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Abstract 

Background  Prior to September 2021, 55,000–90,000 hospital inpatients in England were identified as having 
a potentially nosocomial SARS-CoV-2 infection. This includes cases that were likely missed due to pauci- or asympto-
matic infection. Further, high numbers of healthcare workers (HCWs) are thought to have been infected, and there 
is evidence that some of these cases may also have been nosocomially linked, with both HCW to HCW and patient 
to HCW transmission being reported. From the start of the SARS-CoV-2 pandemic interventions in hospitals such 
as testing patients on admission and universal mask wearing were introduced to stop spread within and between 
patient and HCW populations, the effectiveness of which are largely unknown.

Materials/methods  Using an individual-based model of within-hospital transmission, we estimated the contribu-
tion of individual interventions (together and in combination) to the effectiveness of the overall package of interven-
tions implemented in English hospitals during the COVID-19 pandemic. A panel of experts in infection prevention 
and control informed intervention choice and helped ensure the model reflected implementation in practice. Model 
parameters and associated uncertainty were derived using national and local data, literature review and formal elicita-
tion of expert opinion. We simulated scenarios to explore how many nosocomial infections might have been seen 
in patients and HCWs if interventions had not been implemented. We simulated the time period from March-2020 
to July-2022 encompassing different strains and multiple doses of vaccination.

Results  Modelling results suggest that in a scenario without inpatient testing, infection prevention and control 
measures, and reductions in occupancy and visitors, the number of patients developing a nosocomial SARS-CoV-2 
infection could have been twice as high over the course of the pandemic, and over 600,000 HCWs could have been 
infected in the first wave alone. Isolation of symptomatic HCWs and universal masking by HCWs were the most effec-
tive interventions for preventing infections in both patient and HCW populations. Model findings suggest that col-
lectively the interventions introduced over the SARS-CoV-2 pandemic in England averted 400,000 (240,000 – 500,000) 
infections in inpatients and 410,000 (370,000 – 450,000) HCW infections.
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Introduction
Over the course of the COVID-19 pandemic in England, 
there has been evidence of nosocomial SARS-CoV-2 trans-
mission to both patients and healthcare workers (HCWs) 
[1–4], with 0.5–1.25% of susceptible inpatients (55,000–
90,000 patients) identified as having developed a nosoco-
mial infection between 01-March-2020 and 01-Sept-2021 
[5, 6]. Several interventions have been introduced in hos-
pitals to reduce the transmission rate of SARS-CoV-2 
including regular testing of patients and HCWs, increased 
hand-hygiene, and HCWs wearing masks/face cover-
ings universally (i.e., around both patients and HCWs), 
in addition to hospital system changes such as reduc-
tions in occupancy [7, 8]. It is difficult to assess the effec-
tiveness of individual interventions through data-driven 
approaches alone because several measures were imple-
mented in quick succession. The emergence of vaccines 
and new variants have also altered nosocomial transmis-
sion rates over time, providing further uncertainty [5]. 
Computational modelling can help address these issues 
by providing a framework where individual interventions 
can be removed/reversed individually or in combina-
tion, counterfactual simulations can be executed, and the 
effectiveness of interventions assessed [9]. Using a previ-
ously developed computational model [10] we present an 
estimate of the impact of interventions in place during the 
pandemic, provide a counterfactual analysis of what might 
have happened had they not been implemented, and pre-
dict which combinations of interventions have the highest 
impact on transmission to both patients and HCWs.

We estimated the impact of eight hospital interven-
tions/changes on nosocomial infections in both patients 
and HCW by 1) combining evidence from the litera-
ture on the efficacy/effectiveness of individual measures 
for reducing the spread of respiratory viral infections 
in hospitals and the community; 2) modifying model 
parameters to reflect scenarios in which the interven-
tions were ‘reversed’ (both individually and collectively), 
e.g., through modifying the probability of transmission 
from inpatients and HCWs; and 3) modelling counterfac-
tual scenarios in which interventions were ‘reversed’, i.e., 
simulating the hypothetical scenario in which the inter-
ventions/changes had not been implemented, to estimate 
how much virus transmission and resulting infections 
they averted individually and when combined.

Methods
Model development and calibration
We have extended an existing individual-based model 
(IBM) of nosocomial transmission within and between 
patient and HCW populations [9, 10]. The model simu-
lates transmission through different routes: i) patient-
to-patient transmission between those sharing a bay, ii) 
patient-to-patient transmission between patients resid-
ing on the same ward but not necessarily in the same bay, 
representing transmission through, for example, fomites, 
shared facilities, or transient asymptomatic carriage by 
HCWs, among others, iii) patient-to-HCW transmission, 
iv) HCW-to-patient transmission, v) HCW-to-HCW 
while present on the same ward, and vi) HCW-to-HCW 
anywhere in the hospital. Indirect transmission is cap-
tured implicitly in the model as a result of transmission 
occurring on wards between any HCWs that have shared 
a space within a 4 h time step (and so in practice may not 
have occupied that space concurrently) and through the 
indirect transmission route whereby HCWs anywhere 
in the hospital may infect other staff with no explicit 
requirement for them to physically share a space at any 
time. Infected patient cases are imported from the com-
munity at a rate calculated from observed hospital admis-
sions in the NHSE Situation Report data [6]. HCWs can 
become infected in the community when they are outside 
of the hospital according to the predicted community 
prevalence on that date, where the prevalence was calcu-
lated from the Cambridge Real-Time Model [11]. Under 
the baseline scenario, the IBM is parameterised using 
multiple national datasets and values from the literature 
and is calibrated to reproduce the transmission dynam-
ics of SARS-CoV-2 among healthcare workers (HCWs) 
and patients in an average English hospital. A full model 
description and details of the calibration procedure are 
described in Supplementary File 1.

Counterfactual modelling of ‘reversal’ of interventions
Counterfactual scenarios were simulated in which eight 
interventions were reversed (individually and collectively) 
and compared to a baseline where interventions were in 
place, with scenarios as follows: 1) Baseline – transmis-
sion and interventions simulated to reflect observed 
numbers of infections in the data; 2) removal of lateral 
flow device tests (LFDs) for HCWs that were introduced 

Conclusions  Interventions to reduce the spread of nosocomial infections have varying impact, but the package 
of interventions implemented in England significantly reduced nosocomial transmission to both patients and HCWs 
over the SARS-CoV-2 pandemic.
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in November 2020; 3) reversal of improvements in hand-
hygiene from the start of the pandemic; 4) reversal of test-
ing and cohorting of symptomatic patients throughout 
the simulation period; 5) reversal of reduced occupancy, 
instead with occupancy remaining at 2019 levels March to 
May 2020; 6) reversal of suspension of visitors to hospital 
patients (March to October 2020); 7) removal of universal 
mask wearing by HCWs (i.e., HCWs wear masks around 
patients but not around other HCWs) from June 2020; 8) 
removal of mask wearing by HCWs when treating patients 
(i.e., HCWs do not wear masks around patients or other 
HCWs) throughout simulation period; 9) isolation of 
symptomatic HCWs removed throughout simulation 
period, 10) reversal of all interventions in 2–9 collectively. 
The reversal of interventions was parameterised through 
literature searches and expert elicitation where there was 
a paucity of evidence (Table 1, Supplementary File 2). A 
supplementary analysis was also performed exploring a 
further set of counterfactual scenarios where interven-
tions were in place from the start of the pandemic instead 
of being introduced at different times as in reality.

After obtaining data for parameterising the rever-
sal of interventions, new parameter sets were generated 
using the procedure described in Fig. S1 and the Spartan 
R package [20]. The steps are i) 10 unique baseline trans-
mission parameter sets were drawn from previous model 
calibrations [10], ii) for each intervention scenario 100 
new parameters were generated by sampling 100 unique 

parameter values from the distribution of the combined 
study data, iii) each set was mapped to one of the unique 
10 transmission parameter sets to produce 100 new param-
eter sets. To reverse interventions where there was a single 
value, e.g., increased occupancy, each baseline transmission 
parameter set was replicated 10 times and then modified to 
include the single new parameter value in all sets.

These new parameters were used within the IBM to 
generate estimates of the impact of each intervention 
individually (in terms of nosocomial infections averted in 
inpatients and in HCW) as well as an overall estimate of 
the combined impact of all interventions that were imple-
mented during the COVID-19 pandemic in England.

The model was simulated for 5100 timesteps covering a 
time period of 850 days from 03-March-2020 to 30-June-
2022 (6 steps per simulated day). Individual-level patient 
and HCW data on infection status and location were 
recorded at each time step.

Predictive modelling of the impact of combinations 
of interventions on infection rates
In a further analysis to explore the effect of interven-
tion combinations, a list of all possible combinations 
of interventions described above was generated (255 
total) and then explored. Unlike the previous analysis 
where vaccines and variants emerged during the pan-
demic and interventions were put in place at times speci-
fied by policy, here we restrict simulation to a 12-week 
Omicron-like period where the prevalence ranged from 
2–4% (similar to January 2022), assuming no protection 
from previous infection or vaccination. This time period 
was selected to provide enough time to observe the effect 
of interventions while maintaining stable prevalence 
levels in line with community estimates. In this analy-
sis all interventions were removed and then added back 
either singularly or as part of a package. Simulations were 
parameterised to reflect the hypothetical removal of all 
interventions except those included in the combination 
i.e., in a scenario where patient testing and LFD testing of 
HCWs were included, all other interventions are reversed 
as described in Table  1. Parameter files were generated 
as described above. The results of these simulations 
were then fed into a linear regression model to estimate 
the overall impact of each intervention. A second model 
was used to estimate the impact of combinations of the 
interventions that were significantly associated with a 
decrease in the number of infections in model 1.

Results are presented as the number of susceptible 
inpatients and patient-facing HCWs becoming infected 
with SARS-CoV-2 under each intervention scenario 
across the simulation period. To scale up the single-
hospital simulation estimate to a national level, the total 
number of infections prevented is divided by the total 
number of beds in the simulated hospital (a proxy for 
hospital size) and then multiplied by the total number of 
beds across NHS hospitals in England using national data 
[15]. This assumes that occupancy was similar between 
all NHS hospitals.

Results
Impact of interventions on nosocomial infections 
in patients: counterfactual modelling
In the baseline scenario where all interventions were in 
place, a maximum of 12,300 patients were infected in 
a single week and 240,000 over the simulation period 

Model 1 : Lm
(

infections ∼ LFDsON + OccupancyREDUCED + · · · +HCW _isolationON
)

Model 2 : Lm infections ∼ Intervention1ON ∗ Intervention2ON ∗ Intervention3ON
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(March 2020-July 2022, Fig.  1, Table  2, 3.5% of all 
susceptible admissions). Removing all interventions 
results in a worst-case scenario of up to 22,000 patients 
infected in a single week and 560,000 over the simula-
tion period (6.25% %))of all susceptible admissions), a 
more than two times increase compared to the baseline. 
The most effective interventions were patient testing 
and universal masking by HCWs, and removing these 
interventions resulted in a total of 326,000 and 310,000 

patient infections respectively, over the simulation 
period. Patient testing and universal masking by HCWs 
were most effective over the omicron wave (from 
December 2021), and testing was most effective over 
the first and second waves (March 2020 to May 2021). 
The least effective intervention overall was restricting 
visitation: removing this intervention did not result in 
an increase in infections; however, this intervention 
was only in place for a short time and therefore only 

Fig. 1  Number of nosocomial patient infections when single or all interventions are removed. Number of patients infected per week (A) 
and cumulative number of patient infections (B) when individual or combined interventions are lifted over the course of the pandemic

Table 2  Number of infections occurring in each of the simulated scenarios

Patients HCWs

Total infections Maximum number of 
infections in a week

Total infections Maximum number of 
infections in a week

Scenario name Median IQR Median IQR Median IQR Median IQR

Baseline 240,000 (170,000–391,000) 12,250 (8,300–20,000) 595,000 (550,000–650,000) 17,500 (15,000–20,000)

HCW isolation 245,000 (186,000–395,000) 13,700 (9,000–20,900) 780,000 (750,000–850,000) 40,000 (35,000–50,000)

Testing 326,000 (225,000–535,000) 16,200 (12,000–26,900) 601,000 (561,000–663,000) 18,200 (15,900–21,000)

Occupancy 256,000 (189,000–436,000) 13,600 (10,000–19,400) 594,000 (557,000–645,000) 18,100 (16,300–20,000)

LDFs for HCWs 242,000 (169,000–403,000) 13,900 (9,400–21,200) 600,000 (561,000–654,000) 17,700 (15,900–20,000)

Hand-hygiene 268,000 (187,000–459,000) 14,500 (11,200–23,000) 595,000 (562,000–648,000) 17,800 (16,100–20,800)

Visitors 243,000 (169,000–390,000) 13,600 (9,300–20,500) 597,000 (558,000–646,000) 17,500 (15,800–19,700)

Masking (universal) 310,000 (230,000–500,000) 15,000 (11,100–22,100) 850,000 (770,000–960,000) 24,000 (19,000–30,500)

Masking (around HCWs) 246,000 (170,000–406,000) 14,600 (9,400–22,000) 750,000 (700,000–775,000) 18,000 (16,000–20,000)

All interventions 560,000 (420,000–875,000) 22,000 (13,000–33,000) 1,005,000 (956,000–1,068,000) 65,000 (50,000–75,000)
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has a limited opportunity for effectiveness (Fig. S2). 
In a scenario where visitation was restricted through-
out the entire simulation period there were 44% fewer 
patient infections during the omicron wave (Fig. S3). 
Interventions were most impactful before July 2020 
when the wild-type (WT)wave first hit England and 
between December 2021 and March 2022 when the 
omicron wave first started. This is demonstrated by the 
greatest difference between the simulations with no 
interventions (yellow lines) compared to the baseline 
(grey lines).

Impact of interventions on HCW infections: counterfactual 
modelling
In the baseline scenario where all interventions were in 
place, a maximum of 17,500 (median, IQR in Table 2) 
HCWs were infected in a single week and there were 
595,000 HCW infections over the simulation period 
(Fig. 2). When all interventions were removed simulta-
neously, a maximum of 65,000 HCWs were infected in 
a single week (10% of all staff ) and there were 1 million 
(0.9 – 1.1 million) infection events in HCWs over the 
simulation period. The most effective interventions 
were isolation of symptomatic HCWs, masking univer-
sally, and masking around patients. When HCW isola-
tion was removed, up to 40,000 HCWs were infected in 
a single week, and there were 780,000 infection events 

in HCWs. Removing masking universally resulted in a 
maximum of 24,000 HCWs infected in a single week 
and 850,000 infection events in HCWs. When mask-
ing was only in place around patients and not other 
HCWs a maximum of 18,000 HCW infections in a sin-
gle week and there was a total of 750,000 HCW infec-
tion events. Masking was most effective during the 
first wave of the pandemic (March – August 2020), and 
HCW isolation was most effective both during the first 
wave and also over the omicron wave (from Decem-
ber 2021). When interventions are removed the main 
risk to HCWs becomes the hospital, with almost 75% 
of infections in HCWs being hospital acquired in 2022 
(Fig. 3). Relaxing interventions switches the balance of 
infections from the community to the hospital.

Impact of combined interventions on patient nosocomial 
infections: predictive modelling
In a scenario with no protection from previous infection 
or vaccination where all interventions were removed, 
and then added back in either singularly or as part of a 
package, restricting visitation as a single intervention was 
the least effective option, with 270,000 patients nosoco-
mially infected over a three-month period (Fig. 4A). The 
most effective single intervention was isolation of symp-
tomatic HCWs preventing 81% of infections compared 
to restricting visitation alone (50,000 vs 270,000). When 

Fig. 2  Number of HCW infections when single or all interventions are removed. Number of HCWs infected per week (A) and cumulative number 
of HCW infections (B) when individual or combined interventions are lifted over the course of the pandemic
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Fig. 3  A) Community HCW infections B) proportion of community HCW infections

Fig. 4  Modelled combined effects of interventions on patients. A) Simulated number of patients infected over a 12-week omicron-like period 
(grey bars) under package of interventions (coloured bars = interventions in package, white = intervention not in package) ordered by infection 
rate. For masking, green bars represent universal masking in package and blue represents only masking around HCWs. Each individual 
bar = single combination of interventions. B) Predicted number of patient infections over a 12-week omicron-like period under each combination 
of interventions from statistical model of simulated data
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HCWs testing and isolation upon developing symptoms 
are in place, both universal masking and masking around 
patients significantly further reduce infections by up to 
25% (36,000 vs 48,000) compared to restricting visitation 
alone, but there is no clear advantage to universal mask-
ing over masking only around patients for preventing 

nosocomial patient infections. However, when HCWs do 
not isolate then universal masking has a slight advantage 
over masking only around patients with an additional 
11% reduction in infections (maximum of 107,000 infec-
tions when masks are worn universally vs 121,000 when 
worn only around patients).

A regression model on the simulated infection rates 
further validates these findings and identifies significant 
reductions in nosocomial patient infections when univer-
sal masking (β = -79,394.50, p < 0.001), masking around 
patients (β = -73,212.08, p < 0.001), isolation by HCWs 
(β = -89,522.22, p < 0.001) and, with smaller impact, 
reducing occupancy rates (β = -26,261.75, p < 0.001) 
(Table  3). A secondary analysis exploring the combined 
effect of the significant interventions (HCW isolation, 
reduced occupancy, and masking by HCWs either uni-
versally or around patients) demonstrates that isolation 
by HCWs has a larger effect on patient infections than 
a combination of masking and reducing occupancy and 
that combining all three interventions has the greatest 
effective (Table 3, Fig. 4B).

Table 3  Linear regression on number of patients infected when 
interventions were included in a package. Each intervention was 
represented as a binary variable (1 = included, 0 = not included) 
except masking that was a multi-level variable (2 = universal, 
1 = around patients only, 0 = none)

Intervention Beta P-value

Intercept 195,060.57 0.000

LFDs -4,156.57 0.212

Hand-hygiene 619.36 0.853

Patient testing and cohorting -1,089.47 0.743

Occupancy -26,261.75 0.000

Visitors -2,017.43 0.544

Masks (universal) -79,394.50 0.000

Masks (around patients) -73,212.08 0.000

Isolation by HCWs -89,522.22 0.000

Fig. 5  Modelled combined effects of interventions on HCWs. A) Simulated number of HCWs infected over a 12-week omicron-like period (grey 
bars) under package of interventions (coloured bars = interventions in package, white = intervention not in package) ordered by infection rate. 
For masking, green bars represent universal masking in package and blue represents only masking around HCWs. Each individual bar = single 
combination of interventions. B) Predicted number of HCW infections over a 12-week omicron-like period under each combination of interventions 
from statistical model of simulated data
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Impact of combined interventions on HCW infections: 
predictive modelling
For HCW infections, increased hand-hygiene alone was 
the least effective intervention resulting in 572,000 infec-
tions over a three-month period compared to a maximum 
of 206,000 infections under the most effective single inter-
vention, isolation of symptomatic HCWs (Fig. 5A). Mask-
ing (both universal and around patients only) was also 
effective when HCWs do not isolate, with universal mask-
ing more effective than masking around patients (16% 
reduction in infections, maximum of 538,000 vs 451,000 
HCWs infected). When HCWs do isolate, the difference 
in mask types is less pronounced and the impact appears 
to be related to other interventions e.g., LFD testing.

Statistical modelling of the simulated infection rates 
identifies significant reductions in transmission associ-
ated with lateral flow testing of HCWs (β = -22,464.66, 
p < 0.001, Table  4) universal masking (β = -106,902.84, 
p < 0.001), masking around patients (β = -34,552.93, 
p < 0.001), and isolation of symptomatic HCWs 
(β = -394,655.48, p < 0.001). There is also a small associa-
tion with reduced occupancy (β = -8,2090.0, p = 0.007). 
A further analysis exploring the impact of the three most 
significant interventions combined demonstrates that 
isolation of symptomatic HCWs alone is more impactful 
than masking or LFD testing combined and that a combi-
nation of universal masking, LFD testing and isolation of 
symptomatic HCWs is the most effective way to prevent 
transmission (Table 4, Fig. 5B).

Discussion
We evaluated the counterfactual impact of remov-
ing any or all of eight interventions that were imple-
mented in NHS England hospitals over the COVID-19 

pandemic on rates of nosocomial transmission to 
patients and HCWs in England. While highly uncer-
tain, given the dependency on variable evidence on the 
effectiveness of interventions, the model results sug-
gest that interventions in place over the COVID-19 
pandemic in England prevented over 50% of potential 
nosocomial infections in patients and HCWs. Testing 
and cohorting of patients and isolation of HCWs were 
the most important interventions for reducing trans-
mission to patients and HCWs preventing up to 34% 
(30–40%) of infections. We also identified a significant 
role for masking, with universal masking being more 
impactful than masking around patients alone (40% 
(30–52%) vs 17% (14–20%) reduction). Results sug-
gest that restricting visitation could be impactful when 
community prevalence rates are high. Interventions 
were most impactful when protection from vaccines or 
previous infection was low at the start of the wild-type 
and omicron waves and had little impact in times of 
high immunity.

To the best of our knowledge this is the first study to 
attempt to quantify the impact of IPC measures over the 
COVID-19 pandemic in a hospital setting. A literature 
search conducted to parameterise the model in this study 
highlighted a paucity of evidence around the effective-
ness of interventions such as improving hand-hygiene, as 
demonstrated by other studies [21], and a wide degree of 
uncertainty in the effectiveness of others such as mask-
ing on reducing nosocomial transmission of respiratory 
viruses. Further there is a lack of evidence around com-
pliance with any interventions that were implemented. 
While the model used in this study includes the effect 
of vaccines, as administered during this period, on both 
patients and HCWs, we do not evaluate the impact of 
alternative vaccine availability or uptake. The modelling 
approach used in this study has previously been used 
to estimate the counterfactual HCW infections assum-
ing absence of vaccines in the second wave of the pan-
demic and found prioritising HCWs for vaccinations 
was extremely important for reducing infection rates in 
HCWs [9].

While the baseline results are calibrated to high-qual-
ity national datasets, the scarcity of reliable evidence on 
the effectiveness of individual interventions (required 
for simulating a scenario where they are reversed) is a 
key challenge. While the model has been parameterised 
to best reflect the available data, uncertainty remains 
around the contribution of nosocomial and commu-
nity sources of SARS-CoV-2 infection. As COVID-19 
becomes an endemic disease and pressures on health sys-
tems from other seasonal respiratory pathogens increase, 
there is a critical need for evidence on the effectiveness 
of such interventions on reducing nosocomial spread in 

Table 4  Linear regression on number of HCWs infected when 
interventions were included in a package. Each intervention was 
represented as a binary variable (1 = included, 0 = not included) 
except masking that was a multi-level variable (2 = universal, 
1 = around patients only, 0 = none)

Intervention Beta P-value

(Intercept) 563,606.48 0.000

LFDs -22,464.66 0.000

Hand-hygiene 1,154.87 0.703

Patient testing and cohorting -1,244.54 0.681

Occupancy -8,209.00 0.007

Visitors 863.66 0.776

Masks (universal) -106,902.84 0.000

Masks (around patients) -34,552.93 0.000

Isolation by HCWs -394,655.48 0.000
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order to design efficient and effective infection preven-
tion and control strategies.

In this study we assumed full compliance with inter-
ventions such as testing and isolating (although the 
compliance in studies used to parameterise masking 
and hand-hygiene was not reported), and the impact of 
reversing an intervention was applied to every interac-
tion at every timestep that the intervention was in place. 
If compliance was poor or changed throughout the study 
period, then the modelled impact of an intervention 
would fall. In the absence of data on policy implemen-
tation across trusts over time, we assumed uniform-
ity between trusts in changing behaviours according to 
policy guidelines. When off shift, the infection risk for 
HCWs was uniform, and we did not account for individ-
ual-level differences in risk of infection in the commu-
nity. Further, we assumed that the effect of interventions 
was the same regardless of the strain on SARS-CoV-2 
that was circulating at the time. We also made the 
assumption that it is appropriate to scale up the aver-
age results from our simulations to a national level using 
only numbers of beds therefore implying that all trusts 
were similar in terms of occupancy and admissions rates 
throughout the pandemic. If this was not the case, the 
results would need to be viewed at an individual hos-
pital level, and although we expect the general trends 
to hold, the magnitude of interventions’ effects may 
change. Similarly, for HCWs we scaled the results to a 
national level using total patient-facing HCW counts 
alone and assumed that the infection risk for staff off-
shift was uniform which may not be true in reality and 
we could be under or overestimating the impact of inter-
ventions such as masking if staff were more or less risk-
averse than the general population when off-shift.  Due 
to policies being implemented universally and in quick 
succession at the start of the pandemic, there is lim-
ited opportunity to analyse their efficacy from a data-
driven perspective; however, a small number of studies 
exist that validate the results of this modelling study. A 
single-site study showed that between the first and sec-
ond waves the proportion of nosocomial infections in 
HCWs attributable to HCW-to-HCW transmission 
fell from 55.3% in wave 1 (01-March-2020 to 25-July-
2020) to 37.4% in wave 2 (30-Nov-2020 to 24-Jan-2021) 
despite the proportion of community-acquired infec-
tions remaining at 50% [2]. This suggests that the intro-
duction of masks in communal spaces in June 2020 
potentially played a role in reducing HCW-to-HCW 
transmission by as much as 32%. This is consistent with 
our estimate that over wave 1 an additional 50% (27%-
57%) of HCWs would have been infected had universal 
masking not being introduced. Another study examined 

the impact of removing HCW masking on patient infec-
tions and did not see a significant increase in infections 
when masks were removed during the first 10 months of 
omicron when immunity from previous infection and/
or vaccination was high [22]. This agrees with simula-
tion results where an increase in patient infections in the 
absence of masking was observed in the wild-type and 
early omicron waves, but there is little difference when 
vaccination and immunity from previous infection has 
increased protection. We did not find a notable increase 
in nosocomial patient infections following the with-
drawal of asymptomatic testing of patients and HCWs or 
of masking late in 2022.

This analysis identified testing and isolation of symp-
tomatic HCWs and masking by HCWs around both 
patients and other HCWs as the most important inter-
ventions for reducing infections in the patient and HCW 
populations. There is evidence from early in the pan-
demic that HCW-to-HCW transmission commonly 
occurred and the risk of HCW-to-patient transmission is 
likely small [2–4, 10]. However, there remains a potential 
for a larger effect of a small number of HCW-to-patient 
transmissions seeding larger outbreaks on patient wards. 
This cannot be ignored, and likely contributes to the 
increased impact of interventions that minimise HCW-
to-patient transmission. However, there remains a. This 
impact. A strength of the IBM is that it captures these 
‘knock-on’ benefits associated with prevention of trans-
mission chains both within and across patient and HCW 
populations; such combined/bundled effects are some-
times referred to as the ‘Swiss Cheese’ infection preven-
tion model [23, 24]. This cumulative effect of reducing 
transmissions is apparent when looking at the impact of 
removing all interventions in combination, which results 
in a higher number of nosocomial infections than the 
sum of the individual interventions. Model findings sug-
gest that collectively the interventions introduced over 
the SARS-CoV-2 pandemic in England averted 400,000 
(240,000 – 500,000) infections in inpatients and 410,000 
(370,000 – 450,000) HCW infections.

Masking was found to be a highly effective interven-
tion, but due to a lack of studies exploring the impact 
of different mask types we consider the overall impact 
of any masking in this study and do not distinguish res-
pirators from fluid resistant surgical masks (FRSMs). 
A previous modelling study suggested that respira-
tors may be advantageous for preventing infections in 
HCWs; however, the authors explicitly state that their 
study provides evidence that more work should be 
done to determine the true effectiveness of respirators 
over FRSMs [25], and no further convincing evidence 
has yet emerged. Analysis of intervention reversal only 
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considered those described; additional measures such a 
double gloving or sessional gown use are not included in 
this work. The impact of interventions such as increas-
ing bed spacing and improving ventilation were not 
modelled as their impact could not be included in the 
existing modelling framework upon which this study 
was conducted. While we have attempted to estimate 
the impact of results on infection rates, the adverse 
impact of interventions such as restricting visitation or 
mask wearing on patient care and staff wellbeing have 
been well documented and cannot be ignored [26–36]. 
This extensive literature should be considered alongside 
the results of modelling work when making future pol-
icy decisions.

Conclusion
This study combines a transmission model with pub-
lished parameter estimates on the impact of individual 
measures to evaluate the contribution that the collec-
tion of interventions and hospital changes in place over 
the COVID-19 pandemic in England made to the reduc-
tion of nosocomial transmission, quantifying both indi-
vidual intervention and collective impact. A strength of 
the modelling approach used here is the ability of the 
model to capture cumulative effects of interventions 
through reducing the seeding of new infection clusters. 
These results highlight the importance of maintaining 
high levels of compliance to infection prevention and 
control measures in hospitals and have important impli-
cations as hospitals prepare for a surge in demand due 
to emerging winter pressures and COVID-19.
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