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Abstract

Background Early prediction of mortality in individuals with HIV (PWH) has perpetually posed a formidable
challenge. With the widespread integration of machine learning into clinical practice, some researchers endeavor
to formulate models predicting the mortality risk for PWH. Nevertheless, the diverse timeframes of mortality among
PWH and the potential multitude of modeling variables have cast doubt on the efficacy of the current predictive
model for HIV-related deaths. To address this, we undertook a systematic review and meta-analysis, aiming to
comprehensively assess the utilization of machine learning in the early prediction of HIV-related deaths and furnish
evidence-based support for the advancement of artificial intelligence in this domain.

Methods We systematically combed through the PubMed, Cochrane, Embase, and Web of Science databases on
November 25, 2023. To evaluate the bias risk in the original studies included, we employed the Predictive Model
Bias Risk Assessment Tool (PROBAST). During the meta-analysis, we conducted subgroup analysis based on survival
and non-survival models. Additionally, we utilized meta-regression to explore the influence of death time on the
predictive value of the model for HIV-related deaths.

Results After our comprehensive review, we analyzed a total of 24 pieces of literature, encompassing data from
401,389 individuals diagnosed with HIV. Within this dataset, 23 articles specifically delved into deaths during
long-term follow-ups outside hospital settings. The machine learning models applied for predicting these deaths
comprised survival models (COX regression) and other non-survival models. The outcomes of the meta-analysis
unveiled that within the training set, the c-index for predicting deaths among people with HIV (PWH) using predictive
models stands at 0.83 (95% Cl: 0.75-0.91). In the validation set, the c-index is slightly lower at 0.81 (95% Cl: 0.78-0.85).
Notably, the meta-regression analysis demonstrated that neither follow-up time nor the occurrence of death events
significantly impacted the performance of the machine learning models.

Conclusions The study suggests that machine learning is a viable approach for developing non-time-based
predictions regarding HIV deaths. Nevertheless, the limited inclusion of original studies necessitates additional
multicenter studies for thorough validation.
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Background

AIDS (Acquired Immune Deficiency Syndrome) is a
severe infectious disease caused by the human immu-
nodeficiency virus (HIV), leading to a substantial num-
ber of global fatalities each year. According to the United
Nations Programme on HIV/AIDS (UNAIDS) report
as of December 2022, a total of 85.6 million individuals
worldwide had contracted HIV, and 40.4 million had suc-
cumbed to AIDS-related illnesses since the onset of the
epidemic [1]. In the previous year, despite some countries
achieving the 95-95-95 target ahead of schedule, there is
a worrisome surge in new HIV infection cases in certain
countries in Asia and the Pacific region [2]. Particularly
in specific resource restrained countries and regions, the
persistent prevalence of HIV infection remains a sub-
stantial public health concern.

Although the development of antiretroviral treatment
(ART) has significantly extended the life expectancy of
people with HIV, prior studies indicate that the major-
ity of individuals living with HIV (PWH) experience a
shorter survival period compared to their healthy coun-
terparts, and face a heightened risk of death during the
infection period. This poses numerous challenges to clin-
ical practice [3, 4]. For PWH, early identification of their
risk of death is crucial as it enables timely adjustments in
follow-up methods and treatment regimens, ultimately
enhancing their survival and quality of life. Unfortu-
nately, effective tools for the early prediction of the risk
of death are currently lacking. Therefore, discovering
a more accurate method to predict the risk of death in
PWH is of paramount importance. It not only improves
the survival rate and quality of life for infected individu-
als but also optimizes the allocation of medical resources.

Traditional risk prediction methods primarily rely on
clinical data and medical knowledge. However, with the
advancements in big data and machine learning technol-
ogy, employing machine learning algorithms to process
and analyze extensive data has proven advantageous in
disease diagnosis and prognosis prediction. Machine
learning plays a crucial role in disease diagnosis by iden-
tifying individuals at high risk of developing the disease.
This approach helps in screening out such individuals
and allows for more targeted interventions. Traditional
diagnostic methods for specific clinical diseases can be
invasive or expensive, but with the integration of machine
learning, we can enhance the accuracy of diagnosis for
high-risk individuals. Additionally, machine learning
methods enable us to predict disease prognosis, thereby
helping to prevent or delay adverse outcomes effectively.
By leveraging these techniques, we can significantly
mitigate the impact of diseases. For instance, prognostic

models have been established for predicting outcomes in
chronic obstructive pulmonary disease patients [5]. Simi-
larly, for cancer diagnosis, prognosis, and treatment [6].
In this context, some researchers have also endeavored
to develop early predictive models for mortality in HIV-
infected individuals. A meta-analysis systematic review
was conducted in order to address the controversy sur-
rounding the predictive value of diverse models for HIV-
related death. The study aimed to identify an accurate,
efficient, and widely applicable method for predicting
death in HIV/AIDS patients. The findings of this review
will provide decision-making support for clinicians and
inform the development of improved treatment regimens
for patients. Various studies have shown significant varia-
tions in the follow-up period, leading to the construction
of different predictive models.

Methods

Study registration

Our study adhered to the systematic review and meta-
analysis reporting guidelines (PRISMA 2020). Addition-
ally, we proactively registered comprehensive details
of the systematic review protocol on PROSPERO (ID:
CRD42023488238).

Eligibility criteria
Inclusion criteria

(1) The included study subjects were diagnosed HIV-
infected individuals;

(2) The included study types were case-control studies,
cohort studies, nested case-control studies, and case-
cohort studies;

(3) The complete construction of the death-related
predictive model was achieved without restricting
the follow-up time for death;

(4) Some studies did not set up independent validation
cohorts. However, we cannot ignore the collinearity
of these studies in this field. During the meta-analysis
process, we summarized the c-index of the training
set and validation set to describe the existence of
overfitting. Therefore, studies without independent
validation sets were also included in our systematic
review;

(5)In some studies, different researchers may publish
machine learning research based on the same dataset
(especially authoritative registered databases). Due
to the possibility of different modeling methods
and modeling variables, those studies were also
incorporated into our systematic review;
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(6) The included literature was reported in English in the
research.

Exclusion criteria

(1) Study types were meta-analysis, review, guideline,
expert opinion, etc.

(2) Only the analysis of risk factors or predictive factors
for death in PWH was conducted, and no complete
study of machine learning models was constructed;

(3) The following outcome indicators for evaluating the
accuracy of machine learning models were missing
(ROC, c-statistic, c-index, sensitivity, specificity,
accuracy, recovery rate, precision, confusion matrix,
diagnostic fourfold table, F1 score, and calibration
curve);

(4) Studies with a small sample size (<20 cases);

(5) Studies on the univariate prediction accuracy;

(6) Conference abstracts published without peer review.

Data sources and search strategy

During our systematic exploration, we meticulously
combed through the PubMed, Cochrane, Embase, and
Web of Science databases, with the search cutoff date
configured to May 26, 2023. To mitigate the potential of
overlooking recently published literature, we addition-
ally performed searches on November 25, 2023, within
the aforementioned databases. The search was executed
employing both subject terms and free-text terms, devoid
of any constraints on region or publication year. Com-
prehensive search strategies are delineated in Additional
Material 1.

Study selection and data extraction

We imported the retrieved literature into EndNote and
employed a combination of automated and manual
methods to identify duplicate publications. Following
this, we thoroughly reviewed the titles and abstracts
to preliminarily screen the original studies that met the
criteria. Subsequently, we downloaded the full texts of
these studies. The original studies that ultimately fulfilled
the criteria for our systematic review underwent further
screening based on their full texts. Before proceeding
with data extraction, we established a standardized data
extraction spreadsheet. This spreadsheet included the
following categories: Title, First author, Years of publica-
tion, Author country, Study type, Patient source, Follow-
up duration, Cause of death, Number of deaths, Total
number of cases, Number of death cases in the training
set, Total number of cases in the training set, Generation
mode of the validation set, Overfitting methods, Verifica-
tion of the number of deaths in the set, Number of cases
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in the validation set, Missing value processing method,
Variable screening/feature selection methods, Use of
model types, and Modeling variables.

The literature screening and data extraction mentioned
above were independently conducted by two researchers
(LYF, HXY). After completion, a cross-check was per-
formed. In the event of any disputes, resolution will be
sought through consultation with the third researcher
(NMJ).

Risk of bias in studies

We utilized PROBAST to evaluate the bias risk of the
original study, encompassing a comprehensive set of
questions across four distinct domains: participants, pre-
dictive variables, results, and statistical analysis. These
domains comprised 2, 3, 6, and 9 specific questions,
respectively, each having three response options (yes/
possibly yes, no/possibly no, and no available informa-
tion). If any answer in a domain indicated “no” or “possi-
bly no,” it was deemed high risk. Conversely, for a domain
to be considered low risk, all questions needed “yes” or
“possibly yes” responses. The overall bias risk was deter-
mined as low when all domains were classified as low
risk. Conversely, if at least one domain was designated
as high risk, the overall bias risk was deemed high. Bias
risk assessments were independently conducted by two
researchers (LYF, HXY) using PROBAST, with cross-ver-
ification upon completion. In the event of disagreements,
a third researcher (NM]) was consulted for resolution.

Outcomes

The primary outcome indicator in our systematic review
was the C-index, reflecting the overall accuracy of the
predictive model. The review focused on assessing the
risk of death in HIV-infected individuals and identified
variations in different follow-up times. Some original
studies developed survival analysis models, such as COX
regression, Fine & Gray model, random survival forest,
etc. The performance of these models, as indicated by the
area under the ROC curve, varied over time, emphasiz-
ing the need for the C-index to describe their effective-
ness. In contrast, non-survival analysis models, including
logistic regression, random forest, and support vector
machine, produced outcome indicators with a consistent
area under the ROC curve that did not vary with time.
These models demonstrated performance equivalent to
the C-index observed in survival analysis models.

Synthesis methods

We conducted a meta-analysis of the c-index, an indica-
tor used to assess the overall accuracy of machine learn-
ing models. In cases where the 95% confidence interval
and standard error of the c-index were not provided in
original studies, we referred to the work of Debray TP
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et al. (Debray TP, Damen JA, Riley RD, et al. A frame-
work for meta-analysis of prediction model studies with
binary and time-to-event outcomes. Stat Methods Med
Res 2019;28:2768-86.) to estimate its standard error.
Considering variations in variables and parameter incon-
sistencies across different machine learning models,
we prioritized the use of random effects models for the
meta-analysis of c-index.

In addition, we employed a bivariate mixed-effects
model for a comprehensive meta-analysis of sensitiv-
ity and specificity. During the meta-analysis process,
sensitivity and specificity values were derived from the
diagnostic fourfold table. However, a significant num-
ber of original studies did not provide this table. In such
instances, we utilized two approaches to calculate the
diagnostic fourfold table: (1) Computation based on sen-
sitivity, specificity, precision, and the number of cases; (2)
Extraction of sensitivity and specificity using the optimal
Youden’s index, followed by calculation with the number
of cases. The meta-analysis for this study was performed
using R 4.2.0 (R Development Core Team, Vienna, http://
www.R-project.org).

Results

Study selection

We conducted a comprehensive search across PubMed,
Cochrane, Embase, and Web of Science databases, iden-
tifying a total of 12,794 pieces of literature. Out of these,
1,591 were identified as duplicate articles and subse-
quently removed. Following the elimination of dupli-
cates, we performed initial screening based on titles and
abstracts, ultimately pinpointing 36 articles relevant to
our research topic. Upon downloading and thoroughly
reviewing the full texts of these articles, we excluded
the following categories: 2 articles lacking detailed clas-
sification of HIV-infected individuals and their deaths,
3 studies concentrating on methodological modeling
improvements or economic evaluation indicators with-
out patient data, 3 pieces of literature featuring outcome
indicators inconsistent with our research focus, and 4
studies utilizing bioinformatics methods to assess the
risk of death in HIV-infected individuals at the individual
level. Ultimately, our refined selection includes a total of
24 previous studies [7-30] that align with our research
topic. The specific screening process is visualized in
Fig. 1.

Study characteristics

We reviewed 24 studies(Table 1), encompassing a total of
401,389 individuals living with HIV. These studies were
conducted in various countries and regions, including
7 from the United States [15, 18, 19, 21, 24, 25, 28], 10
from China [7-11, 13, 14, 16, 20, 23], and the rest from
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Spain [12], Mozambique [17], Germany [22], Congo [26],
Uganda [27], Switzerland [29], and Canada [30].

These studies comprised 22 cohort studies [31-52]
and 2 nested case-control studies [7-30]. In terms of
patient sources, 15 studies originated from multicenter
sources [31, 33-35, 37, 39, 40, 42, 44-48, 50, 51, 53], 2
were drawn from a registered database [13, 18], and 7
were conducted at single centers [8, 10, 15, 20, 23, 27,
30]. In a follow-up report, one study specifically focused
on in-hospital deaths resulting from the combination of
Talaromyces marneffei and HIV infection [8], while the
remaining studies reported deaths during long-term
follow-up, with the longest follow-up period extending
to 36 years [7]. The majority of studies concentrated on
all-cause mortality in HIV-infected individuals, with only
two studies reporting deaths attributed to Kaposi’s sar-
coma [7] and Pneumocystis jirovecii Pneumonia [11]. In
the training set, a total of 14,148 cases of deceased indi-
viduals were recorded, encompassing 3 types of models.
The generation of the validation set involved internal ran-
dom sampling and external validation, with external vali-
dation utilizing two modes: prospective and multicenter.
The 8 studies employed survival analysis models (COX
regression) [7, 9-11, 20, 23, 26, 30], while the remaining
16 studies utilized non-survival analysis models [32, 35—
42, 44-46, 49-51]. The modeling variables are detailed in
the Additional Materials.

Risk of bias in studies

The assessment of the original studies utilized the PRO-
BAST evaluation tool. Regarding the study subjects, an
article with data sourced from retrospective cohort stud-
ies [11] is considered to have a high bias. Additionally,
an article studying in-hospital mortality among infected
individuals makes it challenging to assess predictive fac-
tors without knowing the outcomes, resulting in high
bias [8]. In the evaluation of results, due to the particu-
larity of the outcome indicator being death, the evalua-
tion results related to the definition of the outcome in the
included articles are all low in bias. In statistical analysis,
most non-survival analysis studies meet the criterion of
EPV2>20, and a sample size of an independent validation
set>100 indicates low bias. However, survival analysis
studies using COX regression and the Fine & Gray model
(FGR) do not establish independent external valida-
tion [9, 13, 18, 21, 22, 28, 29]. In some studies, the rarity
of cases makes it challenging to meet the conditions of
EPV>20 or an independent validation sample size>100,
leading to high bias [7, 1012, 14, 16, 17, 24, 26] (Fig. 2).

Meta-analysis

Training set

Synthesized results Within the training set, there are a
total of 12 models, and the c-index obtained through the
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Fig. 1 Literature screening process

aggregation of random effects models is 0.81 (95% CI:
0.72-0.90). The summarized c-index for the LR model is
0.83 (95% CI: 0.75-0.91), while the summarized c-index
for the Cox model is 0.78 (95% CI: 0.72-0.85) (Fig. 3).

Sensitivity analysis and reporting biases During the
sensitivity analysis of the training set in this study, we
systematically excluded each model and summarized the
results of the remaining ones. The findings suggest that
even after removing each model, the results remain stable
(Fig. 4). Additionally, the funnel plot reveals no evidence
of publication bias, and the Egger test yields a p-value of
0.468 (Fig. 5).

Meta-regression Meta-regression analysis was con-
ducted on the follow-up time of the training set in these

studies. The adjusted R2 reveals that 38.40% of the inter-
study variance has been explained. Following Knapp-
Hartung adjustment, the coefficient for follow-up time
is -0.0048738, with a standard error of 0.0019694. The
t-value is -2.47, and the p-value is 0.033 (»<0.05), indicat-
ing a significant impact of varying follow-up times on the
c-index. With increasing follow-up time, there is a notice-
able declining trend in the c-index, as illustrated in Fig. 6.

Validation set

Synthesized results In the validation set, 13 models
were included, and the c-index, summarized using ran-
dom effects models, was 0.81 (95% CI: 0.78-0.85). Spe-
cifically, the summarized c-index for LR is 0.79 (95% CI:
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Fig. 2 PROBAST assessment of the original study for quantitative analysis

0.66-0.93), and for Cox, it is 0.80 (95% CI: 0.74—0.85)
(Fig. 7).

Sensitivity analysis and reporting biases The sensi-
tivity analysis results for the validation set indicate that
the summarized findings remain consistent even after
systematically excluding models one by one (Fig. 8). Fur-
thermore, the funnel plot did not indicate any publication
bias, with Egger’s test showing a p-value of 0.118 (Fig. 9).

Study
ID

COoX

Haili Wang (2023)

Haili Wang (2023)

Xuegin Li (2022)

Fangfang Jiang (2022)

Qiuyue Feng (2022)

Z. Yuan (2020)

Xiangging Hou (2019)

James Nugent (2014)

Subtotal (I-squared = 98.4%, p=0.000)

LR

Ting Zhao (2021)

Yuanyuan Qin (2021)

Margaret L. McNairy (2018)

Subtotal (l-squared = 86.4%, p=0.001)

XGBoost
Minjuan Shi (2022)
Subtotal (I-squared=.%,p=.)

Overall (l-squared = 99.6%, p = 0.000)
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Meta-regression After conducting meta-regression
analysis on the follow-up time of the validation set, the
results are as follows: The REML estimated inter-study
variance is 0.003958, and 80.73% of the residual variation
is attributed to heterogeneity. The adjusted R-squared is
-8.29%. Following Knapp-Hartung adjustment, the inter-
cept term is 0.7968903 with a standard error of 0.0298499.
The coefficient for follow-up time is 0.0023765 with a
standard error of 0.0031152. The t-value is 0.76, and the
p-value is 0.462 (p>0.05), indicating that the effect of
follow-up time on the c-index is not significant. (Fig. 10).

Discussion

Summary of the main findings

The objective of this comprehensive systematic review
and meta-analysis is to assess the efficacy of machine
learning models in predicting the risk of death among
HIV/AIDS patients. Following a meticulous database
search and utilizing the Prediction Model Risk of Bias
Assessment Tool (PROBAST) for bias risk evaluation,
we identified 24 eligible studies encompassing 401,389
People with HIV (PWH). These studies predominantly
center on the mortality of outpatients during extended
follow-up periods and have employed various machine
learning models, encompassing both survival and non-
survival models. The meta-analysis reveals that machine

%
c-index (95% Cl) Weight

*

0.72(0.71,0.73) 8.63
0.62 (0.61, 0.63) 8.62
0.72 (059, 0.84) 7.47
0.80 (0.76, 0.84) 8.48
0.91(0.85, 0.97) 8.31
0.83 (0.80, 0.86) 8.56
0.90 (0.82, 1.00) 7.95
0.79 (0.73, 0.85) 8.33
0.78 (0.72, 0.85) 66.36

s

t

0.88 (0.84, 0.91) 852
0.86 (0.78, 0.94) 8.13
0.75 (0.70, 0.81) 8.36
0.83 (0.75, 0.91) 25.02

O—t—*—;—————o—i—{w-

0.98 (0.97,0.99) 8.62
{ 0.98(0.97,0.99) 862

*

0.81(0.72, 0.90) 100.00

NOTE: Weights are from random effects analysis
T
-1

Fig. 3 Forest plot of the c-index meta-analysis of predictive models for PWH death prediction in the training set
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Meta-analysis estimates, given named study is omitted
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Fig. 4 Forest plot of the sensitivity analysis of the c-index meta-analysis of the predictive models for PWH death in the training set

Funnel plot with pseudo 95% confidence limits

O-
7|\
° ® N °
/ \
/ \
/ \
/ \ )
/ \
S / \ °
= / L4
/ \
/ L \
/ o
@ / \ °®
@ / \
/ \
/ \
S | / \ L -
o / \
/ \
/ \
/ \
/ \
/ \
/ \
© / \
(=g / \
o [ ]
T T T T T
6 7 8 9 1
c-index

Fig. 5 Funnel plot of the c-index meta-analysis of the predictive models for PWH death in the training set

learning models exhibit robust performance in predict- performance of machine learning models in predict-
ing the risk of death among PWH, with a c-index of 0.83  ing PWH mortality. Demonstrating excellent predictive
(95% CI: 0.75-0.91) in the training set and a c-index of capabilities, the machine learning model performs admi-
0.81 (95% CI: 0.78-0.85) in the validation set. Further- rably in forecasting the risk of death for PWH, as evi-
more, meta-regression analysis indicates that the length  denced by the high c-index values in both the validation
of follow-up time does not significantly impact the and training sets. This underscores their potential utility



Li et al. BMC Infectious Diseases

(2024) 24:474

Study
D

ANN

G.E. Hatzakis (2002)

Subtotal (I-squared = %, p=".)

COX

Fangfang Jiang (2022)

Z. Yuan (2020)

Xiangqing Hou (2019)

James Nugent (2014)

G.E. Hatzakis (2002)

Subtotal (I-squared = 58.5%, p = 0.047)

LR

Ting Zhao (2021)

Yuanyuan Qin (2021)

Margaret L. McNairy (2018)

Subtotal (I-squared = 88.2%, p = 0.000)

RF

Sara Domi’nguez-Rodri"guez (2022)
Chang Shu (2021)

Chang Shu (2021)

Subtotal (I-squared = 62.4%, p = 0.070)

XGBoost
Minjuan Shi (2022)
Subtotal (l-squared = %, p=.)

Overall (I-squared = 81.4%. p = 0.000)

NOTE: Weights are from random effects analysis
T

20
Follow time(year)

30

40

Fig. 6 Meta-regression analysis of the follow-up time for death prediction of PWH by the predictive model in the training set
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Fig. 7 Forest plot of c-index meta-analysis of the prediction for PWH death by predictive models in the validation set
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Meta-analysis estimates, given named study is omitted
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Fig. 8 Forest plot of the sensitivity analysis of the c-index meta-analysis of the predictive models for PWH death in the validation set
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Fig. 9 Funnel plot of the c-index meta-analysis of the predictive models for PWH death in the validation set

in clinical practice. These findings underscore the accu-
racy and reliability of machine learning models in aiding
healthcare professionals to identify high-risk patients and
optimize intervention strategies, ultimately improving

patient prognosis.

Comparison with previous reviews
In the realm of artificial intelligence, the application of Al
to HIV has garnered widespread attention from research-
ers. In earlier studies, scholars James Stannah and Luo

Qiangian conducted a meta-analysis of HIV infection
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Fig. 10 Meta-regression analysis of follow-up time of predictive models for PWH death in the validation set

risk among men who have sex with men (MSM) in high-
risk populations. They employed Bayesian generalized
linear mixed-effect models and meta-regression analysis
to scrutinize trends in HIV testing, treatment cascade,
and HIV incidence among MSM in Africa [54]. Another
study synthesized 18 evaluation models, revealing that
machine learning models exhibit fair to good discrimi-
natory performance in predicting HIV infection risk
(AUC 0.62, 95% CI: 0.51 to 0.73) [55]. Machine learning
also demonstrates promising predictive and evaluative
effects in clinical antiretroviral treatment (ART) [56] and
pre-exposure prophylaxis (PrEP). For instance, Bayes-
ian network meta-analysis (NMA) summarization dis-
closed that at week 96, there is improved differentiation
in the efficacy, safety, and durability of dolutegravir when
taken prior to exposure [57]. Furthermore, in recent
years, some scholars have delved deeper into analyz-
ing the treatment and immune changes of HIV-infected
individuals with concurrent infections (tuberculosis [58],
COVID-19 [59]) using multiple machine learning mod-
els. The application of vaccine-induced immune factors
[60] has also found relevance in this domain. In order
to enhance our understanding of survival status in indi-
viduals living with HIV, it is crucial to continue the dis-
course on this topic, despite the previous meta-analyses
conducted. Hence, we conducted an assessment of the
efficacy of machine learning models in predicting the
risk of death among People living With HIV (PWH).
Our objective was to complement earlier research find-
ings and investigate the potential of machine learning in

predicting early death risk among HIV/AIDS patients. By
doing so, we aim to provide evidence-based suggestions
for the advancement and refinement of intelligent predic-
tion tools in this field.

Machine learning relies on modeling variables as key
factors for enhancing accuracy. In the incorporated mod-
els, factors predicting death encompass common demo-
graphic characteristics, CD4 cell count, and viral load
(VL), along with behavioral, biochemical, and antiviral
therapy-related factors. Additionally, predictive factors,
such as comorbid infection-related elements, primar-
ily focus on observing the latency period of the disease
course in HIV-infected patients. Monitoring these pre-
dictive factors during subsequent disease progression,
particularly during the onset of AIDS, is crucial. Real-
time monitoring or updating of these predictive factors
will contribute to a more precise prediction of the risk of
death. Therefore, vigilance towards changes in these pre-
dictive factors and timely adjustments to the model can
significantly enhance prediction accuracy.

Other researchers have conducted similar systematic
reviews regarding the prediction of death/positive events
at different time points. For instance, Jin Jin examined
the use of machine learning to predict the postoperative
recurrence of hepatocellular carcinoma resection [61].
The study found that the model’s prediction method
yielded favorable results, particularly when there were
significant time differences. Additionally, studies have
explored the prediction of disease-free survival (DFS) in
breast cancer [62], as well as the assessment of chronic
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kidney disease risk and patient prognosis [63]. In this
particular study, we examined the predictive value at dif-
ferent time intervals and supplemented the feasibility of
using meta-regression to determine whether there is a
declining trend in the predictive capacity of the model
over time.

In clinical trials, model selection remains a noteworthy
concern. Cox regression is the primary method in sur-
vival analysis, while logistic regression is predominantly
used in non-survival analysis. Both models offer good
interpretability. Balancing interpretability and accuracy
in machine learning models is a key challenge in clini-
cal practice. Generally, models with high interpretabil-
ity, such as logistic regression, COX regression, decision
trees, and the Fine & Gray model, raise concerns about
accuracy. On the other hand, models with poor interpret-
ability, like random forest, random survival forest, arti-
ficial neural networks, and deep learning, often achieve
higher accuracy [64]. Due to the complex parameter
adjustment rules of less.

interpretable models, accurately understanding the
relationship between each indicator and the risk of death
becomes challenging. Despite this, these models have
significant advantages, especially in extracting predictive
factors in image processing. However, in image analy-
sis, models with poor interpretability still offer unique
advantages [65]. In our study, we primarily considered
common admission factors and some interpretable labo-
ratory indicators. Therefore, we lean towards using mod-
els with better interpretability in this context, as they can
more accurately reflect the relationship between clinical
prediction indicators and the risk of death. This is cru-
cial for providing enhanced visual support in developing
clinical prevention policies or specific measures.

We evaluated the model we utilized using the PRO-
BAST tool for quality assessment. However, the results
of the assessment raised certain concerns, particularly
regarding the stringent evaluation of statistical meth-
ods. We believe that the evaluation criteria for this tool
may be overly strict. Firstly, the tool mandates a training
set with EPV>20 and a validation set with a sample size
exceeding 100, posing challenges for rare diseases. Sec-
ondly, considering the complexity of the data, we identify
high dimensionality, collinearity, and data imbalance as
primary concerns. Currently, it is challenging for medi-
cal research to publicly disclose raw data. Additionally,
the tool requires an assessment of whether the predictive
factors and their weight coefficients in the research align
with the reported results, involving complex machine
learning models, some with poor interpretability. As
mentioned earlier, these models do not publicly disclose
the weight coefficients of their factors, complicating the
assessment of consistency. Therefore, we suggest that cer-
tain evaluation criteria in the PROBAST assessment tool
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may require updates in future research. In subsequent
studies, we aim to utilize this tool to assess indicators of
research rationality, ensuring a more rigorous approach
to scientific research. Our research encompasses a larger
number of studies and patients, enhancing the general-
izability of the findings and providing more compelling
evidence for evaluating the effectiveness of the machine
learning model in predicting the risk of death in people
with hemophilia.

Advantages and limitations of the study

Our research offers initial evidence-based support for
the effectiveness of machine learning in predicting
HIV-related deaths. However, certain limitations need
acknowledgment. Firstly, our systematic search for eligi-
ble original studies has its constraints. Despite our com-
prehensive summary of modeling variables, the diverse
nature of these variables, coupled with limitations in the
number of original studies, prevented us from reporting
the predictive performance of machine learning models
based on variable types. Additionally, the inclusion of
model types is restricted, largely due to the prevalence
of COX regression in death prediction. This dominance
makes it challenging to incorporate other non-survival
analysis models. Therefore, a careful explanation of this
section of the results is imperative.

Conclusions
In summary, this systematic review and meta-analysis
have highlighted the valuable role of machine learn-
ing models in predicting the risk of death among HIV
patients, particularly during long-term follow-up. The
results indicate that these models exhibit robust predic-
tive performance, supported by high c-index values in
both the training and validation sets. Despite potential
limitations, such as variations in research quality and
heterogeneity, our findings endorse the practicality of
employing machine learning models as effective tools for
mortality prediction in HIV patients. This bears signifi-
cant importance in enhancing risk assessment and clini-
cal decision-making for the improvement of HIV care.
While this study emphasizes the commendable per-
formance of machine learning models in predicting the
risk of death in HIV/AIDS patients, future research could
delve deeper into the external validation of these models
across diverse patient populations and healthcare set-
tings. Moreover, enhancing the predictive accuracy and
clinical applicability of these models may be achieved
by integrating additional clinical variables or biomark-
ers. Conducting longitudinal studies to assess the actual
application and impact of these models on patient prog-
nosis will also contribute to a thorough evaluation of
their real efficacy.
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This study presents compelling evidence supporting
the effectiveness of machine learning models in predict-
ing the risk of death in HIV/AIDS patients. The utiliza-
tion of rigorous methods and the discovery of clinically
relevant findings make these models promising tools for
enhancing risk assessment and delivering tailored inter-
ventions for HIV care. To enhance the quality of life and
extend the survival time of individuals with HIV who are
at a high risk of premature mortality, it is recommended
to prioritize the reinforcement of treatment follow-up,
closely monitor medication adherence, and provide com-
prehensive family support.
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