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Abstract 

Background  The studies on SARS-CoV-2 and human microbiota have yielded inconsistent results regarding micro-
biota α-diversity and key microbiota. To address these issues and explore the predictive ability of human microbiota 
for the prognosis of SARS-CoV-2 infection, we conducted a reanalysis of existing studies.

Methods  We reviewed the existing studies on SARS-CoV-2 and human microbiota in the Pubmed and Bioproject 
databases (from inception through October 29, 2021) and extracted the available raw 16S rRNA sequencing data 
of human microbiota. Firstly, we used meta-analysis and bioinformatics methods to reanalyze the raw data and evalu-
ate the impact of SARS-CoV-2 on human microbial α-diversity. Secondly, machine learning (ML) was employed 
to assess the ability of microbiota to predict the prognosis of SARS-CoV-2 infection. Finally, we aimed to identify 
the key microbiota associated with SARS-CoV-2 infection.

Results  A total of 20 studies related to SARS-CoV-2 and human microbiota were included, involving gut (n = 9), 
respiratory (n = 11), oral (n = 3), and skin (n = 1) microbiota. Meta-analysis showed that in gut studies, when limiting 
factors were studies ruled out the effect of antibiotics, cross-sectional and case–control studies, Chinese studies, 
American studies, and Illumina MiSeq sequencing studies, SARS-CoV-2 infection was associated with down-regulation 
of microbiota α-diversity (P < 0.05). In respiratory studies, SARS-CoV-2 infection was associated with down-regulation 
of α-diversity when the limiting factor was V4 sequencing region (P < 0.05). Additionally, the α-diversity of skin micro-
biota was down-regulated at multiple time points following SARS-CoV-2 infection (P < 0.05). However, no significant 
difference in oral microbiota α-diversity was observed after SARS-CoV-2 infection. ML models based on baseline 
respiratory (oropharynx) microbiota profiles exhibited the ability to predict outcomes (survival and death, Random 
Forest, AUC = 0.847, Sensitivity = 0.833, Specificity = 0.750) after SARS-CoV-2 infection. The shared differential Prevotella 
and Streptococcus in the gut, respiratory tract, and oral cavity was associated with the severity and recovery of SARS-
CoV-2 infection.
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Conclusions  SARS-CoV-2 infection was related to the down-regulation of α-diversity in the human gut and res-
piratory microbiota. The respiratory microbiota had the potential to predict the prognosis of individuals infected 
with SARS-CoV-2. Prevotella and Streptococcus might be key microbiota in SARS-CoV-2 infection.

Keywords  SARS-CoV-2/COVID-19, Human microbiota, α-diversity, Key microbiota, Machine learning

Background
SARS-CoV-2 infection can manifest as asymptomatic, 
mild symptoms, acute respiratory symptoms, and even 
respiratory failure [1]. Elderly individuals and those with 
weakened immune function are prone to experienc-
ing severe complications from SARS-CoV-2 [2]. Studies 
have suggested that auxiliary proteins encoded by SARS-
CoV-2, such as ORF9c and ORF10, may play a crucial role 
in virus replication and immune evasion, contributing to 
the pathogenic mechanism of SARS-CoV-2 [3]. Addition-
ally, research indicates that respiratory microbiota could 
influence the progression of COVID-19 by promoting 
local mucosal inflammation, modifying pathogen-associ-
ated molecular patterns, and depleting beneficial bacte-
ria [4–6]. These findings suggest that human microbiota 
might have an important role in SARS-CoV-2 infection.

So far, there have been many studies exploring the rela-
tionships between SARS-CoV-2 infection and human 
microbiota. However, whether SARS-CoV-2 infection 
affects human microbiota is still controversial, espe-
cially regarding the α-diversity index used to evaluate the 
integrity of the microbiota. One study showed a signifi-
cant up-regulation of the α-diversity of the gut microbi-
ota in SARS-CoV-2 infected individuals [7]. Conversely, 
several other studies suggested a significant down-reg-
ulation of the α-diversity of the gut microbiota follow-
ing SARS-CoV-2 infection [8–12], while some studies 
found no change in the α-diversity of the gut microbiota 
after infection [13, 14]. Similar inconsistencies can be 
observed in studies on SARS-CoV-2 infection and res-
piratory microbiota [15–17]. The alteration of human 
microbiota caused by SARS-CoV-2 infection has been 
utilized for diagnosing the severity of the disease [18], but 
there are limited research reports on whether it can pre-
dict disease prognosis. Studies have shown that human 
microbiota plays an important role in immune regulation 
following SARS-CoV-2 infection and can serve as bio-
markers of the infection [19]. Different studies have iden-
tified different key human microbiota associated with 
SARS-CoV-2 [9, 20, 21]. Therefore, further investigation 
is necessary to determine the key human microbiota 
associated with SARS-CoV-2.

To address the aforementioned issues, we reviewed the 
existing studies on SARS-CoV-2 and human microbiota 
in the Pubmed and Bioproject databases and extracted 
the available raw 16S rRNA sequencing data of human 

microbiota. Firstly, we utilized meta-analysis and bioin-
formatics methods to assess the impact of SARS-CoV-2 
on the α-diversity of human microbiota. Secondly, ML 
was employed to evaluate the ability of the microbiota to 
predict the prognosis of SARS-CoV-2 infection. Finally, 
we aimed to identify the key microbiota associated with 
SARS-CoV-2 infection.

Methods
Data sources and search strategy
PubMed and BioProject were searched using keywords, 
medical subject headings (MeSH) terms, and synonyms 
for SARS-CoV-2 and human microbiota from inception 
to Oct 29, 2021. Two independent reviewers evaluated 
each study, and an independent reviewer reviewed all 
studies. The exclusion criteria for studies were as follows: 
1. Non-microbiota studies; 2. Non-SARS-CoV-2 stud-
ies; 3. No population studies; 4. Reviews, Commentar-
ies, etc.; 5. Non-16S rRNA gene sequence studies; 6. Raw 
sequences not open access; 7. The raw data of the studies 
cannot distinguish between cases and controls; 8. Studies 
without negative control samples.

Processing of raw data and calculation of α‑diversity
Raw 16S rRNA sequencing sequences download and con-
version using the sratoolkit tool developed by NCBI. The 
Fastp software for quality control of the original sequenc-
ing data and then imported the sequences into QIIME 2 
(version 2021.11) [22]. Quality filtering of raw sequences 
using the q2-demux plugin, followed by DADA2 [23] 
(via q2-dada2) for denoising and generation of ampli-
con sequence variants (ASV) table. All ASV were aligned 
with Mafft [24] (q2-alignment) and used to construct a 
phylogenetic tree with fasttree2 [25] (q2-phylogeny). 
Species annotation of ASV was performed with silva-138 
99% OTU reference sequences pre-trained with classify-
sklearn Naive Bayes classifier [26] and q2-feature-classi-
fier plugin [27].

The generated ASV table, phylogenetic tree, and spe-
cies annotation files were imported into R 4.2.2., and 
the vegan package was used to normalize the sample 
sequence according to the minimum sample sequence 
number so that each sample could be compared under 
the same sequence number. Microbial α-diversity indexes 
[Observed, Chao1, ACE, Fisher, Shannon, Simpson, Invs-
impson, and Phylogenetic diversity (PD) indexes] were 
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calculated by the R microeco (https://​chili​ubio.​github.​io/​
micro​eco_​tutor​ial/), https://​chili​ubio.​github.​io/​micro​eco_​
tutor​ial/​https://​chili​ubio.​github.​io/​micro​eco_​tutor​ial/ 
[28] package. According to the above steps, all available 
studies were processed respectively, and then quantitative 
consolidation of meta-analysis was performed.

Meta‑analysis
Quantitative synthetic analysis of α-diversity indices 
from different sources using Review Manager 5.3 soft-
ware (Copenhagen: The Nordic Cochrane Centre, The 
Cochrane Collaboration, 2014.). For continuous vari-
ables, mean and standard deviation (SD) were used as 
analytical statistics, and each effect size was represented 
by a 95% CI value. The Fixed-effect models were used 
to quantitatively combine the α-diversity of each study. 
The heterogeneity of the included studies was tested by 
the Q test and I2 test. If there was significant heterogene-
ity among studies (Q test of P < 0.05 or I2 ＞ 50%), sub-
group analyses were performed for included studies to 
assess the sources of heterogeneity. Limiting factors for 
subgroup analysis included antibiotic, study type (Cross-
sectional studies and case–control studies were grouped 
into one category, and longitudinal studies into another), 
country (Chinese or American studies), sequencing plat-
form (Illumina MiSeq), and sequencing region (V3-V4 
or V4). Sensitivity analyses were performed by removing 
the studies with the largest sample size. Funnel plots were 
drawn to describe publication bias.

Machine learning (ML) strategy
We used the microbiological feature screening tool lin-
ear discriminant analysis effect size (LEfSe, linear discri-
minant analysis [LDA] score > 2, P < 0.05) in the microco 
package to identify the different ASV between groups 
and then construct the ML models. We used the caret 
package in R to build and evaluate ML models. We con-
sidered eight models related to kernel learning (support 
vector machine [SVM]), ensemble (random forest [RF] 
and extreme gradient boosting [XGB]), instance-based 
(k-nearest neighbor [KNN]), regulation (logistic regres-
sion [LR]), Bayesian (naiveBayes [NB]), decision tree 
(DT), neural networks (NN) algorithms to train the ASV 
table of the gut microbiota. We randomly divided the 
ASV tables into training and test datasets in a 7:3 ratio 
before training. We evaluated the training effects of dif-
ferent ML models by using tenfold cross-validation, and 
we repeated the process 10 times to obtain optimal para-
metric modeling. We evaluated the performance of the 
models in the test dataset from three perspectives: area 
under the curve [AUC], sensitivity, and specificity.

Identification of key microbiota
The microeco package in R was employed to identify 
differential microbiota through the linear discriminant 
analysis effect size (LEfSe) method (LDA score ＞ 2, 
P < 0.05). Cytoscape 3.7.1 was used to plot venn net-
works to identify shared differential microbiota across 
studies or different body parts.

Statistical analysis
For data that meet normality, we analyzed them using 
the Student’s t test. For data that did not meet normal-
ity, we analyzed them using the Mann–Whitney U test. 
All tests were two-sided, and P < 0.05 was considered 
statistically significant.

Results
Meta‑analysis of human microbiota α‑diversity 
in SARS‑CoV‑2 infected individuals
A total of 2224 records from PubMed and 57 records 
from BioProject were retrieved (Fig.  1). Through 
a review of existing studies, we found inconsist-
ent results regarding changes in human microbiota 
α-diversity following SARS-CoV-2 infection across the 
studies (Supplementary Table 1).

Twenty studies, including raw sequences of the gut, 
respiratory, oral, and skin microbiota, were included 
in the meta-analysis of α-diversity (Supplementary 
Table  1). Among them, nine studies were related to 
the gut microbiota, including 265 samples from SARS-
CoV-2 infected individuals and 237 samples from non-
SARS-CoV-2 infected individuals. Our results showed 
that the α-diversity of gut microbiota was significantly 
down-regulated in SARS-CoV-2 infected individuals 
compared with non-SARS-CoV-2 individuals (Fixed-
effect models; ACE, Chao1, Observed, InvSimpson, 
Fisher, Shannon, Simpson, and PD indexes, P < 0.05), 
but there were significant heterogeneity among stud-
ies (Fig.  2A). Therefore, we used subgroup analysis to 
analyze the sources of heterogeneity. When the limit-
ing factors were studies ruled out the effect of antibiot-
ics (Simpson index, P < 0.001, Supplementary Fig.  1A), 
cross-sectional and case–control studies of published 
articles (ACE and Fisher indexes, P < 0.001; Supplemen-
tary Fig. 1B), Chinese studies (Simpson index, P < 0.001, 
Supplementary Fig. 1C), American studies (InvSimpson 
index, P < 0.01, Supplementary Fig.  1D), and Illumina 
MiSeq studies (ACE, Chao1, Oberved, Fisher, and InvS-
impson indexes, P < 0.001, Supplementary Fig. 1E), and 
there were no significant heterogeneity among included 
studies. These results remained consistent when the 
studies with the largest sample size were removed.

https://chiliubio.github.io/microeco_tutorial/)
https://chiliubio.github.io/microeco_tutorial/)
https://chiliubio.github.io/microeco_tutorial/https://chiliubio.github.io/microeco_tutorial/
https://chiliubio.github.io/microeco_tutorial/https://chiliubio.github.io/microeco_tutorial/
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There were eleven studies related to the respiratory 
microbiota, including 1,076 samples from SARS-CoV-2 
infected individuals, and 283 samples from non-
SARS-CoV-2 infected individuals. Analysis based on 
fixed-effects models showed that the α-diversity of res-
piratory microbiota was significantly down-regulated 
in SARS-CoV-2 infected individuals compared with 
non-SARS-CoV-2 infected individuals (ACE, Chao1, 
PD, and Simpson indexes, P < 0.01; significant hetero-
geneity; Fig.  2B). Subgroup analyses that included 5 
identified cross-sectional and case–control studies still 
showed that SARS-CoV-2 infection was associated with 
significant down-regulation of respiratory microbiota 
α-diversity (PD index, P = 0.03, no significant heteroge-
neity, Supplementary Fig.  2A). However, SARS-CoV-2 
infection was not associated with α-diversity when the 
limiting factor was the V4 sequencing region (Simpson 

index, P = 0.47, no significant heterogeneity, Supple-
mentary Fig.  2B). These results remained consistent 
when the studies with the largest sample size were 
removed. The results of other limiting factors were still 
heterogeneous or the results of sensitivity analysis were 
unstable, or the number of included studies was less 
than three.

There were three cross-sectional studies related to oral 
microbiota, including 239 samples from confirmed and 
convalescent SARS-CoV-2 infected individuals and 218 
samples from non-SARS-CoV-2 infected individuals. All 
three studies ruled out the effect of antibiotics. Fixed-
effects models showed that the α-diversity of oral micro-
biota were not significantly different in SARS-CoV-2 
infected individuals compared with non-SARS-CoV-2 
infected individuals (ACE and Chao1 indexes, P > 0.05; no 
significant heterogeneity; Fig. 2C). These results remained 

Fig. 1  Data mining pipeline
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Fig. 2  α-diversity analysis (ACE index) of human microbiota between SARS-CoV-2 and non-SARS-CoV-2 infected individuals. The meta-analysis 
based on the fixed-effects models quantitatively merged studies on gut (A), respiratory (B), and oral (C) studies, respectively. Changes in α-diversity 
of skin microbiota from observation time point 1 to time point 7 (T1-T7) in SARS-CoV-2 and non-SARS-CoV-2 infected individuals (D)
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consistent when the studies with the largest sample size 
were removed. Due to the small number of studies, the 
potential confounding factors were not further analyzed.

Moreover, in a longitudinal study of 81 skin samples, the 
skin microbiota α-diversity of SARS-CoV-2 infected indi-
viduals was significantly lower than that of non-SARS-
CoV-2 infected individuals at sampling points 1 (P=0.048) 
and 3 (P=0.03). The skin microbiota α-diversity of SARS-
CoV-2 infected individuals decreased first and then 
increased (Fig. 2D).

ML models based on the human respiratory microbiota 
could predict the prognosis of SARS‑CoV‑2 infection
Respiratory (nasopharynx and oropharynx) microbiota 
study PRJNA683617 provides the outcomes, including 
death and survival, of hospitalized SARS-CoV-2 infected 
individuals. Based on LEfSe analysis, we identified dif-
ferential microbial ASV features between dead and sur-
viving SARS-CoV-2 infected individuals at baseline 
sampling time, and constructed eight ML models based 
on these features (Table 1). We found that both the naso-
pharyngeal and oropharyngeal microbiota have predic-
tive potential for the prognosis of SARS-CoV-2 infected 
individuals. In the ML models constructed by the naso-
pharyngeal microbiota, SVM showed the best predictive 
performance, with AUC, sensitivity, and specificity of 
0.781, 0.947, and 0.667, respectively. In the ML models 
constructed by the oropharyngeal microbiota, RF showed 
the best predictive performance, with AUC, sensitivity, 
and specificity of 0.847, 0.833, and 0.750, respectively.

Prevotella and Streptococcus were shared differential 
bacteria in gut, respiratory tract, and oral cavity 
after SARS‑CoV‑2 infection
The above studies suggested that the type of study was 
one of the sources of heterogeneity. Therefore, we first 
identified the shared differential bacteria in multi-
ple cross-sectional  and  case–control studies, and then 
observed their changing characteristics in longitudi-
nal studies. Through LEfSe and Venn network analysis, 
we found that the abundance of Escherichia-Shigella 
were significantly different between SARS-CoV-2 and 
non-SARS-CoV-2 infected individuals in six cross-sec-
tional and case–control gut microbiota studies (Fig. 3A). 
Anaerococcus, Corynebacterium, Lactobacillus, Morax-
ella, Prevotella, Pseudomonas, Staphylococcus, and 
Streptococcus were shared differential genera in five 
cross-sectional and case–control respiratory microbiota 
studies (Fig.  3B). There were 22 shared differential gen-
era such as Alloprevotella, Actinomyces, and Bergeyella 
in three cross-sectional oral microbiota studies (Fig. 3C). 

Further, genera with significant differences in more than 
half of the studies in each sample type were included in 
the Venn network. It could be seen that the Prevotella 
and Streptococcus, which were shared in the gut, respira-
tory tract, and oral cavity, were enriched in SARS-CoV-2 
infected individuals in more than half of the studies 
(Fig. 3D).

At multiple time points in the longitudinal study of 
PRJEB41002, the abundance of Prevotella and Strepto-
coccus in respiratory tract (Fig. 4A, B), gut (Fig. 4C, D), 
and skin (Fig. 4E, F) of SARS-CoV-2 infected individuals 
was higher than that of non-SARS-CoV-2 infected indi-
viduals. Similarly, in the respiratory longitudinal study 
PRJNA683617 (Fig.  4G-L), the trend of Prevotella and 
Streptococcus was still to enrich SARS-CoV-2 infected 
individuals. In addition, we found that Prevotella and 
Streptococcus were up-regulated in the oral cavity of 
confirmed SARS-CoV-2 infected individuals, but down-
regulated in confirmed SARS-CoV-2 recovery indi-
viduals (Fig.  5A, B). In respiratory study PRJNA714242, 
Prevotella (P = 0.056) and Streptococcus (P = 0.43) were 
upregulated in critical SARS-CoV-2 infected individuals 
(Fig.  5C, D). In respiratory study PRJNA673585, Prevo-
tella (P = 0.029) and Streptococcus (P = 0.2) were also 
enriched in severe SARS-CoV-2 infected individuals 
(Fig. 5E, F). However, in respiratory study PRJNA707350, 
Prevotella was significantly down-regulated in symp-
tomatic (P < 0.01) and asymptomatic (P = 0.018) SARS-
CoV-2 infected individuals (Fig. 5G, H).

Table 1  ML models based on the human respiratory microbiota 
were used to predict the prognosis of SARS-CoV-2 infection

Models AUC​ Sensitivity Specificity

Data: the naso-
pharyngeal 
microbiota 
of SARS-CoV-2 
infected indi-
viduals; Predicting 
outcomes: survival 
(n=56) and death 
(n=17).

SVM 0.781 0.947 0.667

RF 0.772 0.947 0.667

KNN 0.754 0.842 0.667

LR 0.518 1.000 0.333

NB 0.632 0.000 1.000

DT 0.500 1.000 0.000

NNET 0.509 1.000 0.333

XGB 0.737 0.842 0.667

Data: the oro-
pharyngeal 
microbiota 
of SARS-CoV-2 
infected indi-
viduals; Predicting 
outcomes: survival 
(n=56) and death 
(n=16).

SVM 0.688 0.778 0.750

RF 0.847 0.833 0.750

KNN 0.75 0.833 0.500

LR 0.542 0.000 1.000

NB 0.604 1.000 0.250

DT 0.5 1.000 0.000

NNET 0.451 0.667 0.500

XGB 0.556 0.944 0.500
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Fig. 3  Identification of key genera altered after SARS-CoV-2 infection based on LEfSe and venn networks. A Venn network of six cross-sectional 
and case–control studies of gut genera. B Venn network of five cross-sectional and case–control studies of respiratory genera. C Venn network 
of three cross-sectional studies of oral genera. D Venn network of gut, respiratory, and oral genera
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Fig. 4  The boxplots showed the changes of Prevotella and Streptococcus in the gut, respiratory tract, and skin of SARS-CoV-2 and non-SARS-CoV-2 
infected individuals at different observation time points (A-L)



Page 9 of 12Zhou et al. BMC Infectious Diseases          (2023) 23:841 	

Discussion
Here, we reviewed the results of studies on the α-diversity 
of the human gut, respiratory, oral, and skin microbiota 
associated with SARS-CoV-2. We assembled the largest 
dataset available to date in order to assess the relation-
ship between SARS-CoV-2 infection and the α-diversity 
of the human microbiota. Our meta-analysis revealed a 
significant down-regulation of the microbiota α-diversity 
in the gut and respiratory systems among individuals 
with SARS-CoV-2 infection, which is consistent with 
numerous current findings [8–12, 16, 29–34]. It should 
be noted that although state-of-the-art and widely used 

microbiological analysis software such as QIIME2 and 
the DADA2 algorithm were employed to mitigate hetero-
geneity in the processing and analysis of raw sequences 
from different studies, notable heterogeneity still existed 
among the included studies. For gut and respiratory stud-
ies, we observed that study type was one of the sources 
of heterogeneity. Cross-sectional and case–control stud-
ies typically involved samples collected at a single time 
point, while longitudinal studies consisted of samples 
collected at multiple time points. In gut studies, other 
sources of heterogeneity included antibiotics, country, 
and sequencing platform. In respiratory studies, sources 

Fig. 5  Boxplots of the changes of Prevotella and Streptococcus in SARS-CoV-2 infected individuals with different infection status (A-H)
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of heterogeneity also encompassed sequencing regions. 
Previous studies have demonstrated that regional factors 
[35], antibiotic [36], gender [37], age [38], and diet [39] 
can influence the composition of the human microbiota. 
Due to limited access to open information included in 
this study, we were unable to analyze the sources of het-
erogeneity from additional perspectives. In summary, our 
study clarified that the α-diversity of gut and respiratory 
microbiota is downregulated after SARS-CoV-2 infec-
tion, providing readers with an understanding of the 
microbial characteristics of different human body sites 
after SARS-CoV-2 infection.

ML based on the human microbiota has been applied 
to predict various diseases and identify biomarkers. 
For example, it has been used to predict Vibrio chol-
erae infection [40], ulcerative colitis [41], and more. 
Similarly, the gut microbiota has shown promise in 
distinguishing the severity of COVID-19 [18] and 
effectively predicting protein markers for severe cases 
[42]. However, it remains to be explored whether the 
microbiota altered by SARS-CoV-2 infection can pre-
dict disease prognosis, including survival and death. In 
our study, we found that in the early stages of SARS-
CoV-2 infection, alterations in the nasopharyngeal and 
oropharyngeal microbiota had the potential to predict 
patient survival and death. We observed that the pre-
dictive performance differed between the nasopharynx 
and oropharynx, as well as among different ML mod-
els. This suggests that when utilizing human microbiota 
to predict disease prognosis, we should consider the 
results from different body parts and ML models com-
prehensively. In the models we constructed, the AUC 
of the optimal model was only 0.847. This might be 
due to the small sample size and changes in microbiota 
characteristics following treatment for SARS-CoV-2 
infection. Nonetheless, our study demonstrated the 
potential of ML based on human microbiota in predict-
ing the prognosis of SARS-CoV-2-infected individuals, 
which may help in providing targeted treatment for 
severely SARS-CoV-2-infected individuals.

A study found that Dialister invisus ASV represents a 
unique case of overlap between the oral and gut micro-
biota in healthy individuals. Normally, the oral and gut 
microbiota differ under physiological conditions, and 
the presence of overlapping microbiota may indicate a 
certain pathological state [43]. In our study, we discov-
ered genera such as Prevotella and Streptococcus that 
overlapped in the gut, respiratory tract, and oral cav-
ity. Several studies have also demonstrated a significant 
up-regulation of Prevotella  [44–47], Streptococcus  [9, 
44–46] and Veillonella  [9, 44–46] following SARS-CoV-2 
infection. Prevotella, a strictly anaerobic gram-negative 
bacillus, is known to be a major genus found in human 

skin, oral cavity, vagina, and gut [48]. It is frequently asso-
ciated with respiratory tract infections, such as inhalation 
pneumonia [49] and pulmonary empyema [50]. Addi-
tionally, studies [51] have shown an increased abundance 
of Prevotella in the presence of viral infections associated 
with Human Immunodeficiency Virus, Papillomavirus, 
Herpesviridae, and respiratory viruses. Our study con-
firmed dysregulation of Prevotella in the human skin, oral 
cavity, gut, and respiratory tract after SARS-CoV-2 infec-
tion. Furthermore, Prevotella was found to be related 
to the severity and recovery of SARS-CoV-2 infection. 
Other studies have reported a correlation between long-
lasting COVID-19 symptoms and elevated expression 
of oral Prevotella  [52], which may be due to the ability 
of Prevotella to produce proteins that promote SARS-
CoV-2 infection [53]. The precise mechanism by which 
Prevotella affects COVID-19 is not yet clear. However, 
previous research [54] has revealed that certain Prevo-
tella strains can produce virulence factors that increase 
inflammatory response by activating Toll-like receptor 
2 and inducing Th17-polarizing cytokines in antigen-
presenting cells (such as IL-23 and IL-1), or stimulating 
epithelial cells to produce IL-8, IL-6, and CCL20. In sum-
mary, when individuals become ill due to the invasion of 
foreign pathogens, the normal human microbiota may 
be translocated and transformed into pathogenic bacte-
ria, exacerbating the disease. The key bacteria Prevotella 
and Streptococcus proposed by us provide clues for future 
animal and in  vitro experiments on SARS-CoV-2 infec-
tion intervention.

Our study has the following limitations: Firstly, due to 
the continuous updating of databases, our research may 
not reflect the latest research status. Secondly, the lim-
ited number of studies included in our analysis leads to 
certain limitations in generalizing our findings. Thirdly, 
there is a lack of animal and in vitro experimental valida-
tion for the key microbial communities we identified.

Conclusions
Our study showed that SARS-CoV-2 infection was related 
to the down-regulation of α-diversity in the human gut and 
respiratory microbiota. The respiratory microbiota had the 
potential to predict the prognosis of individuals infected 
with SARS-CoV-2. Prevotella and Streptococcus might be 
key microbiota in SARS-CoV-2 infection.
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V4 sequencing studies (B). 

Acknowledgements
Not applicable.

Authors’ contributions
Conceptualization, J.H. and L.Y.; methodology, J.H., J.Z., and X.Y.; software, J.Z., 
X.Y; validation, J.H., L.Y., and P.C.; formal analysis, J.Z., X.Y; investigation, Y.Y., Y.W., 
D.L., and Y. X.; resources, network database; data curation, J.Z., X.Y; writing—
original draft preparation, J.Z., X.Y., Y.Y., Y.W., and D.L.; writing—review and 
editing, J.Z., X.Y., J.H., L.Y., P.C., and H.L.; visualization, J.Z., X.Y.; supervision, J.H.; 
project administration, J.H. and L.Y.; funding acquisition, J.H, L.Y., P.C. and J.Z. All 
authors have read and agreed to the published version of the manuscript.

Funding
This research was funded by the National Natural Science Foundation of China 
(NSFC, 82060366, 82002134, 31970167) and the Innovation Project of Guangxi 
Graduate Education (No. YCBZ2022098).

Availability of data and materials
The datasets used in the current study can be obtained from NCBI according 
to the Bioproject accession number mentioned in Supplementary Table 1.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public 
Health, Guangxi Medical University, Nanning, Guangxi, China. 2 Guangxi Uni-
versities Key Laboratory of Prevention and Control of Highly Prevalent Disease, 
Nanning, Guangxi, China. 3 Life Science Institute, Guangxi Medical University, 
Nanning, Guangxi, China. 4 Collaborative Innovation Centre of Regenerative 
Medicine and Medical BioResource Development and Application Co-Con-
structed By the Province and Ministry, Nanning, Guangxi, China. 

Received: 26 March 2023   Accepted: 2 November 2023

References
	1.	 Wu Z, McGoogan JM. Characteristics of and Important Lessons From the 

Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a 
Report of 72314 Cases From the Chinese Center for Disease Control and 
Prevention. JAMA. 2020;323(13):1239–42.

	2.	 Kesheh MM, Hosseini P, Soltani S, Zandi M. An overview on the seven 
pathogenic human coronaviruses. Rev Med Virol. 2022;32(2): e2282.

	3.	 Zandi M. ORF9c and ORF10 as accessory proteins of SARS-CoV-2 in 
immune evasion. Nat Rev Immunol. 2022;22(5):331–331.

	4.	 Hernandez-Teran A, Mejia-Nepomuceno F, Herrera MT, Barreto O, Garcia 
E, Castillejos M, Boukadida C, Matias-Florentino M, Rincon-Rubio A, 
Avila-Rios S, et al. Dysbiosis and structural disruption of the respiratory 
microbiota in COVID-19 patients with severe and fatal outcomes. Sci Rep. 
2021;11(1):21297.

	5.	 Mizutani T, Ishizaka A, Koga M, Ikeuchi K, Saito M, Adachi E, Yamayoshi 
S, Iwatsuki-Horimoto K, Yasuhara A, Kiyono H et al. Correlation Analysis 
between Gut Microbiota Alterations and the Cytokine Response in 
Patients with Coronavirus Disease during Hospitalization. Microbiol 
Spectr. 2022;10(2):e0168921.

	6.	 Buttenschon J, Vogt S, Mattner J. Compartmentalized immune responses 
and the local microbiota determine mucosal and systemic immunity 
against SARS-CoV-2. Cell Mol Immunol. 2022;19(2):130–2.

	7.	 Xu R, Liu P, Zhang T, Wu Q, Zeng M, Ma Y, Jin X, Xu J, Zhang Z, Zhang 
C. Progressive deterioration of the upper respiratory tract and the gut 
microbiomes in children during the early infection stages of COVID-19. J 
Genet Genomics. 2021;48(9):803–14.

	8.	 Mazzarelli A, Giancola ML, Farina A, Marchioni L, Rueca M, Gruber CEM, 
Bartolini B, Ascoli Bartoli T, Maffongelli G, Capobianchi MR, et al. 16S rRNA 
gene sequencing of rectal swab in patients affected by COVID-19. PLoS 
ONE. 2021;16(2): e0247041.

	9.	 Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang 
C, et al. Alterations of the Gut Microbiota in Patients With Coronavirus 
Disease 2019 or H1N1 Influenza. Clin Infect Dis. 2020;71(10):2669–78.

	10.	 Tao W, Zhang G, Wang X, Guo M, Zeng W, Xu Z, Cao D, Pan A, Wang Y, 
Zhang K, et al. Analysis of the intestinal microbiota in COVID-19 patients 
and its correlation with the inflammatory factor IL-18. Med Microecol. 
2020;5: 100023.

	11.	 Lv LX, Gu SL, Jiang HY, Yan R, Chen YF, Chen YB, Luo R, Huang CJ, Lu HF, 
Zheng BW et al. Gut mycobiota alterations in patients with COVID-19 and 
H1N1 infections and their associations with clinical features. Commun 
Biol. 2021;4(1):480.

	12.	 Chen Y, Gu S, Chen Y, Lu H, Shi D, Guo J, Wu WR, Yang Y, Li Y, Xu KJ, et al. 
Six-month follow-up of gut microbiota richness in patients with COVID-
19. Gut. 2022;71(1):222–5.

	13.	 Zhou Y, Zhang J, Zhang D, Ma WL, Wang X. Linking the gut microbiota to 
persistent symptoms in survivors of COVID-19 after discharge. J Microbiol. 
2021;59(10):941–8.

	14.	 Newsome RC, Gauthier J, Hernandez MC, Abraham GE, Robinson TO, 
Williams HB, Sloan M, Owings A, Laird H, Christian T, et al. The gut micro-
biome of COVID-19 recovered patients returns to uninfected status in a 
minority-dominated United States cohort. Gut Microbes. 2021;13(1):1–15.

	15.	 Hurst JH, McCumber AW, Aquino JN, Rodriguez J, Heston SM, Lugo DJ, 
Rotta AT, Turner NA, Pfeiffer TS, Gurley TC, et al. Age-Related Changes 
in the Nasopharyngeal Microbiome Are Associated With Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Symp-
toms Among Children, Adolescents, and Young Adults. Clin Infect Dis. 
2022;75(1):e928–37.

	16.	 Rueca M, Fontana A, Bartolini B, Piselli P, Mazzarelli A, Copetti M, Binda E, 
Perri F, Gruber CEM, Nicastri E et al. Investigation of Nasal/Oropharyngeal 
Microbial Community of COVID-19 Patients by 16S rDNA Sequencing. Int 
J Environ Res Public Health. 2021;18(4):2174.

	17.	 Ventero MP, Cuadrat RRC, Vidal I, Andrade BGN, Molina-Pardines C, 
Haro-Moreno JM, Coutinho FH, Merino E, Regitano LCA, Silveira CB, et al. 
Nasopharyngeal Microbial Communities of Patients Infected With SARS-
CoV-2 That Developed COVID-19. Front Microbiol. 2021;12: 637430.

	18.	 Nagata N, Takeuchi T, Masuoka H, Aoki R, Ishikane M, Iwamoto N, 
Sugiyama M, Suda W, Nakanishi Y, Terada-Hirashima J, et al. Human Gut 
Microbiota and Its Metabolites Impact Immune Responses in COVID-19 
and Its Complications. Gastroenterology. 2023;164(2):272–88.

	19.	 Sarkar A, Harty S, Moeller AH, Klein SL, Erdman SE, Friston KJ, Carmody RN. 
The gut microbiome as a biomarker of differential susceptibility to SARS-
CoV-2. Trends Mol Med. 2021;27(12):1115–34.

	20.	 Khan M, Mathew BJ, Gupta P, Garg G, Khadanga S, Vyas AK, Singh AK. Gut 
Dysbiosis and IL-21 Response in Patients with Severe COVID-19. Microor-
ganisms. 2021;9(6):1292.

	21.	 Moreira-Rosario A, Marques C, Pinheiro H, Araujo JR, Ribeiro P, Rocha 
R, Mota I, Pestana D, Ribeiro R, Pereira A, et al. Gut Microbiota Diversity 
and C-Reactive Protein Are Predictors of Disease Severity in COVID-19 
Patients. Front Microbiol. 2021;12: 705020.

	22.	 Estaki M, Jiang L, Bokulich NA, McDonald D, Gonzalez A, Kosciolek T, 
Martino C, Zhu Q, Birmingham A, Vazquez-Baeza Y, et al. QIIME 2 enables 
comprehensive End-to-End analysis of diverse microbiome data and 
comparative studies with publicly available data. Curr Protoc Bioinformat-
ics. 2020;70(1): e100.



Page 12 of 12Zhou et al. BMC Infectious Diseases          (2023) 23:841 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	23.	 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 
DADA2: High-resolution sample inference from Illumina amplicon data. 
Nat Methods. 2016;13(7):581–3.

	24.	 Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid 
multiple sequence alignment based on fast Fourier transform. Nucleic 
Acids Res. 2002;30(14):3059–66.

	25.	 Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likeli-
hood trees for large alignments. PLoS ONE. 2010;5(3): e9490.

	26.	 McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst 
A, Andersen GL, Knight R, Hugenholtz P. An improved Greengenes 
taxonomy with explicit ranks for ecological and evolutionary analyses of 
bacteria and archaea. ISME J. 2012;6(3):610–8.

	27.	 Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley 
GA, Caporaso JG. Optimizing taxonomic classification of marker-gene 
amplicon sequences with QIIME 2 ’ s q2-feature-classifier plugin. Microbi-
ome. 2018;6(1):90.

	28.	 Liu C, Cui Y, Li X, Yao M: microeco: an R package for data mining in micro-
bial community ecology. FEMS Microbiol Ecol 2021, 97(2).

	29.	 Tian Y, Sun KY, Meng TQ, Ye Z, Guo SM, Li ZM, Xiong CL, Yin Y, Li HG, Zhou 
LQ. Gut microbiota may not be fully restored in recovered COVID-19 
patients after 3-month recovery. Front Nutr. 2021;8: 638825.

	30.	 Kim HN, Joo EJ, Lee CW, Ahn KS, Kim HL, Park DI, Park SK. Reversion of Gut 
Microbiota during the Recovery Phase in Patients with Asymptomatic or 
Mild COVID-19: Longitudinal Study. Microorganisms. 2021;9(6):1237.

	31.	 Gaibani P, D’Amico F, Bartoletti M, Lombardo D, Rampelli S, Fornaro G, 
Coladonato S, Siniscalchi A, Re MC, Viale P, et al. The Gut Microbiota of 
Critically Ill Patients With COVID-19. Front Cell Infect Microbiol. 2021;11: 
670424.

	32.	 Gupta A, Karyakarte R, Joshi S, Das R, Jani K, Shouche Y, Sharma A. 
Nasopharyngeal microbiome reveals the prevalence of opportunistic 
pathogens in SARS-CoV-2 infected individuals and their association with 
host types. Microbes Infect. 2022;24(1): 104880.

	33.	 Merenstein C, Liang G, Whiteside SA, Cobian-Guemes AG, Merlino MS, 
Taylor LJ, Glascock A, Bittinger K, Tanes C, Graham-Wooten J, et al. Sig-
natures of COVID-19 Severity and Immune Response in the Respiratory 
Tract Microbiome. mBio. 2021;12(4):e0177721.

	34.	 Ren Z, Wang H, Cui G, Lu H, Wang L, Luo H, Chen X, Ren H, Sun R, Liu W, 
et al. Alterations in the human oral and gut microbiomes and lipidomics 
in COVID-19. Gut. 2021;70(7):1253–65.

	35.	 Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia 
G, Turroni S, Biagi E, Peano C, Severgnini M, et al. Gut microbiome of the 
Hadza hunter-gatherers. Nat Commun. 2014;5:3654.

	36.	 Zaura E, Brandt BW, Teixeira de Mattos MJ, Buijs MJ, Caspers MP, Rashid 
MU, Weintraub A, Nord CE, Savell A, Hu Y, et al. Same Exposure but 
Two Radically Different Responses to Antibiotics: Resilience of the 
Salivary Microbiome versus Long-Term Microbial Shifts in Feces. mBio. 
2015;6(6):e01693–15.

	37.	 Tuddenham SA, Koay WLA, Zhao N, White JR, Ghanem KG, Sears CL. 
The Impact of Human Immunodeficiency Virus Infection on Gut 
Microbiota α-Diversity: An Individual-level Meta-analysis. Clin Infect Dis. 
2020;70(4):615–27.

	38.	 Maynard C, Weinkove D. The Gut Microbiota and Ageing. Subcell Bio-
chem. 2018;90:351–71.

	39.	 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, 
Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet 
rapidly and reproducibly alters the human gut microbiome. Nature. 
2014;505(7484):559–63.

	40.	 Midani FS, Weil AA, Chowdhury F, Begum YA, Khan AI, Debela MD, 
Durand HK, Reese AT, Nimmagadda SN, Silverman JD, et al. Human Gut 
Microbiota Predicts Susceptibility to Vibrio cholerae Infection. J Infect Dis. 
2018;218(4):645–53.

	41.	 Barberio B, Facchin S, Patuzzi I, Ford AC, Massimi D, Valle G, Sattin E, 
Simionati B, Bertazzo E, Zingone F, et al. A specific microbiota signature 
is associated to various degrees of ulcerative colitis as assessed by a 
machine learning approach. Gut Microbes. 2022;14(1):2028366.

	42.	 Gou W, Fu Y, Yue L, Chen GD, Cai X, Shuai M, Xu F, Yi X, Chen H, Zhu Y, et al. 
Gut microbiota, inflammation, and molecular signatures of host response 
to infection. J Genet Genomics. 2021;48(9):792–802.

	43.	 Rashidi A, Ebadi M, Weisdorf DJ, Costalonga M, Staley C. No evidence 
for colonization of oral bacteria in the distal gut in healthy adults. P Natl 
Acad Sci USA. 2021;118(42):e2114152118.

	44.	 Gupta A, Bhanushali S, Sanap A, Shekatkar M, Kharat A, Raut C, Bhonde R, 
Shouche Y, Kheur S, Sharma A. Oral dysbiosis and its linkage with SARS-
CoV-2 infection. Microbiol Res. 2022;261: 127055.

	45.	 Rattanaburi S, Sawaswong V, Chitcharoen S, Sivapornnukul P, Nimsamer 
P, Suntronwong N, Puenpa J, Poovorawan Y, Payungporn S. Bacterial 
microbiota in upper respiratory tract of COVID-19 and influenza patients. 
Exp Biol Med (Maywood). 2022;247(5):409–15.

	46.	 Liu J, Liu S, Zhang Z, Lee X, Wu W, Huang Z, Lei Z, Xu W, Chen D, Wu X, 
et al. Association between the nasopharyngeal microbiome and metabo-
lome in patients with COVID-19. Synthetic and systems biotechnology. 
2021;6(3):135–43.

	47.	 Ventero MP, Cuadrat RRC, Vidal I, Andrade BGN, Molina-Pardines C, Haro-
Moreno JM, Coutinho FH, Merino E, Regitano LCA, Silveira CB, et al. Naso-
pharyngeal Microbial Communities of Patients Infected With SARS-CoV-2 
That Developed COVID-19. Frontiers In Microbiology. 2021;12:637430.

	48.	 Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, 
niches and interactions with the human host. Nat Rev Microbiol. 
2021;19(9):585–99.

	49.	 Fujita K, Takata I, Sugiyama H, Suematsu H, Yamagishi Y, Mikamo H. 
Antimicrobial susceptibilities of clinical isolates of the anaerobic bacteria 
which can cause aspiration pneumonia. Anaerobe. 2019;57:86–9.

	50.	 Zhou H, Shen Y, Shen Q, Zhou J: Thoracic empyema caused by Prevotella 
spp. diagnosed using 16S rDNA sequence analysis. Clin Respir J 2015, 
9(1):121–124.

	51.	 Tamanai-Shacoori Z, Le Gall-David S, Moussouni F, Sweidan A, Polard E, 
Bousarghin L, Jolivet-Gougeon A: SARS-CoV-2 and Prevotella spp.: friend 
or foe? A systematic literature review. J Med Microbiol. 2022;71(5):001520.

	52.	 Haran JP, Bradley E, Zeamer AL, Cincotta L, Salive MC, Dutta P, Mutaawe 
S, Anya O, Meza-Segura M, Moormann AM, et al. Inflammation-type dys-
biosis of the oral microbiome associates with the duration of COVID-19 
symptoms and long COVID. JCI Insight. 2021;6(20):e152346.

	53.	 Khan AA, Khan Z. COVID-2019-associated overexpressed Prevotella pro-
teins mediated host-pathogen interactions and their role in coronavirus 
outbreak. Bioinformatics. 2020;36(13):4065–9.

	54.	 Larsen JM. The immune response to Prevotella bacteria in chronic inflam-
matory disease. Immunology. 2017;151(4):363–74.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Human microbiota dysbiosis after SARS-CoV-2 infection have the potential to predict disease prognosis
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Data sources and search strategy
	Processing of raw data and calculation of α-diversity
	Meta-analysis
	Machine learning (ML) strategy
	Identification of key microbiota
	Statistical analysis

	Results
	Meta-analysis of human microbiota α-diversity in SARS-CoV-2 infected individuals
	ML models based on the human respiratory microbiota could predict the prognosis of SARS-CoV-2 infection
	Prevotella and Streptococcus were shared differential bacteria in gut, respiratory tract, and oral cavity after SARS-CoV-2 infection

	Discussion
	Conclusions
	Anchor 21
	Acknowledgements
	References


