (3 slices) and the left ventricle (1 slice) were acquired.
Next, DCE-MRI was acquired (FLASH, FA = 35°, TR/
TE = 25/2 ms, geometry the same as the T1 maps, time
resolution = 2 s, duration = 22 min). After a baseline of
2.5 min, Gd-DTPA (0.1 mmol/kg, Magnevist, Bayer) was
injected intravenously via a tail vein catheter using a
powered-injector (New Era Inc.) at 0.5 mL/min. Imaging

data were processed using ROCKETSHIP and analyzed
with the nested model method.
Parametric maps and associated concentration vs. time

curves are shown in Fig. 6. For this tumor, the extended
Tofts model was deemed the most appropriate for the
majority of the tumor. Generated Ktrans values were similar
to those observed in prior studies using the same tumor
cell line [46]. Consistent with other studies, there is a
heterogeneous distribution of Ktrans, ve and vp highlighting
a leaky and vascularized rim with a necrotic core.

Clinical data set
The clinical data set was obtained from a wider study set
being accrued by the University of Southern California
(USC) Alzheimer’s disease Research Center. The study
was approved by the USC Institutional Review Board. The
imaging dataset used here was obtained from one of the
participants from the no cognitive impairment cohort, as
determined from medical examination and neuropsycho-
logical evaluation. All imaging was performed at the Keck
Medical Center of USC. Participants underwent a medical
examination, neuropsychological evaluations and blood
draw to ensure appropriate kidney function for CA
administration prior to imaging.
The imaging protocol performed was developed to study

BBB changes in patients with cognitive impairment and is
detailed in [6]. Briefly, all images were obtained on a GE
3 T HDXT MR scanner with a standard eight-channel
array head coil. Anatomical coronal spin echo T2-weighted
scans were first obtained through the hippocampi (TR/TE
1550/97.15 ms, NEX= 1, slice thickness 5 mm with no
gap, FOV= 188 x 180 mm, matrix size = 384 x 384). Base-
line coronal T1-weighted maps were then acquired using a
T1-weighted 3D spoiled gradient echo (SPGR) pulse se-
quence and variable flip angle method using flip angles of

A B C

Fig. 3 Ktrans fitting of simulated data. Simulated data with time resolution of 0.5 s and SNR = 100 were fitted using the same model used to generate the
simulation with ROCKETSHIP using default settings for the Patlak method (a), Tofts (b) and Extended Tofts models (c). Ktrans simulated vs. fitted
were plotted as a function of ve and vp. Dashed line is unity. Error bars denote standard deviation. Given the similar fits, points for different ve and vp may
overlap. Concordance correlation coefficients for these (and other model fits) are shown in Tables 3, 4 and 5
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Table 3 Concordance correlation coefficients (CCC) comparing fitted and simulated Ktrans using different models and dependent
parameters

Generating model Fitting model Time resolution (s) SNR Dependent parameter vp = 0.001 0.005 0.01 0.02 0.05 0.1

Patlak Patlak 0.5 5 vp 1.00 1.00 1.00 1.00 1.00 1.00

0.5 100 vp 1.00 1.00 1.00 1.00 1.00 1.00

6 5 vp 0.98 0.98 0.98 0.98 0.98 0.98

6 100 vp 1.00 1.00 1.00 1.00 1.00 1.00

ve = 0.01 0.02 0.05 0.1 0.2 0.5

Tofts Tofts 0.5 5 ve 0.38 0.85 0.98 0.99 1.00 1.00

0.5 100 ve 1.00 1.00 1.00 1.00 1.00 1.00

6 5 ve 0.08 0.32 0.76 0.92 0.96 0.97

6 100 ve 0.67 0.92 1.00 1.00 1.00 1.00

ve = 0.01 0.02 0.05 0.1 0.2 0.5

Ex-Tofts Ex-Tofts 0.5 5 ve 0.01 0.33 0.95 0.99 1.00 1.00

0.5 100 ve 0.92 1.00 1.00 1.00 1.00 1.00

6 5 ve −0.02 0.05 0.41 0.84 0.96 0.98

6 100 ve 0.22 0.48 0.98 1.00 1.00 1.00

vp = 0.001 0.005 0.01 0.02 0.05 0.1

0.5 5 vp 0.74 0.73 0.71 0.68 0.61 0.51

0.5 100 vp 0.99 0.98 0.98 0.99 0.99 0.98

6 5 vp 0.57 0.58 0.57 0.56 0.45 0.41

6 100 vp 0.89 0.90 0.88 0.81 0.54 0.35

ve = 0.01 0.02 0.05 0.1 0.2 0.5

2CXM 2CXM 0.5 5 ve −0.02 −0.02 0.11 0.22 0.65 0.90

0.5 100 ve 0.07 0.42 0.65 0.76 0.98 0.99

6 5 ve −0.01 −0.01 −0.01 0.10 0.52 0.84

6 100 ve −0.03 −0.06 0.04 0.38 0.84 0.98

vp = 0.001 0.005 0.01 0.02 0.05 0.1

0.5 5 vp 0.18 0.20 0.23 0.31 0.43 0.47

0.5 100 vp 0.32 0.63 0.72 0.76 0.76 0.74

6 5 vp 0.20 0.19 0.21 0.21 0.28 0.29

6 100 vp 0.18 0.26 0.34 0.41 0.45 0.45

Fp = 0.5 1 5

0.5 5 Fp 0.21 0.30 0.40

0.5 100 Fp 0.46 0.69 0.81

6 5 Fp 0.20 0.22 0.27

6 100 Fp 0.26 0.35 0.43

vp = 0.001 0.005 0.01 0.02 0.05 0.1

vp = 0.001 0.005 0.01 0.02 0.05 0.1

0.5 5 vp 0.98 1.00 0.98 1.00 1.00 1.00

0.5 100 vp 1.00 1.00 1.00 1.00 1.00 1.00

6 5 vp 0.88 0.88 0.88 0.91 0.98 0.99

6 100 vp 1.00 1.00 1.00 1.00 1.00 1.00

Tissue uptake Tissue uptake 0.5 5 vp 0.98 1.00 0.98 1.00 1.00 1.00

0.5 100 vp 1.00 1.00 1.00 1.00 1.00 1.00
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2°, 5° and 10°. (TR/TE = 8.29/3.08 ms, NEX = 1, slice thick-
ness 5 mm with no gap, FOV 188 x 180 mm, matrix size
160 x 160). Coronal DCE MRI covering the hippocampi
and temporal lobes were acquired using a T1-weighted 3D
SPGR pulse sequence (FA = 15°, TR/TE = 8.29/3.09 ms,
NEX= 1, slice thickness 5 mm with no gap, FOV 188 x
180 mm, matrix size 160 x 160, voxel size was 0.625 x
0.625 x 5 mm3). This sequence was repeated for a total of
16 min with an approximate time resolution of 15.4 s.
Gadobenate dimegulumine (MultiHance®, Braaco, Milan,
Italy) (0.05 mmol/kg), a gadolinium-based CA, was admin-
istered intravenously into the antecubital vein using a
power injector, at a rate of 3 mL/s followed by a 25 mL
saline flush, 30 s into the DCE scan. Imaging data were
processed by ROCKETSHIP. The AIF, which was extracted
from an ROI positioned at the internal carotid artery, was
fitted with a bi-exponential function prior to fitting analysis
with 2CXM.
Parametric maps and associated concentration vs. time

curves are shown in Fig. 7. Compared to the murine
tumor that contains leaky vasculature [41], Ktrans values
for the human brain are lower, as expected given the
intact blood brain barrier in normal human subjects [6].
As shown in Fig. 7e, the bi-exponential function estimated
the AIF well and allowed for a good fit of concentration
time curves within the brain parenchyma (Fig. 7f).

Discussion
Development and adoption of DCE-MRI by clinicians and
researchers requires the availability of analysis software
that not only has sufficient functionality for the novice
end-user, but also the flexibility and extensibility capability
for more complicated analyses. Using its default settings,
users can follow ROCKETSHIP’s pipeline to generate para-
metric maps of common kinetic models. Its modular design
allows other models to be incorporated in a straightforward
manner. Recently, several groups have recognized that
data-driven approaches in selecting the appropriate model
may be important for proper physiological interpretation of
the DCE-MRI data [23]. To facilitate this, ROCKETSHIP
includes a nested model fitting option as well as statistical
tools to analyze and compare the goodness-of-fit between
different kinetic models.
We selected the MATLAB environment for a number of

reasons. Firstly, MATLAB is widely used for image analysis
in the academic community; programs written in MATLAB
can generally be run on Mac, Windows or Unix-based op-
erating systems with minimal porting issues. Secondly,
MATLAB provides several toolboxes (such as the Curve
Fitting Toolbox and Parallel Computing Toolbox) that fa-
cilitated development of the current software and allows fu-
ture extensions to be easily implemented. MATLAB also
has a strong user-contributed library of imaging processing

Table 3 Concordance correlation coefficients (CCC) comparing fitted and simulated Ktrans using different models and dependent
parameters (Continued)

6 5 vp 0.88 0.88 0.88 0.91 0.98 0.99

6 100 vp 1.00 1.00 1.00 1.00 1.00 1.00

Fp = 0.5 1 5

0.5 5 Fp 1.00 0.98 1.00

0.5 100 Fp 1.00 1.00 1.00

6 5 Fp 0.82 0.97 0.98

6 100 Fp 1.00 1.00

ve = 0.01 0.02 0.05 0.1 0.2 0.5

ve = 0.01 0.02 0.05 0.1 0.2 0.5

0.5 5 ve −0.01 0.02 0.08 0.14 0.39 0.95

0.5 100 ve 0.07 0.31 0.97 1.00 1.00 1.00

6 5 ve 0.01 −0.01 0.03 0.06 0.12 0.38

6 100 ve 0.05 0.14 0.71 0.96 0.99 1.00

τi = 0.1 0.5 2

0.5 5 τi 0.11 0.14 0.14

0.5 100 τi 0.56 0.59 0.56

6 5 τi 0.06 0.07 0.07

6 100 τi 0.54 0.61 0.52

100 curves for each model and fixed dependent parameter were generated as described in the text and Table 2. Ktrans values simulated are defined in Table 2.
The CCC was calculated from the Ktrans (simulated) vs. Ktrans (fitted), such as depicted in Figure 5. Ktrans values from which CCCs were calculated were
segregated according to the dependent parameter (vp, ve or Fp). A value of 1 shows near-perfect concordance, while 0 represents a low concordance relationship
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Table 4 Concordance correlation coefficients (CCC) comparing fitted and simulated vp using different models and dependent
parameters

Generating model Fitting model Time resolution (s) SNR Dependent parameter Ktrans = 0.01 0.02 0.05 0.1 0.2 0.35

Patlak Patlak 0.5 5 Ktrans 0.99 0.99 0.99 0.99 1.00 0.99

0.5 100 Ktrans 1.00 1.00 1.00 1.00 1.00 1.00

6 5 Ktrans 0.95 0.95 0.95 0.95 0.94 0.95

6 100 Ktrans 1.00 1.00 1.00 1.00 1.00 1.00

Ktrans = 0.01 0.02 0.05 0.1 0.2 0.35

Ex-Tofts Ex-Tofts 0.5 5 Ktrans 0.99 0.99 0.99 0.99 0.98 0.98

0.5 100 Ktrans 1.00 1.00 1.00 1.00 1.00 1.00

6 5 Ktrans 0.95 0.95 0.94 0.93 0.91 0.88

6 100 Ktrans 1.00 1.00 1.00 1.00 0.95 0.89

ve = 0.01 0.02 0.05 0.1 0.2 0.5

0.5 5 ve 0.98 0.98 0.99 0.99 0.99 0.99

0.5 100 ve 1.00 1.00 1.00 1.00 1.00 1.00

6 5 ve 0.92 0.90 0.89 0.93 0.95 0.94

6 100 ve 0.92 0.92 1.00 1.00 1.00 1.00

Ktrans = 0.01 0.02 0.05 0.1 0.2 0.35

2CXM 2CXM 0.5 5 Ktrans 0.79 0.85 0.51 0.26 0.10 0.06

0.5 100 Ktrans 1.00 1.00 0.95 0.96 0.81 0.41

6 5 Ktrans 0.02 0.07 0.37 0.16 0.07 0.05

6 100 Ktrans 0.96 0.93 0.90 0.73 0.38 0.09

ve = 0.01 0.02 0.05 0.1 0.2 0.5

0.5 5 ve 0.95 0.90 0.65 0.31 0.15 0.02

0.5 100 ve 0.99 0.97 0.89 0.75 0.82 0.57

6 5 ve 0.44 0.56 0.35 0.11 0.02 −0.03

6 100 ve 0.97 0.93 0.75 0.51 0.34 0.13

Fp = 0.5 1 5

0.5 5 Fp 0.22 0.28 0.31

0.5 100 Fp 0.64 0.88 0.95

6 5 Fp 0.09 0.09 0.03

6 100 Fp 0.39 0.56 0.54

Ktrans = 0.01 0.02 0.05 0.1 0.2 0.35

Tissue uptake Tissue uptake 0.5 5 Ktrans 0.95 0.78 0.18 0.03 −0.02 −0.03

0.5 100 Ktrans 1.00 1.00 1.00 1.00 1.00 0.48

6 5 Ktrans 0.33 0.39 0.31 0.17 0.02 0.01

6 100 Ktrans 0.74 0.83 0.79 0.80 0.77 0.69

Fp = 0.5 1 5

0.5 5 Fp -0.01 -0.01 0.90

0.5 100 Fp 0.67 1.00 0.99

6 5 Fp 0.03 0.20 0.07

6 100 Fp 0.95 0.97 0.44

100 curves for each model and fixed dependent parameter were generated as described in the text and Table 2. vp values simulated are defined in Table 2. The
CCC was calculated from the vp (simulated) vs. vp (fitted) . vp values from which CCCs were calculated were segregated according to the dependent parameter
(Ktrans, ve or Fp). A value of 1 shows near-perfect concordance, while 0 represents a low concordance relationship
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Table 5 Concordance correlation coefficients (CCC) comparing fitted and simulated ve using different models and dependent
parameters

CCC for ve (simulated) vs. ve (fitted)

Generating model Fitting model Time resolution (s) SNR Dependent parameter Ktrans = 0.01 0.02 0.05 0.1 0.2 0.35

Tofts Tofts 0.5 5 Ktrans 0.71 0.96 1.00 1.00 0.94 0.97

0.5 100 Ktrans 1.00 1.00 1.00 1.00 1.00 1.00

6 5 Ktrans 0.33 0.52 0.68 0.63 0.65 0.68

6 100 Ktrans 0.95 1.00 1.00 1.00 1.00 1.00

Ktrans = 0.01 0.02 0.05 0.1 0.2 0.35

Ex-Tofts Ex-Tofts 0.5 5 Ktrans 0.67 0.86 0.87 0.80 0.66 0.54

0.5 100 Ktrans 1.00 1.00 1.00 1.00 1.00 1.00

6 5 Ktrans 0.22 0.40 0.48 0.47 0.35 0.35

6 100 Ktrans 0.95 1.00 1.00 1.00 0.93 0.74

vp = 0.001 0.02 0.05 0.1 0.2 0.5

0.5 5 vp 0.74 0.73 0.69 0.71 0.73 0.70

0.5 100 vp 1.00 1.00 1.00 1.00 1.00 1.00

6 5 vp 0.38 0.38 0.36 0.36 0.32 0.32

6 100 vp 0.92 0.94 0.93 0.93 0.93 0.94

Ktrans = 0.01 0.02 0.05 0.1 0.2 0.35

2CXM 2CXM 0.5 5 Ktrans 0.51 0.52 0.29 0.19 0.12 0.06

0.5 100 Ktrans 0.97 0.97 0.93 0.84 0.70 0.49

6 5 Ktrans 0.17 0.27 0.24 0.15 0.06 0.03

6 100 Ktrans 0.81 0.88 0.73 0.46 0.23 0.10

vp = 0.001 0.02 0.05 0.1 0.2 0.5

0.5 5 vp 0.09 0.15 0.24 0.36 0.41 0.37

0.5 100 vp 0.50 0.83 0.88 0.91 0.87 0.86

6 5 vp 0.11 0.12 0.14 0.16 0.21 0.19

6 100 vp 0.23 0.41 0.49 0.55 0.59 0.63

Fp = 0.5 1 5

0.5 5 Fp 0.19 0.24 0.31

0.5 100 Fp 0.68 0.81 0.90

6 5 Fp 0.14 0.15 0.17

6 100 Fp 0.40 0.48 0.54

FXR FXR 0.5 5 Ktrans 0.37 0.41 0.43 0.48 0.52 0.46

0.5 100 Ktrans 0.90 0.92 0.96 0.93 0.93 0.94

6 5 Ktrans 0.20 0.23 0.25 0.24 0.23 0.23

6 100 Ktrans 0.63 0.76 0.80 0.81 0.74 0.82

τi = 0.1 0.5 2

0.5 5 τi 0.41 0.45 0.44

0.5 100 τi 0.94 0.93 0.92

6 5 τi 0.24 0.23 0.22

6 100 τi 0.76 0.75 0.73

100 curves for each model and fixed dependent parameter were generated as described in the text and Table 2. ve values simulated are defined in Table 2.
The CCC was calculated from the ve (simulated) vs. ve (fitted) . ve values from which CCCs were calculated were segregated according to the dependent
parameter (Ktrans, vp or Fp). A value of 1 shows near-perfect concordance, while 0 represents a low concordance relationship
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and statistical analysis functions that aid this endeavor.
Building and testing of the software are helped by the
interpretive nature of the MATLAB language. Modifica-
tions to the existing code or testing of new modules can
be performed in real time. These capabilities enable users
of wide-ranging expertise (from experienced programmers
to biologists/clinicians with less programming experience)
to use ROCKETSHIP and develop new modules and
extend the software.
Since it is run within the MATLAB environment, the

execution time of ROCKETSHIP may be slower than
other DCE-MRI software written in compiled languages
(C, C++, IDL). The use of the Parallel Computing Tool-
boxto do the voxel-by-voxel processing in parallel
mostly offsets this limitation. While this may be a
disadvantage in a daily clinical workflow setup, most
DCE-MRI data are analyzed offline and often in a
research context. As discussed above, ROCKETSHIP
will be advantageous in this scenario. Furthermore,
MATLAB code can be ported to C/C++ and Julia [28] in
a relatively straightforward way. Thus, once an optimal
setup is developed using ROCKETSHIP, one can trans-
late this to a lower level language and ultimately as a
standalone program.
The precision and accuracy of DCE-MRI parameter es-

timation in vivo is dependent on several factors, ranging
from the type of tissue being probed, the type of image
acquisition protocol/system used to the post-acquisition
processing and analysis methodologies. DCE-MRI soft-
ware packages address the post-acquisition portion of this
pipeline. To evaluate ROCKETSHIP’s ability in this regard,
simulation datasets with a range of models and parame-
ters expected in typical studies were generated and fitted.

Results demonstrate that ROCKETSHIP was able to re-
cover DCE-MRI parameters accurately using its default
configuration, on par with (or better than) similar studies
using the same pharmacokinetic models implemented
within currently available software packages. Furthermore,
the nested model functionality, unavailable in prior soft-
ware suites, was generally able to select the appropriate
kinetic model for a given simulation dataset. ROCKET-
SHIP was also able to fit both preclinical and clinical in
vivo DCE-MRI data well, demonstrating its applicability
for in vivo studies.
While the simulations presented cover a broad param-

eter range, it is likely that further modifications/tuning of
ROCKETSHIP’s settings or functions will be required for
specific in vivo applications in the future. Furthermore,
extrinsic factors affecting the data fitting, including SNR,
time resolution/duration, motion and most importantly
the physiological question being explored, need to be
considered when evaluating the appropriateness of the
output values and model selection [23, 37, 47, 48].

Conclusion
We have implemented a modular, flexible and easily exten-
sible software suite for dynamic MRI (in particular DCE-
MRI) analysis. This software allows for DCE-MRI data
analysis using several pharmacokinetic models used cur-
rently in the literature as well as data-driven analysis
methods. It is compatible with both clinical and preclinical
imaging data and is currently being used in DCE-MRI
studies [6]. We envision that the flexibility and open source
nature of our software will be useful for researchers and
clinicians at varying levels of DCE-MRI expertise.
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Fig. 4 ve fitting at different time resolutions. Simulated data using the Tofts model were generated at SNR = 5 and at time resolutions of 0.5 s (a) and
6 s (b). Simulated vs. fitted ve were plotted as a function of Ktrans. Dashed line is unity. Error bars represent standard deviation. As expected, lower time
resolution results in a high standard deviation of the curve fits. Given the similar fits, points for different Ktrans may overlap. Concordance correlation
coefficients for these (and other model fits) are shown in Tables 3, 4 and 5
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The source code repository and documentation for
ROCKETSHIP is located at https://github.com/petmri/
ROCKETSHIP. Future updates and support for ROCK-
ETSHIP will be coordinated and maintained via this
repository.

Availability and requirements
Project name: ROCKETSHIP v.1.1
Project homepage: https://github.com/petmri/ROCKET

SHIP
Operating system(s): Windows/Mac OS X/Linux
Programming language: MATLAB
Other requirements: None, but image processing

programs such as ImageJ or MRIcro are useful to pre-
process inputs.
License: GPL-2.0

Appendix A: MRI image parameter fitting
T2/T2* and ADC fitting
The current implementation of the fitting module pro-
vides options to fit T1, T2/T2* and ADC maps. T2/T2*
fits are based on the mono-exponential equation, while
ADC is based on the mono-exponential Steksjal-Tanner
equation [49]. Options to perform a non-linear least

squares fit or a linear regression using a linearized form
of the equations are provided.

T1 fitting
T1 relaxation times estimation in ROCKETSHIP can be
performed using the variable TR method, the variable
flip-angle (FA) method and the inversion recovery (IR)
method.
Using the variable TR method, T1 is estimated with a

series of spin-echo images with varying TR and constant
TE using the standard saturation recovery equation:

Table 6 Model selection of simulated data using the nested
model method

Percentage of voxels selected (%)

Generating model SNR Model 0 Model 1 Model 2 Model 3

Steady-State (Model 1) 5 2.75 41 43 13.25

Steady-State (Model 1) 100 0 75 20.75 4.25

Patlak (Model 2) 5 0 0 94.75 5.25

Patlak (Model 2) 100 0 0 100 0

Extended Tofts (Model 3) 5 0 11.25 19 69.5

Extended Tofts (Model 3) 100 0 8.5 0 91.5
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Fig. 5 Nested model selection from simulated data. a and b show fitting for steady-state model simulated data. c and d show the fitting for Patlak
simulated data. All the generated curves at SNR = 100 converged to the correct model. At lower SNR, some of the curves incorrectly converged to
Model 3 (extended Tofts). e and f show fitting on extended Tofts simulated data. Again, the majority of the curves converged to the correct model.
The percentage of voxels attributed to each model by the nest model algorithm is shown in Table 6
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SI ¼ SITR¼∞ 1−e−
TR
T1

� �
: e−TE=T2 ðA1Þ

The variable FA method uses a series of gradient-echo
images with varying FA and fixed TR and TE to estimate
T1 with the equation:

SI ¼ SI TR≫T1; TE≪T2�; θ¼90∘ð Þ
sinθ 1−E1ð ÞE2

1−E1 cosθ
ðA2Þ

where θ is the FA, E1 ¼ e−
TR
T1 and E2 ¼ e−TE=T2

�
. Here,

we assume that TE < T2*.
The “gold-standard” IR method of T1 estimation con-

sists of inverting the longitudinal magnetization and
sampling the MR signal at several points along its
exponential recovery. An IR pulse sequence is repeated

N times with an inversion pulse followed by an imaging
module delayed by different waiting times (TIN). T1 can
be estimated with the equation:

SI ¼ SI TR; TI≫T1ð Þ 1−2:e−
TI
T1 þ e−

TR
T1

� �
ðA3Þ

Non-linear least-squares fitting is used to fit MRI data
to Equations A1, A2, A3.

Appendix B: Preparation of the dynamic datasets
for DCE-MRI analysis
Signal to concentration conversion
ROCKETSHIP assumes that dynamic DCE-MRI data are
acquired with a spoiled-gradient echo sequence. Files
can be read in as 2D or 3D image sequences or as a 4D

0.06

0

0.02

0

0.6

0

Ex-Tofts

Steady State

Patlak

K
trans v

e

v
p

Fitted model

A B

C D

E F
AIF: left ventricle Tumor

m
in

-1

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

Time (minutes)

C
on

ce
nt

ra
tio

n 
(m

M
)

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 K
trans

 = 0.022±0.0018
 V

e
 = 0.31±0.024

 V
p
 = 0.011±0.0048

 residual = 2.8553

Time (minutes)

C
on

ce
nt

ra
tio

n 
(m

m
ol

)

Fig. 6 Nested model fitting of DCE-MRI data on a murine breast cancer tumor model. Parameters for Ktrans (a), ve (b), and vp (c) are shown. As
shown in d, the majority of the voxels fitted best to the extended Tofts model, with some edge voxels fitting to the Patlak method. e shows the
AIF used for the fit (taken from the left ventricle). f shows a sample time curve from the edge of the tumor (denoted by arrow) with correspond-
ing fit (blue denotes the fit, red lines denote the 95 % prediction bounds for the fitted curve). Rod phantoms on either side of the mouse were
present to allow for signal drift correction (not used in this case)
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Fig. 7 2CXM fitting of a normal human brain. Parameters for Ktrans (a), ve (b), vp (c) and Fp (d) are shown. e shows the AIF used (taken from internal carotid
artery). The AIF was fitted with a bi-exponential curve (blue) prior to tissue fitting. f shows a sample time curve from the brain parenchyma (denoted by
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image volume. SI from the raw data images are con-
verted to R1(t) curves using the equation:

R1 tð Þ ¼ −
1
TR

� �
: log

S0 sinθ e−
TE
T2�−S tð Þ cosθ

h i
S0 sinθ e−

TE
T2�−S tð Þ

h i ðB1Þ

where θ is the FA, S0 represents the fully relaxed situ-
ation and is calculated by:

S0 ¼
Sss 1−e−

TR
T1 cosθ

h i
1−e−

TR
T1

� �
sinθ:e−

TE
T2�

ðB2Þ

Sss is the average steady state intensity prior to contrast
agent injection.
Assuming fast exchange limit [40], resultant R1(t)

curves are converted to concentration curves, C(t), via
the relations:

CAIF tð Þ ¼ R1 tð Þ− 1
T1

� �
= r1: 1−HCTð Þ ðB3Þð

, and

Ctissue tð Þ ¼ R1 tð Þ− 1
T1

� �
=r1 ðB4Þ

where r1 is the relaxivity of the contrast agent and HCT
hematocrit of blood.

Noise filtering
Voxels where Equation B1 yields imaginary values are
removed from the ROIs being evaluated. Further voxels
are filtered out if they are too noisy. The signal-to-noise
ratio (SNR) threshold and the region from which the
noise is calculated are defined by the user.

Signal drift correction
Baseline signal intensity can drift during the course of a
dynamic study. If the user has a phantom in the field-of-
view, ROCKETSHIP can use the signal from this phan-
tom to correct the dynamic images for drift. In the
current implementation, the signal drift in the phantom
over time is used to generate a multiplicative scaling fac-
tor by taking the ratio of the phantom image intensity at
time t compared to the initial time point. To minimize
the effects of aberrant noise on factor estimation, scaling
factors over the time series are fitted to a fourth order
polynomial, with the factors derived from this curve
used for drift correction.

AIF extraction
Accurate delineation of the AIF/RR ROI is important for all
the quantitative models currently used in ROCKETSHIP.
Users manually define the AIF/RR ROI by inputting

an image or ImageJ .roi file showing the location of
the AIF/RR. SNR filtering is applied as above. For
AIF’s, additional options are available to accept only
those voxels that demonstrate expected AIF behavior
(steady baseline, with a sudden sharp rise in the sig-
nal during injection followed with rapid washout).
This is achieved using a combination of moving aver-
age, Sobel edge-emphasizing filters and fitting to a
bi-exponential curve. Thresholds for these filters are
defined in the user-editable preference text file.
Data output from this sub-module is saved as a

MATLAB .mat file that can be passed down the pipeline
for further processing.

Appendix C: AIF/RR processing
ROCKETSHIP processes AIF/RR curves in three ways,
depending on the application:

1) The raw AIF/RR time curves are used for model
fitting.

2) The raw AIF curve is fitted to a bi-exponential with
a linear upslope during injection of the contrast
agent [50]. The equation used to fit the curve is:

CAIF tð Þ ¼ Css ; f or t < ti1

CAIF tð Þ ¼ Css þ A−Cssð Þ: t−ti1
ti2−ti2

− B−Cssð Þ: t−ti1
ti2−ti2

; f or ti1≤t≤ti2

CAIF tð Þ ¼ A:e−c: t−ti2ð Þ þ B:e−d: t−ti2ð Þ; f or t < ti2

ðC1Þ

where Css is the concentration of contrast agent in the
tissue prior to injection (nominally = 0), ti1 and ti2 the
time of onset and end for contrast agent injection re-
spectively. A, B, c and d are variables that are estimated
using a non-linear least-squares fit.

3) The AIF/RR curve to be used downstream in the
pipeline can be imported from an external file.

A tool is provided for the user to create a population-
averaged AIF/RR as well.
Time resolution and duration during acquisition can

significantly affect kinetic modeling results [48]. Options
to define the time resolution of each sample point and
the duration interval to be considered downstream in
the pipeline are thus available.

Appendix D: Pharmacokinetic model fitting
ROCKETSHIP implements several common pharmaco-
kinetic models used for DCE-MRI analysis as well as
semi-quantitative metrics. A brief description of these
models is presented. The GUI for this sub-module is
shown in Fig. 3d.
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Area under curve (AUC)
AUC is calculated using both C(t) and the raw signal
curve S(t). AUC is estimated using the trapezoidal rule
function implemented in MATLAB. Four parameters are
generated: AUCC(t), AUCS(t), NAUCC(t) and NAUCS(t).
NAUC the normalized AUC, is defined by:

NAUC ¼ AUCROI=AUCAIF=RR ðD1Þ

where AUCROI is the AUC of the tissue curve and
AUCAIF/RR is the AUC of the AIF/RR.

Two-compartment exchange model (2CXM)
Most of the models implemented in ROCKETSHIP are
based on the 2CXM [12]. ROCKETSHIP implements
the 2CXM using the convolution equation for Ctissue(t):

Ctissue tð Þ ¼ Fp:K ⊗ CAIF tð Þ ðD2Þ

where,

K tð Þ ¼ e−t:Kþ þ E− e−t:K−− e−Kþ
� 	 ðD3Þ

K� ¼ 1
2

T−1
P þ T−1

E �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T−1

P þ T−1
E

� 	2−4:T−1
E :T−1

B

q� �
ðD4Þ

E− ¼ Kþ−T−1
B

Kþ−K−
ðD5Þ

TP ¼ vP
PS þ FP

; TE ¼ vE
PS

; TB ¼ vp
FP

ðD6Þ

where Ctissue(t) and CAIF(t) are the contrast agent concen-
tration versus time curves for the tissue of interest
(imaging voxel) and AIF respectively, vp and ve are the
plasma and interstitial volume fractions within the im-
aging voxel respectively, Fp is the flow of plasma carrying
the contrast agent into and out of the voxel, PS is the
permeability-surface product exchange constant governing
transfer of contrast agent between the plasma and intersti-
tial space and ⊗ denotes convolution.
For most studies, an important physiological param-

eter of interest is Ktrans, the volume transfer constant de-
scribing the number of contrast agent molecules
delivered to the interstitial space per unit time, tissue
volume and arterial plasma concentration. For compart-
mental models, it was shown previously [12] that:

Ktrans ¼ Fp: PS
Fp þ PS

ðD7Þ

Thus, four parameters are estimated for the 2CXM:
Fp, vp, ve, and Ktrans

Tissue uptake model
This model assumes that there is no backflux of contrast
agent from the interstitium back to the plasma compart-
ment, which may apply soon after bolus injection. In this
case, ve is not measurable. Three parameters, vp, Fp and
Ktrans, can be estimated using:

Ctissue tð Þ ¼ CAIF⊗ g tð Þ ðD8Þ
where

g tð Þ ¼ Fpe
− t
TP þ Ktrans 1−e−

t
TP

� �
ðD9Þ

Tofts and extended Tofts models
The extended Tofts model assumes that Fp ≈ ∞ [12].
Three parameters, vp, ve and Ktrans, are estimated using:

Ctissue tð Þ ¼ Ktrans:CAIF⊗ f tð Þ þ vp:CAIF tð Þ ðD10Þ
where

f tð Þ ¼ e−
Ktrans :t

ve ðD11Þ
The Tofts model assumes that the plasma compart-

ment has negligible volume (vp = 0):

Ctissue tð Þ ¼ Ktrans:CAIF⊗ f tð Þ ðD12Þ

Patlak model
The Patlak model can be seen as a special case of the
extended Tofts model. It assumes that Fp ≈ ∞ and back-
flux from the interstitial space is negligible. Two param-
eters, vp and Ktrans are estimated using:

Ctissue tð Þ ¼ Ktrans

Z t
0

CAIF τð Þdτ þ vp:CAIF tð Þ ðD13Þ

A linearized version of this equation can be obtained
by dividing both sides by CAIF(t). In our current imple-
mentation, vp and Ktrans estimates using this linear fit
provides the starting values for non-linear curve fitting
using equation D16.

The shutter-speed model
The models described above assumes that water, the al-
tered relaxation of which is the actual contributor to the
signal changes observed in DCE-MRI, exchanges between
different compartments (plasma, interstitium, intracellular
space) infinitely fast (referred to as the fast-exchange limit
FXL). Studies have shown that the assumption of FXL
may underestimate ve and Ktrans [51, 52]. Springer et al.
introduced the shutter-speed model to include the effects
of equilibrium inter-compartmental water exchange [53].
The first-generation fast-exchange regime (FXR) shutter-
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speed model is implemented here. Three parameters, ve,
Ktrans and τi (the average intracellular water lifetime of a
water molecule), are estimated using [54]:

R1 tð Þ ¼ 1
2
½2:R1i þ r1C0 tð Þ þ R10−R1i þ 1

τi

p0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
τi
−r1C0 tð Þ−R10−R1i þ 1

τi

p0

 !2

þ 4: 1−p0ð Þ
τ2i p0

vuut �

ðD14Þ

where

C0 tð Þ ¼ Ktrans

Z t
0

CAIF tð Þ: e−Ktrans t−τð Þ
ve dτ; p0 ¼

ve
f w

;

ðD15Þ

R1i is the R1 relaxation rate in the intracellular space
(defined to be equal to T1−1 here) and fw is the fraction
of water that is accessible to the contrast agent (user-
defined).
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