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Abstract
Background  Several models have been used to predict outbreaks during the COVID-19 pandemic, with limited 
success. We developed a simple mathematical model to accurately predict future epidemic waves.

Methods  We used data from the Ministry of Health, Labour and Welfare of Japan for newly confirmed COVID-19 
cases. COVID-19 case data were summarized as weekly data, and epidemic waves were visualized and identified. The 
periodicity of COVID-19 in each prefecture of Japan was confirmed using time-series analysis and the autocorrelation 
coefficient, which was used to investigate the longer-term pattern of COVID-19 cases. Outcomes using the 
autocorrelation coefficient were visualized via a correlogram to capture the periodicity of the data. An algorithm for 
a simple prediction model of the seventh COVID-19 wave in Japan comprised three steps. Step 1: machine learning 
techniques were used to depict the regression lines for each epidemic wave, denoting the “rising trend line”; Step 
2: an exponential function with good fit was identified from data of rising straight lines up to the sixth wave, and 
the timing of the rise of the seventh wave and speed of its spread were calculated; Step 3: a logistic function was 
created using the values calculated in Step 2 as coefficients to predict the seventh wave. The accuracy of the model in 
predicting the seventh wave was confirmed using data up to the sixth wave.

Results  Up to March 31, 2023, the correlation coefficient value was approximately 0.5, indicating significant 
periodicity. The spread of COVID-19 in Japan was repeated in a cycle of approximately 140 days. Although there was 
a slight lag in the starting and peak times in our predicted seventh wave compared with the actual epidemic, our 
developed prediction model had a fairly high degree of accuracy.

Conclusion  Our newly developed prediction model based on the rising trend line could predict COVID-19 outbreaks 
up to a few months in advance with high accuracy. The findings of the present study warrant further investigation 
regarding application to emerging infectious diseases other than COVID-19 in which the epidemic wave has high 
periodicity.
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Background
Following reports of the first patients with viral pneumo-
nia caused by COVID-19 in December 2019 from Wuhan 
City in Hubei Province, China, the disease rapidly spread 
throughout the world, leading to the COVID-19 pan-
demic [1, 2]. In Japan, the first patient with COVID-19 
was reported on January 15, 2020. This was the second 
imported case from China, following those from Thai-
land [3, 4]. Since then, people in Japan have experienced 
eight epidemic waves of COVID-19, with approximately 
33.5  million laboratory-confirmed cases and 74,000 
deaths as of March 31, 2023 [5]. Each time an epidemic 
wave occurs, the number of laboratory-confirmed 
COVID-19 cases increases rapidly. This rapid elevation in 
the number of cases caused increased fears of health sys-
tem collapse, with hospitals experiencing difficulty treat-
ing patients with diseases other than COVID-19, such as 
myocardial infarction and heart failure [6], as well as an 
increase in the number of patients with out-of-hospital 
cardiac arrest [7]. However, if the timing and shape of an 
epidemic wave could be predicted in advance with high 
accuracy, hospitals and health care systems could better 
prepare according to the predicted number of cases and 
expected time frame.

Several prediction models have been proposed for 
infectious diseases, including the historical mathemati-
cal model based on differential equations such as the 
SIR (susceptible, infectious, recovered) model [8]; mod-
els involving time-series analysis with use of past data 
to predict the future, such as the autoregressive inte-
grated moving average (ARIMA) and seasonal ARIMA 
(SARIMA) models [9–11]; and models that learn data 
patterns for prediction and classification, such as the 
Prophet model [12, 13]. Additionally, the effective appli-
cation of outbreak prediction or forecasting models is 
crucial for obtaining insightful information regarding the 
transmission dynamics of a disease and its consequences. 
However, standard prediction models that deliver accu-
rate results have not yet been established [14]. Various 
factors increase the uncertainty of prediction models, 
including known and unknown variables, differences in 
population/behavioral complexity in different geopo-
litical areas, people’s vaccination status, the evolution of 
new strains, medical measurements, and variations in 
containment strategies [15–17]. Therefore, developing a 
standard prediction model for COVID-19 outbreaks that 
matches the real-world data with adjustment for these 
risk factors is challenging. Under these conditions, a 
highly accurate prediction model for COVID-19 in Japan 
is still lacking. In a comparison among the 47 prefectures 
of Japan, the speed of increase in the number of cases 
differs according to prefecture [5]. A prediction model 
of COVID-19 for Japan must be adjusted to the condi-
tions in each prefecture; therefore, a highly accurate, 

tailor-made prediction model must incorporate the local 
conditions. However, it can be hypothesized that if medi-
cal organizations and local governments in each location 
can produce accurate epidemic predictions, this would 
contribute to the preparation of countermeasures against 
COVID-19 throughout the health system that match the 
conditions in each region.

The aim of the present study was to predict COVID-19 
outbreaks in Japan using a simple mathematical model.

Methods
Dataset
We used data that were made openly available by the 
Ministry of Health, Labour and Welfare of Japan from the 
first confirmed COVID-19 case on January 16, 2020 up 
to May 8, 2023 [18]. During this period in Japan, succes-
sive variations in the progression and containment of the 
epidemic, or waves, were observed eight times. Data for 
daily counts of new COVID-19 cases at both national and 
prefectural levels were collected and used for developing 
the model.

The end date of each epidemic wave was defined as the 
week with the minimum number of weekly cases after 
the peak of the epidemic (in which the number of weekly 
cases was greater than that in the following weeks). Using 
this definition, the duration of each epidemic wave in 
Japan was as follows. Wave 1 was from January 16, 2020 
to May 24, 2020; Wave 2: May 25, 2020 to September 27, 
2020; Wave 3: September 28, 2020 to February 28, 2021; 
Wave 4: February, March 1, 2021 to June 20, 2021; Wave 
5: June 21, 2021 to October 3, 2021; Wave 6: November 
29, 2021 to June 19, 2022; Wave 7: June 20, 2022 to Octo-
ber 9, 2022; and Wave 8 was from October 10, 2022 to 
April 2, 2023.

Assessing the periodicity of epidemic waves using time-
series analysis and the autocorrelation coefficient
We used time-series analysis and the autocorrelation 
coefficient (ACF) to examine the periodicity of COVID-
19 epidemic waves in Japan. A time-series analysis neces-
sitates decomposing the data into fundamental elements: 
trends that capture global trends and irregular, short-
term fluctuations (called noise). Given the pronounced 
short-term periodicity influenced by weekdays among 
COVID-19 cases in Japan, a moving average method was 
adopted. This involved calculating a 7-day average cen-
tered around each day to smooth out variations, treating 
it as the daily count of newly confirmed cases.

The ACF was applied to investigate longer-term pat-
terns of COVID-19 cases [19]. The ACF is used to cal-
culate the correlation coefficient between the original 
data and data shifted by specific time lags (referred to as 
lags), aiming to ascertain the presence of periodicity. The 
ACF outcomes were visualized using a correlogram that 
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captures the periodicity of the data, representing the cor-
relation coefficients between the original data x and the 
time-shifted data y. This is a plot with lags on the hori-
zontal axis and autocorrelation on the vertical axis, illus-
trating the relationship. The graph initiates from lag 0, 
where the correlation coefficient is 1 from a comparison 
with the identical dataset. Generally, as the lag increases, 
the correlation tends to attenuate, although instances 
arise where the strength of the correlation re-emerges. 
This phenomenon signifies autocorrelation, serving as 
a guide for exploring periodicity. We conducted time-
series analysis of changes in the ACFs after January 2020. 
Then, the collected data were used to derive a predictive 
framework for epidemic trends.

Algorithm for a simple prediction model of the seventh 
COVID-19 wave in Japan
Step 1. A time series of COVID-19 case datasets (i.e., 
daily new confirmed cases) from January 15, 2020 to 
April 23, 2023 was generated in Python programming 
language (Ver. 3.0.14) using pandas (ver. 1.2.4) to conduct 
the tabular data analysis. We used a function of a lin-
ear regression model from the machine learning library 
scikit-learn (ver. 0.24.1) to fit the regression lines for each 

epidemic wave, which we denoted the “rising trend line. 
(Fig.  1). The data were visualized using matplotlib (ver. 
3.3.4) and seaborn (0.11.1).

The next epidemic wave might be predicted on the 
basis of regular changes in the slope of this line.

Step 2. We then identified an exponential function with 
good fit from the data for rising straight lines up to the 
sixth epidemic wave and calculated the timing for the 
rise of the seventh wave and its speed of spread using 
the GeoGebra’s function for applying an exponential 
model of bivariate regression analysis (GeoGebra Classic 
5.2.826.0-d, International GeoGebra Institute, Linz, Aus-
tria). Regression analysis was performed after plotting 
the data calculated in step 1 on a coordinate plane to fit 
the logistic growth curves. The obtained model is shown 
in Fig. 2.

The surge timing was predicted using the average inter-
val between waves up to the sixth wave, and the exponen-
tial function was used to calculate its expansion speed. 
After the calculated data were plotted on a coordinate 
plane, regression analysis was performed, and the func-
tion with a good fit was adopted as model (1).

	 y=256.74e0.06x � (1)

Fig. 1  Epidemic waves of COVID-19 in Japan (blue line) with the rising trend line (red line)
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The average interval between each epidemic wave was 19 
weeks (95% confidence interval, 13.1–25.0). We divided 
the duration from the time of occurrence of an epidemic 
to the time of its peak into two periods, a rising period 
and peak period. We then calculated the slope of the ris-
ing trend line. We predicted the seventh wave during the 
convergence period of the sixth wave. This period was 
longer than those in the previous epidemic period, so we 
added 10 weeks to the start time of the seventh wave. The 
coefficients used to predict the slope of the rising trend 
line are shown in Additional file 1.

Step 3. A logistic growth model is often used to fit the 
time series analysis in studies of infectious diseases [20–
22] (2).

	
f (t) =

1

1 + e−t
� (2)

Using the logistic growth model, the variable t represents 
the number of days (duration) in each epidemic wave; ai 
is the number of infected people in each epidemic; bi is 

the inflection point of the curve representing the transi-
tion (number of days at the peak in an epidemic wave); 
and the speed of infection. Using ci as a coefficient to 
adjust, the total number of infected people in that epi-
demic wave is expressed by the following formula.

	
fi (t) =

ai

1 + e
bi−t
ci

� (3)

The following equation, which differentiates this with 
respect to the time variable t, can be expressed as the 
daily number of cases. Then, the variables ai, bi, and ci in 
each epidemic wave are calculated as follows:

	

dfi(t)
dt

=
aie

bi−t
ci

ci(1 + e
bi−t
ci )

2 � (4)

We used Python programming language (Ver. 3.0.14) 
for the analytical process throughout the present study. 

Fig. 2  Prediction diagram of speed of increase in number of COVID-19 cases and timing of outbreak
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For all analyses, significance levels were two-tailed, and 
p < 0.05 was considered statistically significant.

Results
Periodicity of COVID-19 in Japan using time-series analysis 
and the autocorrelation coefficient (ACF)
The temporal distribution of COVID-19 cases during 
the whole observational period (January 2020 to March 
2023) is shown in Fig. 3.

We used advanced machine learning techniques to 
ascertain and visually represent the epidemic waves with 
a rising trend line (Fig. 1) We also assessed the distribu-
tion of COVID-19 cases with a rising trend line in Japan’s 
47 prefectures; different trends among epidemic waves in 
each prefecture can be observed (Additional file 2).

Figure 4 shows the correlogram using the whole obser-
vational period (up to March 31, 2023).

Between January 16, 2020 and May 8, 2023, the corre-
lation coefficient was approximately 0.5, indicating sig-
nificant periodicity. The peak of lag was approximately 
140 (red arrow). Therefore, the spread of infection was 
repeated in a cycle of approximately 140 days, with high 
periodicity.

Prediction of the seventh COVID-19 wave and its accuracy
The epidemic curves using actual data for the number 
of infected cases and the approximate model are shown 

in Fig. 5, including the time of prediction of the seventh 
wave (March 15, 2022) and the simulated wave using the 
prediction model, as well as the actual number of cases 
after the time of prediction.

The actual distribution of COVID-19 cases and the 
distribution using the approximated model, which were 
used as the basic tool for developing the prediction 
model, presented similar distributions by mid-March 
2022 (Fig. 5). In the predicted seventh wave, although the 
starting time and peak time of the epidemic were slightly 
behind, the mean absolute percent error (MAPE) dur-
ing March 13, 2022 to October 12, 2022 indicated 53.5% 
but 20.0% for the 3 months from July 1, 2022 to October 
1, 2022 during the outbreak and 13.9% for the 1-month 
period from July 1, 2022 to August 1, 2022 during the 
expansion period. Therefore, although this provides the 
rationale for setting it to 200 days, if there had been a 
15-day difference, it would have been possible to predict 
the outbreak and spread with a high degree of accuracy.

Discussion
We constructed a simple prediction model by combining 
the depicted rising trend line. Our model showed a high 
degree of accuracy, especially when the distribution of 
COVID-19 cases had substantial periodicity. The spread 
of COVID-19 in Japan was repeated in a cycle of approxi-
mately 140 days, with high periodicity.

Fig. 3  Temporal distribution of COVID-19 cases, January 2020–March 2023
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Fig. 5  Distribution of COVID-19 cases and simulated wave developed using a prediction model. Orange line: actual distribution of COVID-19 cases. Pink 
line: distribution using the approximated model. Blue line: simulated wave developed using prediction. Gray shade: Forecasted period

 

Fig. 4  Correlogram using data from January 2020 to March 2023 for COVID-19 cases in Japan. Red arrow indicates the peak of lag. Light blue band indi-
cates 95% confidence interval. Values outside the band (dark blue), which are the autocorrelation coefficient, are statistically significant
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After the emergence of the COVID-19 pandemic, 
SARS-CoV-2 spread rapidly across countries worldwide, 
including Japan. It threatened people’s daily lives and 
caused medical care challenges such as health system 
collapse, which would make it impossible for patients 
with COVID-19 to be treated in a hospital. However, if 
it were possible to predict the timing of a future outbreak 
with high accuracy, as well as the trends in the number 
of cases over time, targeted infection control measures 
could be efficiently planned and the medical system could 
adequately prepare. We constructed a model to predict 
the surge timing of an epidemic wave using an exponen-
tial function, which yielded empirical evidence to support 
this model up to the seventh COVID-19 wave in Japan. 
The periodicity in SARS-CoV-2 transmission may stem 
primarily from changes in the implemented public health 
and social measures, adherence levels, antigenic drift, 
and seasonality influenced by environmental factors. 
However, because COVID-19 is an emerging infectious 
disease, risk factors that affect the spread of infection 
have not been clearly elucidated. Additionally, COVID-
19 infection may be transmitted from asymptomatic or 
pre-symptomatic individuals [23] and many cases of rein-
fection have been reported [24]. Owing to these issues, 
it is considered difficult to predict COVID-19 outbreaks 
with high accuracy and in a timely fashion using conven-
tional SIR models and models using the basic reproduc-
tion number or effective reproduction number.

From our previous studies, we have seen that some 
emerging and re-emerging infectious diseases have a high 
cyclic trend [25, 26]. We hypothesized that if periodicity 
exists for COVID-19 cases in Japan, we can predict the 
timing of a future outbreak. Although the periodicity var-
ied slightly among prefectures, the spread of COVID-19 
across Japan exhibited a cycle of approximately 140 days, 
with high periodicity. This number is reasonable within 
the context of the COVID-19 pandemic in Japan, where 
epidemic waves occurred mainly during the summer and 
winter. We then calculated and plotted the rising trend 
line for the next epidemic wave, after the peak of the pre-
vious epidemic wave had ended. The timing from the cal-
culation differed from that of a graphical model using a 
line rising with the increase in the number of cases per 
day [27]. Parag et al. derived a novel method that can 
estimate the probability for the end of an epidemic [28]. 
Incorporating this method into our prediction model 
confers the possibility of analyzing the timing of conver-
gence of the epidemic wave after the peak and potentially 
analyzing the timing of convergence of post-peak epi-
demic waves, leading to enhanced analysis by the predic-
tion model. Thus, we would be able to predict the number 
of COVID-19 cases over time during the next epidemic 
wave months in advance. These models are simple; how-
ever, by combining the calculation methods for the cyclic 

trend and the rising trend line. This method could predict 
the starting time, peak, and number of cases in the sev-
enth COVID-19 wave in Japan, during the previous wave. 
However, more work is needed to verify that our findings 
apply to other locations and other time frames.

We confirmed that the shape and rising trend line of 
the epidemic wave differed depending on each prefec-
ture in Step 2 of the algorithm. However, in Japan, the 
same COVID-19 countermeasures were taken nation-
wide under government initiatives. Therefore, in Step 
3 of the algorithm, we used national data and analyzed 
data throughout Japan to build an infection prediction 
model, in preparation for building different models for 
each prefecture and region in the future. We also found 
that each prefecture in Japan had a different periodic-
ity. However, periodicity was analyzed by integrating 
national data, and analysis that considered periodicity 
in each prefecture was not carried out. When examin-
ing periodicity using a correlogram, the periodicity may 
change depending on the time of the analysis owing to 
changes in the amount of data used; it was not possible to 
reliably confirm the periodicity of 140 days using national 
data for Japan. Additionally, during a prolonged epidemic 
period, it is unclear whether it can be assumed that the 
speed of increase will consistently follow the proposed 
exponentially increasing pattern in the future, especially 
after society transitions to the normal endemic phase 
of SARS-CoV-2 circulation. Although there are various 
known and unknown variables and factors related to the 
conditions leading to infection, we developed our predic-
tion model using solely case incidence data. It is unclear 
which of these factors are true influencing factors, and 
their weight. Additionally, mutations of the virus, the 
availability of vaccines and people’s vaccination status, 
and individual knowledge about prevention measures 
are related to the spread of COVID-19. However, it is 
difficult to obtain such data in a timely manner, because 
these data change constantly over time. Moreover, there 
are limits to available data related to the characteristics 
of COVID-19, such as who an infected person infects, 
how many people they infect, and the number of pre-
symptomatic and asymptomatic cases for each variant. In 
the future, we are considering using available data from 
medical institutions and public health centers, calculat-
ing predicted values for unavailable data, and developing 
a predictive model using these data.

Despite these limitations, it is crucial to consider the 
various patterns of prediction models in preparation for 
future emerging infectious diseases to protect the health 
of populations worldwide.
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Conclusions
Our simple model, which uses periodicity and the ris-
ing trend line, showed that if past outbreaks have peri-
odicity, the spread of COVID-19 can be predicted up 
to a few months in advance. The study findings suggest 
the possibility of predicting the starting point of a future 
infectious disease outbreak and the number of infected 
individuals, contributing to early policy decision-making 
and advanced health system preparation. The results sug-
gest that our developed simple mathematical prediction 
model can facilitate tailor-made epidemic prediction of 
COVID-19 outbreaks in the future.
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