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Abstract 

Background  Bacterial bloodstream infection is responsible for the majority of cases of sepsis and septic shock. Early 
recognition of the causative pathogen is pivotal for administration of adequate empiric antibiotic therapy and for the 
survival of the patients. In this study, we developed a feasible machine learning (ML) model to predict gram-positive 
and gram-negative bacteremia based on routine laboratory parameters.

Methods  Data for 2118 patients with bacteremia were obtained from the Medical Information Mart for Intensive 
Care dataset. Patients were randomly split into the training set and test set by stratified sampling, and 374 routine 
laboratory blood test variables were retrieved. Variables with missing values in more than 40% of the patients were 
excluded. Pearson correlation test was employed to eliminate redundant features. Five ML algorithms were used 
to build the model based on the selected features. Additionally, 132 patients with bacteremia who were treated 
at Qilu Hospital of Shandong University were included in an independent test cohort to evaluate the model.

Results  After feature selection, 32 variables remained. All the five ML algorithms performed well in terms of discrimi-
nating between gram-positive and gram-negative bacteremia, but the performance of convolutional neural network 
(CNN) and random forest (RF) were better than other three algorithms. Consider of the interpretability of models, 
RF was chosen for further test (ROC-AUC = 0.768; 95%CI = 0.715–0.798, with a sensitivity of 75.20% and a specificity 
of 63.79%). To expand the application of the model, a decision tree (DT) was built utilizing the major variables, and it 
achieved an AUC of 0.679 (95%CI = 0.632–0.723), a sensitivity of 66%, and a specificity of 67.82% in the test cohort. 
When tested in the Qilu Hospital cohort, the ROC-AUC of the RF and DT models were 0.666 (95%CI = 0.579–0.746) 
and 0.615 (95%CI = 0.526–0.698), respectively. Finally, a software was developed to make the RF- and DT-based predic-
tion models easily accessible.

Conclusion  The present ML-based models could effectively discriminate between gram-positive and gram-negative 
bacteremia based on routine laboratory blood test results. This simple model would be beneficial in terms of guid-
ing timely antibiotic selection and administration in critically ill patients with bacteremia before their pathogen test 
results are available.
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Background
Bacterial bloodstream infection is responsible for the 
majority cases of community-acquired and hospital-
acquired sepsis and septic shock [1]. It is associated with 
poor outcomes, especially in cases where patients do not 
receive appropriate and timely antimicrobial therapy [2–
4]. Early adequate empirical antibiotic therapy is pivotal 
for patients’ survival [5]. However, increasing antibiotic 
resistance to commonly used antimicrobials poses a chal-
lenge to treatment. Early identification of the causative 
pathogen is important because this can enable physicians 
to choose appropriate antibiotic agents for therapy. Blood 
culture still serves as the gold standard for identification 
of the causative microorganism, but it is time-consuming 
and shows a high false-negative rate. Other rapid diag-
nostic tools for the early optimization of antimicrobial 
therapy, such as PCR-based tests, are limited by the num-
ber of PCR probes required or are dependent on positive 
culture samples [1].

The causative pathogen can be identified based on the 
levels of specific infectious biomarkers or inflamma-
tion cytokines, such as procalcitonin, interleukin (IL)-
2, IL-4, IL-6, tumor necrosis factor-α, and interferon-γ 
[6–9], but these parameters are not commonly measured 
at primary-level hospitals or hospitals in low-income 
countries [10]. Routine laboratory parameters, including 
complete blood cell (CBC) counts, acute-phase proteins, 
electrolytes, and blood gas indicators, are commonly 
measured, and the data for these variables can be easily 
obtained from hospitals at different levels across different 
countries. Using these parameters to predict the causa-
tive pathogen may present a more practical, feasible, 
and time-saving strategy, especially for patients who are 
severely ill or admitted to lower-level hospitals.

Machine learning (ML) techniques have shown great 
potential in aiding the diagnosis of disease [11, 12]. In 
recent years, ML technologies have seen remarkable 
advancements and are being rapidly implemented in vari-
ous medical fields. A series of ML-based models have 
been developed successfully and have demonstrated the 
feasibility and interpretability of ML in bacteremia pre-
diction [13–16]. Beeler et  al. [13] developed a model 
using the random forest (RF) algorithm to predict the risk 
of central line-associated bloodstream infections (CLAB-
SIs). Further, Mahmoud et  al. [14] used six ML algo-
rithms, including RF, logistic regression (LR), decision 
trees (DT), naive Bayes (NB), artificial neural networks 
(ANN), and support vector machine (SVM), to discrimi-
nate between positive and negative blood cultures with 

high specificity. Tsai et al. [15] established models based 
on LR and SVM to predict bacteremia in febrile children. 
In another such study, Bhavani et  al. [16] demonstrated 
that ML models based on data from electronic health 
records exhibited better performance in predicting bac-
teremia than previously published risk scores.

As far as we know, routine laboratory parameters have 
not yet been successfully integrated in an ML model for 
predicting gram-positive and gram-negative infections 
in patients with bacteremia. Therefore, in this study, we 
aimed to establish an ML model for early identification 
of gram-positive and gram-negative bacteremia based on 
routine laboratory parameters. 1–3-β-d-glucan test is a 
good diagnosis tool of invasive fungal infection with great 
sensitivity and specificity, so the BSI patients caused by 
fungus were not included in this research. An ML-based 
model utilizing the LR, SVM, ANN, RF, and convolu-
tional neural network (CNN) algorithms was constructed 
and evaluated in the Medical Information Mart for Inten-
sive Care (MIMIC) cohort (from the USA) and a local 
cohort (from China) in order to provide robust evidence 
for the application of this model.

Methods
Study design
As shown in Fig. 1, the MIMIC cohort was divided into a 
training set and a test set. Routine laboratory blood test 
results were extracted from the MIMIC dataset. Param-
eters with large amounts of data missing were removed, 
and the Pearson correlation test was used to remove 
redundant features. After feature selection, five ML 
algorithms (LR, SVM, ANN, RF, and CNN) were used 
to build the model based on the selected features. The 
built model was then evaluated on a hold-out test set of 
the MIMIC cohort. In addition, data collected from an 
independent test cohort from Qilu Hospital of Shandong 
University were used to evaluate the model further.

Source of data and study population
MIMIC is an open critical care database that contains 
comprehensive clinical data of patients admitted to 
Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts [17–19]. MIMIC III contains data collected 
between June 2001 and October 2012, while data col-
lected between 2008 and 2018 are recorded in MIMIC 
IV. The datasets used in the present study were extracted 
by Zhang and Wang, who have completed the collabora-
tive institution training initiative program course (Record 
ID: 36181465 and 46463103).
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As shown in Fig.  2, data for patients with a positive 
blood culture for a bacterial pathogen were retrieved. 
The exclusion criteria were age less than 16 years and the 
detection of microorganisms that were potentially con-
taminants, as pre-defined according to previous reports 

[20, 21]. For patients with multiple episodes of bacte-
remia, only data for the first episode were retrieved. 
Moreover, cases of mixed infection with two or three 
microorganisms detected in the same blood sample were 
also excluded. We retrieved laboratory results for blood 

Fig. 1  Schematic depiction of the study design

Fig. 2  Flowchart depicting the cohort selection process
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examinations that were conducted closest to the onset of 
the bacteremia (defined as the collection time of the posi-
tive blood sample). Parameters for which data were miss-
ing in more than 40% of the patients were excluded.

Another cohort from outside of the USA was used to 
evaluate the model further. This cohort was recruited 
from two mixed ICUs in Qilu Hospital of Shandong Uni-
versity in China. Patients with positive blood bacterial 
culture between 2019 and 2020 were included accord-
ing to a protocol approved by the Ethics Committee of 
Qilu Hospital, Shandong University (approval no. KYLL-
2018153). Written informed consent was waived by the 
ethics committees because the study did not involve any 
interventions.

Variables
Initially, 374 variables were obtained from routine labo-
ratory blood tests, including CBC count, liver function 
test, renal function test, serum cardiac markers, serum 
electrolytes, blood gas analysis, coagulation-associated 
markers, and immune cell-associated markers. However, 
340 variables for which data were missing in > 40% of the 
patients were eliminated, and the remaining 34 variables 
were utilized for development of the model. All these 34 
variables can be measured by routine laboratory blood 
tests for emergency or critical patients, and they include 
CBC count, liver function test, renal function test, serum 
electrolytes, blood gas analysis, and coagulation function 
test.

Statistical analysis
The Mann–Whitney U-test was utilized to analyze dif-
ferences between gram-positive and gram-negative 
cases in terms of numerical features. Pearson correla-
tion test was utilized to assess the linear dependence 
between features. Redundant features (Pearson correla-
tion coefficient |γ | ≥ 0.8 ) were removed [22] to ensure 
that there was no high degree of correlation in the final 
selected features for the model. The Delong test was per-
formed to compare the area under the curve (AUC) of 
the classifiers used to construct the model. P < 0.05 was 
considered to indicate statistical significance for all the 
analyses. Statistical analysis was performed using Python 
in Pycharm-Professional-2019.1.3.

Model development
The model was built based on five classifiers: LR, SVM 
with the radial basis function kernel, ANN, RF, and CNN. 
As LR, SVM, and ANN are sensitive to the dimension of 
features, Z-score analysis was performed before model 
training. Receiver operating characteristic (ROC) curve 
analysis was used to evaluate the performance of the built 

model, and AUC was computed. Accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) were also calculated to assess the 
performance of the model.

In order to determine the importance of each feature, 
SHapley Additive explanation (SHAP) values [23] were 
computed based on each model. With SHAP, an additive 
interpretation model can be constructed in which all the 
features are regarded as contributors, and then the mar-
ginal contribution of a feature can be calculated for each 
sample when it is added to the model. Since a feature 
has different marginal contributions for different feature 
sequences, the mean value is computed as the SHAP 
value. Eventually, the mean of all the samples’ SHAP 
values for a feature was considered to indicate the fea-
ture’s importance. Furthermore, considering that all 34 
variables used in the model may not always be available, 
a predictive decision tree (DT) model requiring fewer 
parameters was also developed for the differentiation of 
gram-positive and gram-negative bacteria.

The MIMIC cohort was randomly partitioned into the 
training set and the test set at a ratio of 8:2, and the train-
ing and test sets had the same distribution of gram-pos-
itive and gram-negative bacteremia cases as the original 
dataset. This process was repeated five times to dimin-
ish the influence of data partitioning. Model tuning was 
performed with ten-fold cross validation, and the tuned 
model was tested on the test set. The median perfor-
mance after five rounds of testing was finally reported in 
our study. The entire process was performed in Pycharm-
Professional-2019.1.3. We use scikit-learn library of 1.2.2 
version and pytorch library of 1.11.0 version.

Results
Patient characteristics and variables
In total, 2118 patients whose records were deposited in 
the MIMIC-III and MIMIC-IV database were enrolled; 
this included 1251 patients with gram-positive and 
867 patients with gram-negative bacteremia. The three 
most common pathogens identified in the gram-posi-
tive group were Staphylococcus aureus (n = 599), Ente-
rococcus faecium (n = 252), and Enterococcus faecalis 
(n = 106), and the three most common gram-negative 
bacteria were Escherichia coli (n = 347), Klebsiella pneu-
moniae (n = 163), and Pseudomonas aeruginosa (n = 70). 
The median age of the two groups was comparable, and 
61.19% (n = 1296) of the patients were male and 38.81% 
(n = 822) were female. We excluded variables with miss-
ing values exceeding 40%, and then we selected patients 
who did not have missing variables.

Figure 3 shows a heatmap of the correlation coefficients 
for the correlations between the variables. Variables with 
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a high degree of correlation were eliminated, and 32 vari-
ables were eventually selected for input into the model. 
All 32 variables can be measured with routine blood tests 
in the emergency department or ICU. Table  1 shows 
patients’ characteristics, including age, gender, and the 32 
selected variables.

Construction of the predictive model for differentiating 
between gram‑positive and gram‑negative bacteremia
The predictive model was constructed based on four ML 
classifiers, i.e., LR, SVM, ANN, RF, and CNN. Figure 4 pre-
sents the ROC curves of the model based on the five clas-
sifiers for the training set and the test set. As demonstrated 
in Fig. 4, in both sets, RF performed better (AUC = 0.768, 
95% CI = 0.715–0.798) than LR, SVM, and ANN 
(p = 0.0011, p = 0.0001, and p = 0.0039, respectively) with 
regard to discriminating between gram-positive and gram-
negative bacteremia, while the other three classifiers had 
comparable performances (p > 0.05). We also compared 
the five-fold cross-validation results with ten-fold cross-
validation based on RF according to your suggestions. It 
is found that the ten-fold cross-validation performed bet-
ter (AUC = 0.768, 95% CI = 0.715–0.798) than five-fold 
cross-validation (AUC = 0.762, 95% CI = 0.708–0.796).

The performance of CNN (AUC = 0.828, 95% CI = 0.817–
0.840) was slightly better than RF (p = 0.0043). However, 
considering the CNN model lacking interpretability, which 
is very important in clinical application, the RF model was 
finally chosen for further research analysis.

Figure 5 shows the performance of the model in the train-
ing and test sets based on accuracy, sensitivity, specific-
ity, PPV, and NPV. As shown in Fig. 5, RF achieved higher 
accuracy, specificity, PPV, and NPV than the other ML 
algorithms. Although both SVM and ANN had higher sen-
sitivity than RF, the sensitivity of RF was still high at 75.20% 
in the test set and was effective for distinguishing between 
gram-positive and gram-negative bacteremia. Thus, the 
model was eventually built based on the RF classifier to 
predict gram-positive and gram-negative bacteremia.

In order to identify the most important components 
in the predictive model, SHAP values were calculated 
for each variable. Figure 6 shows the variables’ impor-
tance in the model based on RF. The six most impor-
tant variables were lactate (Lac), alkaline phosphatase 
(AKP), asparate aminotransferase (AST), total bilirubin 
(TBIL), white blood cell count (WBC), and base excess 
in extracellular fluid (BEecf ): gram-positive bactere-
mia was associated with lower values of Lac, AKP, AST, 

Fig. 3  Heatmap of Pearson correlation coefficients for the correlations among variables. A high absolute value of the Pearson correlation coefficient 
corresponds to a high degree of correlation. The dark red and dark blue squares indicate a high degree of correlation, while the light red and light 
blue squares indicate a low degree of correlation
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and TBIL and higher values of WBC and BEecf. Among 
the six variables, Lac emerged as the most important 
one, as indicated in Fig. 6a. RF can also provide feature 
importance, as indicated in Fig. 6b. The feature impor-
tance obtained from RF is almost consistent with that 
computed using SHAP.

The ten most important variables selected from 
the RF model (shown in Fig.  6) were used as optional 

features to build a DT model. Cross-validation was 
used to select the optimal variable set for DT. Finally, 
only five variables were selected, as shown in Fig.  7: 
WBC count, percentage of basophils, alkaline phos-
phatase, lactate, and total bilirubin. The AUC of the 
built tree was 0.679 (95% CI = 0.632–0.723), and it had 
an accuracy of 66.75%, sensitivity of 66%, specificity of 
67.82%, PPV of 74.66%, and NPV of 58.13%.

Table 1  Distribution of patients’ demographics characteristics and routine laboratory parameters

Absolute numbers and percentages are used for categorical variables and mean and standard deviation are used for continuous variables
* shows the significant differences between the gram-positive and gram-negative

Variables Total Gram-negative Gram-positive P value

No. of patients(%) 2118(100) 867(40.93) 1251(59.07)

1 Age, median(Q1-Q3), year 63(53–74) 63(52–73) 64(53–75) 0.380

2 Gender, No. (%) 0.388

male 1296(100) 521(40.20) 775(59.80)

female 822(100) 346(42.09) 476(57.91)

3 PLT, mean(SD), K/μL 194.82(141.88) 191.42(142.50) 197.17(141.45) 0.359

4 WBC, mean(SD), K/μL 13.02(10.81) 12.62(11.41) 13.30(10.37) 0.159

5 BASO, mean(SD), % 0.19(0.35) 0.15(0.29) 0.22(0.38) < 0.0001*

6 EOS, mean(SD), % 0.90(2.07) 0.81(1.77) 0.97(2.25) 0.089

7 LYM, mean(SD), % 12.25(16.75) 12.11(16.61) 12.34(16.85) 0.760

8 NEU, mean(SD), % 75.39(20.92) 73.53(21.53) 76.68(20.40) 0.001*

9 RBC, mean(SD), m/μL 3.40(0.72) 3.36(0.71) 3.43(0.73) 0.027*

10 MCHC, mean(SD), % 33.06(1.69) 33.07(1.65) 33.05(1.72) 0.776

11 MCV, mean(SD), fL 91.49(8.02) 92.50(8.13) 90.79(7.87) < 0.0001*

12 AST, mean(SD), IU/L 188.77(1021.59) 205.59(820.69) 177.12(1140.43) 0.528

13 ALT, mean(SD), IU/L 112.96(435.01) 128.28(449.60) 102.35(424.47) 0.177

14 TBIL, mean(SD), mg/dL 3.05(6.21) 3.89(7.05) 2.47(5.48) < 0.0001*

15 AKP, mean(SD), IU/L 171.32(196.65) 210.26(241.01) 144.32(153.20) < 0.0001*

16 ALB, mean(SD), g/dL 2.81(0.64) 2.79(0.64) 2.82(0.63) 0.171

17 LDH, mean(SD), IU/L 463.58(1032.98) 478.21(1108.49) 453.43(977.56) 0.587

18 Cr, mean(SD), mg/dL 2.01(2.06) 1.96(1.75) 2.04(2.25) 0.366

19 BUN, mean(SD), mg/dL 37.25(28.33) 38.17(29.15) 36.62(27.74) 0.215

20 Chloride, mean(SD), mEq/L 102.02(7.18) 102.01(6.91) 102.02(7.36) 0.966

21 Potassium, mean(SD), mEq/L 4.19(0.81) 4.17(0.85) 4.20(0.78) 0.281

22 Sodium, mean(SD), mEq/L 137.24(5.85) 137.09(5.49) 137.34(6.09) 0.322

23 Magnesium, mean(SD), mg/dL 1.96(0.42) 1.93(0.46) 1.98(0.39) 0.006*

24 Calcium, mean(SD), mg/dL 8.25(0.95) 8.21(0.99) 8.28(0.92) 0.106

25 Phosphate, mean(SD), mg/dL 3.58(1.62) 3.57(1.69) 3.59(1.57) 0.810

26 Bicarbonate, mean(SD), mEq/L 22.58(5.45) 21.76(5.73) 23.15(5.17) < 0.0001*

27 Glu, mean(SD), mg/dL 142.42(72.63) 140.37(76.69) 143.83(69.68) 0.281

28 pH, mean(SD), units 7.38(0.10) 7.37(0.11) 7.39(0.09) < 0.0001*

29 BEecf, mean(SD), mEq/L -1.80(5.68) -2.95(6.32) -1.01(5.05) < 0.0001*

30 pO2, mean(SD), mm Hg 11.58(77.79) 108.36(74.76) 113.80(79.78) 0.114

31 pCO2, mean(SD), mm Hg 38.66(10.79) 37.82(10.42) 39.24(11.00) 0.003*

32 Lac, mean(SD), mmol/L 2.65(2.24) 3.31(2.75) 2.20(1.66) < 0.0001*

33 PT-INR, mean(SD) 1.70(1.10) 1.79(1.31) 1.63(0.93) 0.003*

34 PTT, mean(SD), sec 38.28(19.57) 39.71(19.78) 37.28(17.63) 0.004*
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Evaluation of the RF model in the Qilu Hospital cohort
An independent test cohort of 132 critical care patients 
was recruited from Qilu Hospital of Shandong University 
to evaluate the performance of the models. The patients’ 
characteristics and laboratory parameters are shown in 
Supplementary Table S1. Table 2 shows the performances 
of the proposed model based on RF and DT in the Qilu 
Hospital cohort, and Fig.  8 shows the ROC curves for 
the model. RF (accuracy = 64.39%, AUC = 0.666) outper-
formed DT (accuracy = 59.85%, AUC = 0.615). Although 
the performance of the models based on RF and DT 

decreased to a certain extent in the Qilu hospital cohort 
compared to the MIMIC dataset, both classifiers still 
showed acceptable performance in terms of predicting 
gram-positive and gram-negative bacteremia.

A software was developed to make the RF- and DT-
based prediction models easily accessible (we can provide 
the software if needed). Figure S1 shows the interface of 
the software: the input includes two parts that can func-
tion independently. Quick Prediction refers to the DT-
based model, for which five input variables are required, 
while General Prediction refers to the RF-based model, 

Fig. 4  ROC curves depicting the predictive ability of the model in the training set and test set

Fig. 5  Performance of the models based on their accuracy (A), sensitivity (B), specificity (C), PPV (D), and NPV (E)



Page 8 of 12Zhang et al. BMC Infectious Diseases          (2023) 23:675 

which requires more input variables but provides a more 
precise prediction.

Discussion
The aim of the current study was to develop a predictive 
model based on ML algorithms to discriminate between 
gram-positive and gram-negative bacteremia in patients 
with severe bloodstream infection before the pathogenic 
test results are accessible. The model based on the RF 
algorithm showed satisfactory predictive performance in 
discriminating between gram-positive and gram-negative 
pathogens that cause bacteremia. In order to improve its 
applicability in real-life situations in which all routine 
blood test results might not be available on time, espe-
cially in emergency situations, a DT model was built 
using only five variables.

Empiric antimicrobial treatment of bacteremia is 
often problematic because of the increasing resistance 
of both gram-positive and gram-negative microbes 
against antimicrobial drugs. Gram-positive bacte-
ria are a major concern, especially multidrug-resistant 
bacteria such as methicillin-resistant Staphylococcus 

Aureus, vancomycin-resistant Enterococcus faecium, and 
β-lactamase-resistant Streptococcus pneumonia [24, 25]. 
Further, multidrug-resistant gram-negative bacteria, such 
as Enterobacteriaceae, Pseudomonas aeruginosa, and Aci-
netobacter baumannii, also pose a serious and rapidly 
emerging threat, especially for patients in  intensive care 
units [26]. The easy-to-use model proposed in the pre-
sent study can be used to promptly predict gram-positive 
and gram-negative bacteremia and could contribute to 
the timely and adequate elimination of the implicated 
pathogen. Adequate empiric antimicrobial treatment for 
sepsis has been demonstrated to directly affect the mor-
tality rate in the ICU [27]. With this model, the probabil-
ity of gram-positive or gram-negative bacteremia can be 
calculated offline when the values of the 32 variables are 
input into the software provided. Further interventional 
studies based on this prediction model are necessary to 
verify its effectiveness based on patient outcomes.

Several laboratory blood test parameters have been 
proposed as potential predictive markers for the dis-
crimination of gram-positive and gram-negative bac-
terial infections, and these are used to tailor empiric 

Fig. 6  Importance of the variables in the model based on RF. a The left plot presents the SHAP value for each variable, with each point 
representing an individual sample. The vertical axis and horizontal axis represent the variables and the SHAP values, respectively. The color 
of each point represents the value of the variables, as shown in the color bar on the left. The SHAP values are directly associated with the model’s 
output. The right plot shows the mean of the absolute SHAP values for each variable as an indicator of the importance of the variable. Variables 
with higher values are thought to be more important. b The plot shows the mean of Gini index for each variable as an indicator of the importance 
of the variable. Variables with higher values are thought to be more important
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antimicrobial therapy before the results of the pathogen 
tests are obtained [6, 9, 28, 29]. However, there is no 
strong evidence for the ability of any of these parameters 
to predict the infection pathogens. The ML algorithm has 
been proved to be helpful in combining several variables 
to discriminate different subsets of patients. So far, there 
is no ideal ML model for predicting the pathogens that 
cause bacteremia. The ML model of Ratzinger et al. based 
on the K-star algorithm had a sensitivity of only 44.6% for 
detecting gram-negative bacteremia [30]. Although the 
AUC of their model (0.675) was comparable to that of the 
present study, it had poor sensitivity (44.6%) and speci-
ficity (79.8%). Ratzinger’s research also started with vari-
ables from routine laboratory tests, such as CBC count, 
liver function test, renal function test, serum electro-
lytes, and coagulation function test, but only seven vari-
ables (gender, count of lymphocytes, count of monocytes, 

percentage of monocytes, fibrinogen, creatinine, and 
C-reactive protein) were included in the final K-Star 
model. When building the current RF model, the results 
of blood gas analysis were also included. Moreover, 32 
variables were entered into the RF model. The larger 
cohort of patients, the higher number of input variables, 
and the different algorithms used may explain why our 
model performed better.

Considering that measurements of the 32 variables 
input in the RF model may not be available in some 
areas, medical institutions, and units, a well-performing 
DT model was also constructed with only five routinely 
measured variables: WBC count, basophil percentage, 
alkaline phosphatase, and lactate. Gram-negative bacte-
remia is associated with a higher level of inflammatory 
response than gram-positive bacteremia [6]. Accord-
ingly, the association of gram-negative bacteremia with 
increased levels of WBC has also been found in a previ-
ous report [31]. Additionally, as basophils are a type of 
WBC, the inclusion of basophil percentage as an indica-
tor also makes sense. Gram-positive and gram-negative 
bacteria activate different receptor pathways [32] and 
cytokine production patterns in the host [33]. Certain 
cytokines (such as IL-3, IL-5, and GM-CSF) induced 
by gram-positive bacteria appear to be important 

Fig. 7  Decision tree for the prediction of gram-positive and gram-negative bacteremia. Blue squares: gram-negative samples, brown squares: 
gram-positive samples, and gray: leaf nodes. “Samples” refers to the number of samples in the current node. “Class” in the leaf nodes refers 
to the prediction of the built decision tree, which depends on the number of gram-positive and gram-negative samples. If the number 
of gram-positive samples is higher than the number of gram-negative samples in the leaf, then the prediction is gram-positive bacteremia

Table 2  The performances of the proposed model and DT in 
Qilu Hospital dataset

Accuracy Sensitivity Specificity PPV NPV

RF 64.39% 63.16% 65.33% 58.06% 70.00%

DT 59.85% 64.91% 56.00% 52.86% 67.74%



Page 10 of 12Zhang et al. BMC Infectious Diseases          (2023) 23:675 

developmental factors for basophils [34]. Further, 
lipopolysaccharide is found in abundance in the outer 
membrane of most gram-negative bacteria and plays a 
key role in host–pathogen interaction [35] by increasing 
lactatemia via enhanced glycolysis [36] and lactate pro-
duction [35], as well as early and severe impairment of 
lactate clearance [37]. Furthermore, it causes hepatoxic-
ity by induction of oxidative stress and consequent oxi-
dative damage to biomolecules [38]. These functions of 
lipopolysaccharide may explain the significant increase in 
lactate levels and hepatic biomarkers (e.g., AKP and total 
bilirubin) in patients with gram-negative bacteremia.

Several limitations of this study must be considered. 
First, the laboratory blood test variables in the MIMIC 
database do not represent all commonly used infec-
tion-related parameters; for example, procalcitonin and 
C-reactive protein are not reported in the MIMIC data-
base. Further, immune-related parameters, such as CD4, 
CD8, and HLA-DR, were rarely recorded in the MIMIC 
database and could not be included when developing the 
ML model. The exclusion of these parameters may limit 
the effectiveness of the ML algorithm. Second, blood 
cultures present varying degrees of false-negative rates, 
dependent on the specimen acquisition time, usage of 
antibiotics, and microbial culture techniques, etc. This 
ML prediction model was based on blood culture results, 
which may cause bias because the BSI patients with 
false-negative blood culture results were not included 
in the datasets. Third, there was limit data of antimicro-
bial resistance which could be used for machine learning 
models training or validation. Our model wasn’t help-
ful to predict the existence of antimicrobial resistance. 

Fourth, as the datasets were evaluated retrospectively, 
most of the laboratory blood test results were not 
obtained on the same day that bacteremia was suspected. 
As there is no standard turnaround time for laboratory 
test results, the applicability of the model may be limited 
in certain situations. Finally, the model needs to be evalu-
ated using data from different regions and countries, as 
well as prospective cohorts.

Conclusion
The present ML-based models could effectively discrimi-
nate between gram-positive and gram-negative bactere-
mia based on routine laboratory blood test results. This 
simple model would be beneficial in terms of guiding 
timely antibiotic selection and administration in critically 
ill patients with bacteremia before their pathogen test 
results are available. This model would be especially use-
ful for patients in developing countries or those admitted 
to lower-level healthcare centers.
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