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Abstract 

Background The development of scoring systems to predict the short‑term mortality and the length of hospital 
stay (LOS) in patients with bacteraemia is essential to improve the quality of care and reduce the occupancy variance 
in the hospital bed.

Methods Adults hospitalised with community‑onset bacteraemia in the coronavirus disease 2019 (COVID‑19) 
and pre‑COVID‑19 eras were captured as the validation and derivation cohorts in the multicentre study, respec‑
tively. Model I incorporated all variables available on day 0, Model II incorporated all variables available on day 3, 
and Models III, IV, and V incorporated the variables that changed from day 0 to day 3. This study adopted the statistical 
and machine learning (ML) methods to jointly determine the prediction performance of these models in two study 
cohorts.

Results A total of 3,639 (81.4%) and 834 (18.6%) patients were included in the derivation and validation cohorts, 
respectively. Model IV achieved the best performance in predicting 30‑day mortality in both cohorts. The most 
frequently identified variables incorporated into Model IV were deteriorated consciousness from day 0 to day 
3 and deteriorated respiration from day 0 to day 3. Model V achieved the best performance in predicting LOS 
in both cohorts. The most frequently identified variables in Model V were deteriorated consciousness from day 0 
to day 3, a body temperature ≤ 36.0 °C or ≥ 39.0 °C on day 3, and a diagnosis of complicated bacteraemia.

Conclusions For hospitalised adults with community‑onset bacteraemia, clinical variables that dynamically changed 
from day 0 to day 3 were crucial in predicting the short‑term mortality and LOS.
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Introduction
Despite recent advancements in haemodynamic sup-
port and antimicrobial strategies, bacteraemia remains 
strongly associated with high morbidity and mortality, 
leading to substantial healthcare costs [1]. Bacteraemia 
is a complex infection with varied clinical presentations 
and mortality rates, depending on the severity of the 
illness, the patient’s immune status, comorbid severity, 
causative microorganisms, and infection sources [2, 3]. 
Therefore, several scoring systems had been developed 
to predict short-term mortality in patients with bacte-
raemia to achieve the improved quality of patient care 
[4–7]. Regardless of whether the scoring algorithms 
were adopted in the emergency departments (EDs) [6] 
or intensive care units [4, 5], the majorities of these 
scoring systems were derived from clinical information 
at the time of bacteraemia onset. Although a new tool 
(i.e., the BLOOMY prediction score) both incorporat-
ing clinical data on day 0 and day 3 had been recently 
developed [7], a scoring system incorporating the 
dynamic changes in clinical data, which could reflect 
responses to empirical antimicrobial therapy and early 
resuscitation, is lacking.

Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) was first recognised in December 2019 
[8]. On March 11, 2020, the World Health Organization 
proclaimed the coronavirus disease 2019 (COVID-19) as 
a worldwide pandemic [9]. The stress caused by the rapid 
global spread of COVID-19 has been shown to result in 
the unprecedented consumption of hospital resources 
[10, 11] and behavior changes in medical teams, such as 
the delayed diagnosis and treatment of bacteraemia [12]. 
Additionally, numerous studies detailing the difference of 
the incidences and causative microorganisms of blood-
stream infections before and during the COVID-19 peri-
ods have been reported [13–15].

Accurately predicting the length of hospital stay (LOS) 
enables hospitals to predict the discharge dates of admit-
ted patients and thereby improves the scheduling of 
elective admissions, reduces bed occupancy variance, 
and better predicts healthcare costs [16, 17]. Some pre-
dictive studies have analyzed the patients who under-
went coronary artery bypass grafting [18, 19] and those 
with critical illnesses [20, 21]. However, the majority of 
reported predictions have been developed with clinical 
data gathered at the time of initial hospitalisation [20, 
21] or surgery [18, 19]. Research specifically incorporat-
ing the changes in clinical data for predicting LOS was 
lacking among individuals with bacteraemia. Therefore, 
this study compared the performance of various scoring 
systems, using clinical information available at the time 
of bacteraemia onset (day 0), on day 3, and/or changes 
in variables from day 0 to day 3, in predicting the 30-day 

mortality and LOS of individuals hospitalised with com-
munity-onset bacteraemia.

Methods
Study design
This 5-year, multicentre retrospective cohort study was 
conducted in the EDs of three hospitals in southern Tai-
wan. The hospitals included one university-affiliated 
medical centre with 1,200 beds and two teaching hos-
pitals with 460 and 380 beds, respectively. The study 
enrolled adult patients (age ≥ 18 years) hospitalised with 
community-onset bacteraemia. The derivation cohort 
was enrolled from January 2017 to December 2020; the 
validation cohort was enrolled from January 2021 to 
December 2021, during the COVID-19 pandemic in 
Taiwan. The primary and secondary outcomes were the 
crude mortality rate within 30 days after bacteraemia 
onset and the LOS, respectively. The scoring systems 
were established using a joint approach both by con-
ventional regression models and machine learning (ML) 
methods. The study followed the recommendations of 
the Strengthening the Reporting of Observational Studies 
in Epidemiology Initiative.

Patient selections
During the study period, the results of blood cultures 
sampled from ED patients were screened for bacterial 
growth using the electronic medical charts. The inclusion 
criteria were adults with bacterial growth on blood cul-
tures. For patients with multiple bacteraemic episodes, 
only the first episode was included. First, this study 
excluded patients with contaminated blood cultures or 
bacteraemia diagnosed prior to the ED visits to identify 
individuals with community-onset bacteraemia. In addi-
tion, the study excluded non-hospitalised individuals and 
those with undetermined mortality or LOS prior to the 
study endpoint (such as those who had been hospitalised 
less than 30 days and did not revisit the study hospital). 
The remaining patients were deemed eligible for study.

Data collection
A predetermined record form was adopted to capture the 
patient demographic and clinical characteristics of bac-
teraemia. All information was independently gathered 
by a board-certified ED physician and an infectious dis-
ease physician who were both trained in medical chart 
reviews; the physicians were blinded to the aim and 
hypotheses of the present study, and any recording dis-
crepancies were resolved through discussion between the 
authors. For comprehensive analyses, the clinical data 
obtained from medical charts were grouped into the fol-
lowing four components: i (unchanging variables on day 
0), ii (unchanging variables on day 3), iii (changeable 
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variables on day 0), and iv (changeable variables on day 
3). The variables grouped in these components are listed 
in Supplemental Table  1. Furthermore, component v 
included alterations in the changeable variables from day 
0 to day 3; the alteration descriptions are listed in Supple-
mental Table 2. The components of Models I, II, III, IV, 
and V are presented in Fig. 1.

Definitions
Bacteraemia, the presence of bacteria in the bloodstream, 
is generally diagnosed with blood cultures after the exclu-
sion of sample contamination. As previously defined [22], 
community-onset bacteraemia indicated that the episode 
first identified <48 hours following ED arrival, which 
included healthcare facility- and community-associated 
bacteraemia. According to the previous criteria [23], 
blood cultures with the growth of potentially contaminat-
ing pathogens, such as coagulase-negative staphylococci 
(CoNS), micrococci, Bacillus species, Propionibacterium 
species, and Gram-positive bacilli, are considered to be 
contaminated. The isolation of more than one microbial 
species from a single bacteraemia episode was classified 
as polymicrobial bacteraemia. According to the interna-
tional guideline of the Surviving Sepsis Campaign [24], 
complicated bacteraemia was defined if a patient fits one 
of the following criteria: (1) the presence of endocardi-
tis, (2) infections of implanted prostheses, (3) bacterial 
growth from follow-up blood cultures taken 2-4 days 
after the initial set, (4) no defervescence at 72 hours after 
the initiation of appropriate antibiotic treatment, and (5) 
the presence of metastatic infections.

The Pitt bacteraemia score (PBS) was employed to 
assess the severity of illness; the score components are 
vital signs, mental status, use of vasopressor agents, 
receipt of mechanical ventilation, and cardiac arrest 
[25]. The comorbid severity was assessed by a previously 
established classification (McCabe classification) [26]. 
The overall length of the hospitalisation and ED stay was 
measured as the LOS. Crude mortality was equated with 
death from all causes.

Sampling of blood cultures and microbiological methods
Blood sampling was performed by nurses or physicians 
in EDs, and two sets of blood cultures were routinely 
done from different peripheral veins or arteries with at 
least 30 minutes between the two samplings. A set of 
blood cultures is routinely composed of one bottle of 
aerobic culture and another of anaerobic culture, with 
approximately 10 mL of blood in each bottle. Immedi-
ately, blood cultures were incubated in a BACTEC 9240 
instrument (Becton Dickinson Diagnostic Systems, 
Sparks, MD, USA) for 5 days at 35ºC. Bacteraemic 

isolates were identified by the matrix-assisted laser des-
orption ionization time-of-flight mass spectrometry.

Machine learning
Five ML methods, in terms of random forest (RF), sup-
port vector machine (SVM), extreme gradient boosting 
(XGBoost), gradient boost, and light gradient boosting 
machine (Light GBM), were adopted by ML packages 
(i.e., scikit-learn, XGBoost, and Light GBM) of Python 
v3.8 for data preprocessing and building supervised 
learning models. In the data preprocessing, the method 
of Multivariate Imputation by Chained Equations 
(MICE) is used to fill in the missing values. Through 
multiple regressions over random data, samples get 
closer to the real dataset. In the process of predictive 
modeling, classification models and regression mod-
els were established using the above five ML methods, 
along with default hyperparameter settings provided 
by scikit-learn, XGBoost, and light GBM, for predict-
ing 30-day mortality and LOS, respectively. These ML 
models were implemented in the following processing: 
creating an estimator, fitting the training set to the esti-
mator, and predicting new values   or class labels for the 
testing samples. Besides, both classification and regres-
sion tasks were implemented on Model I -V to compare 
their performance.

Statistical analyses
SAS version 9.4 software (SAS Institute, Cary, NC, USA) 
was used for statistical analyse. To identify the independ-
ent predictors of 30-day mortality, all variables identi-
fied as having P values < .05 by univariate analyses were 
included in the backward stepwise logistic regression 
model. This study developed a scoring algorithm consist-
ing of independent predictive variables to predict 30-day 
mortality. The area under the receiver operating charac-
teristic (ROC) curve was calculated for all MLs and sta-
tistical methods to estimate their accuracy in predicting 
30-day mortality.

For predicting LOS, generalized linear models (GLMs) 
with three different distributions (i.e., normal, negative 
binomial, and Poisson) were used to recognise the best-
fitting model, by the model performance with stepwise 
selection and an P value of <0.05 included variables in 
the model. The calibration of GLMs was assessed by plot-
ting predicted versus the observed LOS averaged over 
patients with identical predicted values. The ideal calibra-
tion would be indicated by values close to the 45° line on 
a plot. For the ML models and GLMs, the mean square 
error (MSE) and root mean square error (RMSE) were 
employed to evaluate performance in predicting LOS.
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Results
Patient demographics in the overall cohort
Of the 6,344 individuals hospitalised with positive blood 
cultures, 4,473 patients met the study inclusion criteria. 
The derivation and validation cohorts contained 3,639 
(81.4%) and 834 (18.6%) patients, respectively (Fig.  2). 
Model I was established and validated in the overall 
cohort (6,344 patients). In this cohort, the median (inter-
quartile range [IQR]) patient age was 69 (57–80) years; 
52.4% (2,347 patients) of the patients were male. The LOS 
after bacteraemia onset ranged from 1 to 293 days, with 
a median (IQR) of 10 (6–18) days. Of the overall cohort, 
the patients deemed critically ill (PBS ≥ 4) at the onset 
of bacteraemia accounted for 23.5% (1,049 patients); the 
3-day and 30-day crude mortality rates were 5.7% (256) 
and 17.5% (784), respectively.

After excluding 296 (6.6%) patients who died within 
3  days after bacteraemia onset, 4,217 patients were 
included in the derivation (3,479 patients, 82.5%) and 
validation (738 patients, 17.5%) cohorts, respectively, for 
further analyses using Models II, III, IV, and V. In this 
cohort, the median (IQR) LOS after bacteraemia onset 
was 11 (7–19) days, and the 30-day crude mortality rate 
was 12.5% (527 patients).

Clinical characteristics and outcomes 
between the derivation (pre‑COVID‑19 era) and validation 
(COVID‑19 era) cohorts
Differences between the derivation and validation 
cohorts with respect to patient demographic character-
istics, bacteraemia characteristics, and clinical outcomes 
are presented in Table  1. Compared with those in the 
derivation cohort, fewer patients in the validation cohort 
were bedridden, had previous hospitalisations or inva-
sive procedures, or had the causative microorganisms of 
E. coli, Streptococcus species, or Pseudomonas species. 
Conversely, the lower body mass index, the shorter LOS, 
as well as the few patients with previous chemotherapy, 
complicated bacteraemia, causative microorganisms of 
Klebsiella species, and comorbidities of diabetes mellitus 
or chronic kidney diseases were exhibited in the valida-
tion cohort. Notably, the validation cohort contained 
more patients with critical illness at the time of onset 
and more patients with higher rates of 3-day and 30-day 
crude mortality compared with patients in the derivation 
cohort.

ML or logistic regression in predicting 30‑day mortality
The independent predictors of 30-day mortality identi-
fied in Models I, II, III, IV, and V were presented in Sup-
plemental Tables 3, 4, 5, 6 and 7. The performance of six 
methods (i.e., logistic regression, RF, SVM, XGBoost, 

gradient boosting, and Light GBM) in predicting 30-day 
mortality as determined using the area under the ROC 
curve are listed in Table 2. Of the five models established 
for the derivation cohort, Model IV had the highest area 
using the logistic regression, SVM, and Light GBM tech-
niques; Model V had the highest area through the RF 
and gradient boosting techniques; and Model III had the 
highest area through the XGBoost technique. Further-
more, for the validation cohort, Model IV consistently 
had the highest area using the logistic regression and five 
of ML methods (namely the SVM, XGBoost, gradient 
boosting, and Light GBM techniques).

Regarding the variables incorporated into Model IV, 
the 10 most powerful predictors of 30-day mortality are 
identified using logistic regression and the RF, XGBoost, 
gradient boosting, and Light GBM techniques (Table 3). 
Of these predictors, the most frequently identified were 
deteriorated consciousness from day 0 to day 3 (5/50) and 
deteriorated respiration from day 0 to day 3 (5/50); the 
other frequently identified variables included stationary 
shock from day 0 to day 3 (3/50), stationary conscious-
ness from day 0 to day 3 (3/50), improved consciousness 
from day 0 to day 3 (3/50), and haemoglobin on day 0 
(3/50).

ML or GLM methods in predicting the LOS
The calibration curves of GLMs for predicting the LOS 
for the derivation and validation cohorts are presented 
in Supplemental Figs.  1  and 2, respectively. The perfor-
mances of six methods (i.e., logistic regression, RF, SVM, 
XGBoost, gradient boosting, and Light GBM) in predict-
ing LOS, evaluated using MSE and RMSE, are presented 
in Table  4. Of the five models constructed for the deri-
vation cohort, Model V had the lowest value for logistic 
regression and the RF, SVM, and Light GBM techniques; 
Models II and III had the lowest values for the gradient 
boost and XGBoost techniques, respectively. Regarding 
the validation cohort, Model V had the lowest values for 
the RF, SVM, XGBoost, and gradient boost techniques; 
Models II and IV had the lowest values for the logistic 
regression and Light GBM techniques, respectively.

For the variables integrated into Model V, the 10 most 
powerful predictors of LOS were identified using GLMs 
with one of three distributions and the RF, XGBoost, 
gradient boost, and Light GBM techniques (Table  5). 
Of these predictors, the most frequently identified vari-
ables included deteriorated consciousness from day 0 to 
day 3 (7/70), a body temperature ≤ 36.0 °C or ≥ 39.0 °C on 
day 3 (7/70), and a diagnosis of complicated bacteraemia 
(7/70); other frequently identified variables were blood 
urea nitrogen on day 3 (5/70), bacteraemia caused by 
bone and joint infections (5/70), bacteraemia with multi-
ple points of entry (4/70), stationary consciousness from 
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Table 1 Clinical manifestations and outcomes in the derivation (non‑COVID‑19) and validation (COVID‑19) cohorts

ED Emergency department, IQR Interquartile range
* Boldface indicates statistical significance with a P value of < 0.05

Variable Patient number (%) P value

Derivation n = 3639 Validation n = 834

Patient demographic

 Age ≥ 65 years 2181 (59.9) 477 (57.2) 0.15

 Gender, male 1892 (52.0) 455 (54.6) 0.18

 Bed‑ridden status 549 (15.1) 100 (12.0) 0.02

 Nursing‑home resident 215 (5.9) 38 (4.6) 0.13

 Body mass index, mean ± SD 22.9 ± 4.9 23.7 ± 5.0  < 0.001

Previous events within 4 weeks before bacteraemia onset

 Hospitalisation 762 (20.9) 142 (17.0) 0.01

 Chemotherapy 265 (7.3) 104 (12.5)  < 0.001

 Surgery 171 (4.7) 45 (5.4) 0.40

 Invasive procedure 101 (2.8) 7 (0.8) 0.001

 Immunotherapy 43 (1.2) 8 (1.0) 0.59

 Pitt bacteraemia score, median (IQR) 1 (0 – 3) 2 (0 – 4)  < 0.001

Major bacteraemia source

 Urinary tract 1134 (31.2) 261 (31.3) 0.94

 Low respiratory tract 682 (18.7) 148 (17.7) 0.51

 Intra‑abdominal 441 (12.1) 102 (12.2) 0.93

 Skin and soft‑tissue 418 (11.5) 84 (10.1) 0.24

 Biliary tract 340 (9.3) 87 (10.4) 0.34

 Liver abscess 161 (4.4) 61 (7.3) 0.001

 Polymicrobial bacteraemia 353 (9.7) 65 (7.8) 0.06

 Complicated bacteraemia 1033 (28.4) 296 (35.5)  < 0.001

Major causative microorganism

 Escherichia coli 1363 (37.5) 241 (28.9)  < 0.001

 Klebsiella species 716 (19.7) 343 (41.1)  < 0.001

 Streptococcus species 511 (14.0) 69 (8.3)  < 0.001

 Staphylococcus aureus 486 (13.4) 114 (13.7) 0.81

 Anaerobes 134 (3.7) 35 (4.2) 0.48

 Pseudomonas species 133 (3.7) 19 (2.3) 0.048

 Enterococcus species 111 (3.1) 28 (3.4) 0.65

 Fatal comorbidity (McCabe classification) 955 (26.2) 215 (25.8) 0.78

Major comorbidity

 Hypertension 1768 (48.6) 386 (46.3) 0.23

 Diabetes mellitus 1386 (38.1) 357 (42.8) 0.01

 Hemato‑oncology 1077 (29.6) 274 (32.9) 0.07

 Neurological disease 862 (23.7) 188 (22.5) 0.48

 Chronic kidney disease 702 (19.3) 210 (25.2)  < 0.001

 Liver cirrhosis 449 (12.3) 100 (12.0) 0.78

Laboratory data at bacteraemia onset, mean ± SD

 Leukocyte  (103/mm3) 13.0 ± 11.2 12.7 ± 8.1 0.38

 Absolute neutrophile count  (103/mm3) 11.4 ± 12.3 11.1 ± 7.7 0.46

 Hemoglobin (g/dL) 11.8 ± 6.1 11.3 ± 3.3 0.06

 Thrombocyte  (103/mm3) 191.9 ± 115.6 189.4 ± 151.3 0.58

 Blood urea nitrogen (mg/dL) 33.8 ± 29.4 47.0 ± 36.5  < 0.001

 Serum creatinine (mg/dL) 2.0 ± 4.8 2.0 ± 2.6 1.00

Outcome

 Length of hospital stay, median (IQR) 10 (6 – 18) 9 (5 – 16) 0.002

Crude mortality rate

 3‑day 160 (4.4) 96 (11.5)  < 0.001

 30‑day 602 (16.5) 182 (21.8)  < 0.001
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day 0 to day 3 (3/70), ventilation dependence from day 0 
to day 3 (3/70), and the receipt of mechanical ventilation 
on day 3 (3/70).

Discussion
Frontline physicians commonly encounter patients 
with community-onset bacteraemia, because of its 
annual incidence of up to 0.15% in the community and 
the case-fatality rate of highly up to 17% [1] . Therefore, 
several scoring systems have been developed to predict 
short-term mortality in patients with bacteraemia to 
achieve higher quality of care [4–7]. Traditionally, the 
majorities of these scores were derived from clinical data 
obtained at the time of bacteraemia onset. Of the models 

established in the current study, the best performance in 
predicting 30-day mortality was Model IV, which con-
sisted of unchanging variables on day 3, changeable vari-
ables on day 0, and the alterations of changeable variables 
from day 0 to day 3. Consistent with the BLOOMY score 
[7], the clinical condition on day 0 and day 3 (as demon-
strated in Model IV) had been evidenced as the crucial 
determinates of short-term fatality. Moreover, similar 
to updated reports that highlighted the importance of 
dynamic vital signs and laboratory data in predicting 
short-term mortality among septic or bacteraemic indi-
viduals [27, 28], the changed variables form day 0 to day 
3 (as the component in Model IV) were recognised as the 
powerful determinants of 30-day mortality, in terms of 

Table 2 The area under ROC of the ML or logistic regression methods in predicting 30‑day mortality*

ML Machine learning, ROC Receiver operating characteristic, SVM Support vector machines, XGBoost Extreme gradient boosting, Light GBM Light gradient boosting 
machine
* Boldface indicates the highest area under ROC in the derivation and validation cohorts, respectively
** Model I was established in 3639 patients and other models in 3479
* ** Model I was validated in 834 patients and other models in 738

Derivation cohort** Validation cohort ***

Model I Model II Model III Model IV Model V Model I Model II Model III Model IV Model V

Logistic regression 0.844 0.906 0.880 0.916 0.878 0.831 0.8988 0.882 0.899 0.885

Random forests 0.707 0.796 0.901 0.985 0.986 0.667 0.673 0.884 0.718 0.715

SVM 0.699 0.774 0931 0.969 0.968 0.662 0.668 0.706 0.718 0.707

XGBoost 0.930 0.962 0.998 0.973 0.973 0.723 0.734 0.737 0.745 0.740

Gradient boost 0.838 0.896 0.982 0.996 0.971 0.733 0.722 0.723 0.744 0.723

Light GBM 0.712 0.830 0.956 1.000 1.000 0.695 0.724 0.715 0.727 0.708

Fig. 1 Definition of components and models*. *Day 0 indicates onset of bacteraemia
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the changes in the conscious level, respiratory condition, 
and hemodynamic status, which can be recognised as 
the responses to prompt antimicrobial therapy and early 
resuscitation.

Accurately predicting LOS at the onset of bacterae-
mia enables to improve the usage of medical resource 
and the quality of patient care [16, 17]. In the present 
study, Model V demonstrated the highest accuracy in 
predicting LOS by incorporating both unchanging and 
changeable variables on day 3, along with the changes in 
changeable variables between day 0 and day 3. In the lit-
erature, this is the novel finding emphasized the impor-
tance of variables on day 3 and their dynamic changes, 
incorporated in Model V, as the powerful determinant in 
predicting LOS, instead of variables at the onset of bac-
teraemia. Of these determinants, the conscious and res-
piratory status from day 0 to day 3, blood urea nitrogen 
and body temperature on day 3, and specific character-
istics of bacteraemia (complicated bacteraemia and bac-
teraemia with multiple ports of entry) were particularly 
recognised. More importantly, irrespective of whether 
predicting short-term mortality or LOS, the changes in 
changeable variables from day 0 to day 3 remained as a 
crucial determinant in the current study.

Although the SARS-CoV-2 was first detected in late 
2019 [8], Taiwan’s response to the COVID-19 pandemic 

effectively halted the domestic spread of the virus; the 
government mandated the rapid closure of borders and 
immediate home quarantines for international arriv-
als and increased mask manufacturing [29]. These pub-
lic policies combined with social behaviours initially 
proved effective in controlling COVID-19, with only 522 
recorded cases during 2020 [30]. Unfortunately, SARS-
CoV-2 spread rapidly across Taiwan in May 2021, with 
case numbers rising to 8,924 within one month [30]. 
Accordingly, the year 2021 was reasonably regarded as a 
period of the COVID-19 pandemic in the present study.

The global spread of SARS-CoV-2 resulted in the 
unprecedented demand for hospital resources, mechani-
cal ventilators, beds, personal protective equipment, 
and medical personnel [10, 11]. Increased demands on 
healthcare workers could led to the delayed diagnosis 
and/or treatment of bloodstream infections [12]. Fur-
thermore, the COVID-19 pandemic impacted the inci-
dences and causative microorganisms of bacteraemia 
[13–15], and the incidence discrepancy and bacterae-
mia variation resulted from COVID-19-related stress in 
community individuals and medical teams were highly 
speculated; this stress in medical teams might agree with 
a previous investigation indicating a high contamination 
rate of blood culture in hospitalised patients during the 
COVID-19 era [31]. Consequently, delayed treatment, 

Fig. 2 Flowchart of patient selection. LOS Length of hospital stay
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bacteraemia variations, and COVID-19-related stresses 
might result in unfavourable prognoses during the 
COVID-19 era, as demonstrated in the present study. 
Consistent with previous studies [14, 15], low incidence 
of E. coli bacteraemia in the COVID-19 era were dis-
closed in the present study. Dissimilar to previous studies 
that examined overall types of bacteraemia [14, 15], the 
altered incidence of Pseudomonas and CoNS bacteraemia 

between the COVID-19 and non-COVID-19 periods 
was not disclosed because the present study specifically 
focused on community-onset bacteraemia. In sum, the 
differences in bacteraemia characteristics and short-term 
prognoses between the non-COVID-19 and COVID-19 
eras was reasonably demonstrated, and thus the COVID-
19 era had been appropriately chosen as the validation 
period in the present study.

Table 3 Most ten powerful predictors of 30‑day mortality using the ML or logistic regression methods in Model IV

ML Machine learning;

Method Variables

Alteration from Day 0 to day3 Onset of bacteraemia (Day 0) The characteristic of bacteraemia

Logistic regression Bacteraemia severity Bacteraemia severity Bacteraemia source

Deteriorated consciousness Cardiac arrest Mycotic aneurysm

Stationary shock Body temperature ≤ 35.0℃or ≥ 40.0℃ Infective endocarditis

Deteriorated body temperature Lower respiratory tract

Deteriorated respiration

Stationary body temperature

Random forests Bacteraemia severity Bacteraemia severity

Deteriorated consciousness Clear consciousness

Stationary consciousness Receipt of mechanical ventilation

Improved consciousness Laboratory data

Stationary shock Hemoglobulin

Deteriorated respiration

 Ventilation dependence

Laboratory data

Decreased hemoglobulin

XGBoost Bacteraemia severity Bacteraemia severity Polymicrobial bacteraemia

Deteriorated consciousness Comatose consciousness

Stationary consciousness Receipt of mechanical ventilation

Improved consciousness Laboratory data

Deteriorated respiration Neutropenia

Stationary shock

Laboratory data

Deteriorated leukocytosis

Gradient boost Bacteraemia severity Bacteraemia severity Polymicrobial bacteraemia

Deteriorated consciousness Shock

Stationary consciousness Comatose consciousness

Appeared arrest Laboratory data

Deteriorated respiration Hemoglobulin

 Ventilation dependence Serum creatinine

Light GBM Bacteraemia severity Laboratory data Growth number on culture bottle

Deteriorated consciousness Hemoglobulin

Improved consciousness Serum creatinine

Deteriorated respiration Blood urea nitrogen

Laboratory data

Decreased hemoglobulin

Elevated serum creatinine

Elevated blood urea nitrogen
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Numerous studies have compared the performance of 
ML models and traditional logistic regression models in 
predicting mortality [32, 33]. Furthermore, studies have 
adopted numerous ML methods to predict LOS in the 
literature [18–21]. For predicting short-term mortality in 
the non-COVID-19 and COVID-19 eras, Model IV was 
consistently identified as having the best predictive per-
formance using the majorities of adopted methods in the 
current study. For predicting LOS in the non-COVID-19 
and COVID-19 eras, Model V was consistently identi-
fied as having the best predictive performance through 
the majorities of adopted methods in the present study. 
Of importance, this study was the first to incorporate 
changeable data into ML or GLM methods to predict 
LOS. Consequently, we reasonably demonstrate the cru-
cial role of data that dynamically changed from day 0 to 
day 3 and the importance of integrating data on day 3 in 
predicting the LOS and short-term mortality in adults 
with community-onset bacteraemia.

This study has several possible limitations and mul-
tiple strengths. First, the retrospective nature of this 
study made it prone to the selection and information 
bias during data collection. To reduce the information 
bias, all clinical information was randomly and inde-
pendently retrieved by two physicians who were blind 
to the hypothesis and they inspected medical records 
together to solve discrepancies. Second, because of 
the multicenter design in the present study, the few 
proportions of patients with uncertain mortality or 
incomplete clinical information were excluded from 
analyses, and thereby the selection bias should be neg-
ligible. Third, bacteraemia severity and laboratory data 
had been designed for collection on day 3 because the 
microbiology reports in blood cultures were generally 
received by clinicians in the study hospitals on that day; 
in addition, monitoring of patients from day 0 to day 3 
revealed the responses to empirical antimicrobial ther-
apy and early resuscitation. Therefore, the information 

Table 4 The mean square error (MSE) and root mean square error (RMSE) of the ML or generalized linear models in predicting the 
length of hospital stay*

ML Machine learning, ROC Receiver operating characteristic, SVM Support vector machines, XGBoost Extreme gradient boosting, Light GBM Light gradient boosting 
machine
* Boldface indicates the lowest value in the derivation and validation cohorts, respectively
** Model I was established in 3639 patients and other models in 3479
* ** Model I was validated in 834 patients and other models in 738

Derivation cohort** Validation cohort***

Model I Model II Model III Model IV Model V Model I Model II Model III Model IV Model V

Mean square error

Logistic regression

 Normal 306.53 273.42 272.78 270.18 267.61 210.44 186.82 348.22 476.56 354.78

 Negative binomial 309.01 283.55 281.38 284.66 263.31 220.06 202.62 443.52 415.81 589.51

 Poisson 317.80 325.14 313.05 308.58 307.54 206.37 206.32 230.18 364.78 383.93

Random forests 299.94 273.54 272.94 283.53 276.21 259.15 295.65 296.78 250.03 245.99
SVM 285.25 308.90 309.58 219.29 218.00 230.87 263.12 258.98 215.27 208.54
XGBoost 517.01 97.54 28.74 182.76 180.20 408.19 299.01 350.13 271.60 271.06
Gradient boost 225.35 103.11 252.33 251.24 249.39 270.53 305.80 245.58 243.00 238.58
Light GBM 294.26 313.89 314.07 259.02 254.83 247.33 265.15 264.48 238.41 238.73

Root mean square error

Logistic regression

 Normal 17.51 16.54 16.52 16.44 16.36 14.51 13.67 18.66 21.83 18.84

 Negative binomial 17.58 16.84 16.77 16.87 16.23 14.83 14.23 21.06 20.39 24.28

 Poisson 17.83 18.03 17.69 17.57 17.54 14.37 14.36 15.17 19.10 19.59

Random forests 17.32 16.54 16.52 16.83 16.62 16.10 17.19 17.23 15.81 15.68
SVM 16.89 17.58 17.59 14.81 14.76 15.19 16.09 16.22 14.67 14.44
XGBoost 22.73 9.88 5.36 13.52 13.42 20.20 17.29 18.71 16.48 16.46
Gradient boost 15.00 10.20 15.89 15.85 15.79 16.44 17.49 15.67 15.59 15.45
Light GBM 17.15 17.71 17.72 16.09 15.96 15.72 16.28 16.26 15.44 15.45
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Table 5 Most powerful ten in predicting the length of hospital stay using the ML or generalized linear models in Model V

ML Machine learning, SVM Support vector machines, XGBoost Extreme gradient boosting, Light GBM Light gradient boosting machine

Method Variables

Alteration from day 0 to day 3 Day 3 Characteristic of bacteraemia 
or comorbidity

Logistic regression

 Normal Bacteraemia severity Bacteraemia severity Complicated bacteraemia

Deteriorated consciousness Body temperature ≤ 36.0℃or ≥ 39.0℃ Bacteraemia source

Stationary consciousness Receipt of mechanical ventilation Multiple port‑of‑entry

Improved consciousness Laboratory data Urinary tract infection

Laboratory data  Blood urea nitrogen

Elevated blood urea nitrogen

 Negative binomial Bacteraemia severity Bacteraemia severity Complicated bacteraemia

Deteriorated consciousness Body temperature ≤ 36.0℃or ≥ 39.0℃ Bacteraemia source

Stationary consciousness Laboratory data Infectious endocarditis

Improved consciousness Blood urea nitrogen Bone and joint infection

Ventilation dependence Comorbid malignancy

 Poisson Bacteraemia severity Bacteraemia severity Complicated bacteraemia

Deteriorated consciousness Body temperature ≤ 36.0℃or ≥ 39.0℃ Bacteraemia source

Improved consciousness Laboratory data Infectious endocarditis

Ventilation dependence Blood urea nitrogen Bone and joint infection

 Stationary respiration Fatal comorbidity

 Random forests Bacteraemia severity Bacteraemia severity Complicated bacteraemia

Deteriorated consciousness Body temperature ≤ 36.0℃or ≥ 39.0℃ Causative microorganism of E. coli

Stationary consciousness Laboratory data Fatal comorbidity

Laboratory data Hemoglobulin

Elevated blood urea nitrogen Serum creatinine

Blood urea nitrogen

 XGBoost Bacteraemia severity Bacteraemia severity Complicated bacteraemia

Deteriorated consciousness Body temperature ≤ 36.0℃or ≥ 39.0℃ Bacteraemia source

Ventilation dependence Receipt of mechanical ventilation  Bone and joint infection

 Multiple port of entry

Comorbidity type

Chronic hepatitis

Coronary artery disease

Causative microorganism of E. coli

 Gradient boost Bacteraemia severity Bacteraemia severity Complicated bacteraemia

Deteriorated consciousness Body temperature ≤ 36.0℃or ≥ 39.0℃ Bacteraemia source

Receipt of mechanical ventilation  Infective endocarditis

Laboratory data  Intraabdominal infection

Hemoglobulin  Bone and joint infection

Serum creatinine  Multiple port of entry

 Light GBM Bacteraemia severity Bacteraemia severity Complicated bacteraemia

Deteriorated consciousness Body temperature ≤ 36.0℃or ≥ 39.0℃ Bacteraemia source

Laboratory data Receipt of mechanical ventilation  Infective endocarditis

Decreased hemoglobulin Laboratory data  Bone and joint infection

Hemoglobulin  Multiple port of entry

Blood urea nitrogen
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bias caused by the data missing on day 3 should be 
trivial in the current study. Finally, because all study 
hospitals were located in southern Taiwan, the findings 
in this study may be limited for generalization to other 
populations, which may have varying causative micro-
organisms, bacteraemia severity, or severity of comor-
bidities. However, the present study was the first to 
provide the external validation of the predicting model 
on bacteraemia patients in the COVID-19 era.

Conclusions
The COVID-19 pandemic altered the bacteraemia char-
acteristics and patient demographics among adults 
with community-onset bacteraemia. Irrespective of the 
pre-COVID-19 and COVID-19 eras, the importance of 
dynamic variables changed from day 0 to day 3 (i.e., the 
indicator in response to empirical antimicrobial therapy 
and early support care), in predicting the short-term out-
comes or LOS was crucially emphasized through the tra-
ditional statistic and ML methods in the present study. 
Accordingly, the principal findings in the current study 
may contribute to the development of an advanced pre-
dictive algorithm and help reduce the disease burden in 
the nearly future.
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