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Abstract 

Background Due to practical challenges associated with genetic sequencing in low-resource environments, the 
burden of hepatitis C virus (HCV) in forcibly displaced people is understudied. We examined the use of field applicable 
HCV sequencing methods and phylogenetic analysis to determine HCV transmission dynamics in internally displaced 
people who inject drugs (IDPWID) in Ukraine.

Methods In this cross-sectional study, we used modified respondent-driven sampling to recruit IDPWID who were 
displaced to Odesa, Ukraine, before 2020. We generated partial and near full length genome (NFLG) HCV sequences 
using Oxford Nanopore Technology (ONT) MinION in a simulated field environment. Maximum likelihood and Bayes-
ian methods were used to establish phylodynamic relationships.

Results Between June and September 2020, we collected epidemiological data and whole blood samples from 164 
IDPWID (PNAS Nexus.2023;2(3):pgad008). Rapid testing (Wondfo® One Step HCV; Wondfo® One Step HIV1/2) identi-
fied an anti-HCV seroprevalence of 67.7%, and 31.1% of participants tested positive for both anti-HCV and HIV. We 
generated 57 partial or NFLG HCV sequences and identified eight transmission clusters, of which at least two origi-
nated within a year and a half post-displacement.

Conclusions Locally generated genomic data and phylogenetic analysis in rapidly changing low-resource envi-
ronments, such as those faced by forcibly displaced people, can help inform effective public health strategies. For 
example, evidence of HCV transmission clusters originating soon after displacement highlights the importance of 
implementing urgent preventive interventions in ongoing situations of forced displacement.
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Background
Forced migration is associated with worse health out-
comes in migrant compared to autochthonous popu-
lations, attributed to increased vulnerabilities and 
hardships experienced throughout the migration process, 
which are reinforced by structural inequalities, discrimi-
nation, and gender-based violence [1]. The burden of oth-
erwise preventable and controllable infectious diseases is 
often high amongst internally displaced persons (IDPs, 
persons who have been forced to flee their homes and 
who have not crossed an internationally recognized bor-
der [2]), due at least in part to the collapse of local health 
systems and infrastructure [3].

Prior to the full-scale Russian invasion of Ukraine in 
February 2022, Ukraine already had the largest IDPs 
population in Europe. Over 1.4 million people were inter-
nally displaced since the beginning of the war in Donbas 
(a territory that includes Donetsk and Luhansk admin-
istrative regions) and the annexation of Crimea in 2014 
[4]. Between 2014 and 2020, over 38,600 IDPs settled in 
Odesa in southern Ukraine [4].

Concurrently, Ukraine has one of the highest hepa-
titis C virus (HCV) prevalence levels in the world (3.1% 
in 2020) facilitated primarily by prevalent injection drug 
use (IDU) [5]. Although direct-acting antivirals capable 
of curing HCV infection in > 80% of cases [6] have been 
available for almost a decade, barriers to access to HCV 
treatment are especially prominent in low-middle income 
countries as well as war-torn regions suffering from a 
breakdown in public health, undermining the feasibility 
of achieving global HCV elimination by 2030 [7–9].

In people who inject drugs (PWID), national HCV 
seroprevalence in Ukraine was 56% in 2020: lower 
amongst PWID in Odesa (47.5%) and Crimea (25.7% 
– 50.1%, depending on a city) compared to Donetsk 
(55.2%) and Luhansk (58.4%) [10]. National HCV treat-
ment uptake had risen from 0.11% in 2013 to 6.5% in 
2020 – an important step towards HCV elimination—but 
only 10–20% of those treated were PWID [11]. Although 
no data on HCV epidemiology in Ukrainian internally 
displaced PWID (IDPWID) is currently available, IDPs 
are likely to experience additional barriers in accessing 
appropriate interventions and treatment options com-
pared to non-displaced populations [3].

Molecular epidemiology, the study of how epidemio-
logical and evolutionary factors shape viral phylogenies, 
is increasingly utilised in public health settings due to the 
widespread availability of pathogen genetic sequences 
and has been used to identify HCV transmission clusters, 
thus improving our understanding of infection transmis-
sion chains [12, 13]. Hard-to-reach mobile populations 
are often excluded from molecular epidemiology-based 
HCV surveillance, due to the scarcity of available 

sequencing data. However, recent advances in portable 
molecular biology tools applicable in low-resource envi-
ronments, such as Oxford Nanopore Technology (ONT), 
have enabled molecular epidemiological characterisation 
of other viral pathogens such as Ebola and rabies in the 
field [14, 15].

Herein, we present the first partial and near full length 
genome (NFLG) HCV sequences from Ukraine, which 
were sequenced locally as part of a training programme 
to develop expertise in molecular surveillance efforts. 
We generated sequences in a field-simulated environ-
ment to test field-applicable ONT based NFLG sequenc-
ing of HCV, which can be utilised to address current 
challenges in generating the necessary sequencing data 
from hard-to-reach mobile populations, such as IDPs. 
Combining phylodynamic analysis and epidemiological 
data, we aimed to identify HCV transmission patterns 
and estimate times of HCV transmission events in IDP-
WID following displacement. Our innovative approach 
can help reveal opportunities for improved targeting of 
local preventative interventions and infection manage-
ment strategies. Overall, this work expands the potential 
of molecular epidemiology to the study of the burden 
of HCV in low-resource and rapidly changing environ-
ments, such as those faced by forcibly displaced people.

Methodology
Study design and participants
This study was approved by the University of Oxford 
Tropical Research Ethical Committee (Reference: 530–
20). Written informed consent was obtained from all 
participants. All methods were carried out according to 
the relevant guidelines and regulations. We used modi-
fied respondent-driven sampling (RDS) technique [16] 
to recruit 164 IDPWID (over 18 years of age) in Odesa, 
Ukraine, from June to September 2020. At the time of 
recruitment, all participants undergone a short interview, 
and were screened for HIV and HCV using two rapid 
tests, Wondfo® One Step HIV1/2 Whole Blood/Serum/
Plasma and Wondfo® One Step HCV Whole Blood/
Serum/Plasma. At the same time whole blood samples 
were collected from all participants using the phlebotomy 
technique, and serum was isolated at the Odesa Regional 
Virology Laboratory and stored at ─80 °C. Further infor-
mation on the study design and participant characteris-
tics is described elsewhere [17].

Sequencing
Methods were adapted from the ARTIC Network nCoV-
2019 Sequencing Protocol V3 LoCost to develop a field-
applicable HCV sequencing protocol [18, 19] (https:// 
www. proto cols. io/ view/ ncov- 2019- seque ncing- proto 
col- v3- locost- bh42j 8ye). Briefly, we employed a 400  bp 

https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye
https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye
https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye
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tiling amplicon scheme with genotype- and subtype-
specific primers designed to generate partial or NFLG 
HCV sequences as per the Primal Scheme protocol 
using reference strains for HCV genotypes 1a, 1b, and 3a 
based on most prevalent subtypes in the region [20] (see 
Supplementary Methods and Supplementary Tables  1 
and 2). The obtained cDNA amplicons were purified, 
pooled, and used for library preparation with the Liga-
tion Sequencing Kit (SQK-LSK109) (Oxford Nanopore 
Technologies, Oxford, UK). Final libraries were loaded 
onto new flow cells (FLO-MIN106) (23 samples/flow 
cell) and sequenced with the MinION device. Consen-
sus sequences from this study have been deposited into 
GenBank (accession numbers OQ979408-OQ979413, 
OQ979415-OQ979465). Although MinION based HCV 
sequencing methods have been described previously [21], 
we aimed to develop an alternative protocol that meets 
the need for generation of near real-time sequencing data 
in field settings, without compromising sample integrity 
or losing sensitivity. Thus, all sequencing work was car-
ried out in a simulated field environment using a “lab-in-
a-suitcase” approach [15, 17]. Further details including 
bioinformatic workflow, beyond the description in this 
section, are presented in the Supplementary Materials.

Phylogenetics
HCV sequences were only included in further phylo-
genetic analysis if the obtained consensus sequence 
covered >  = 50% of the reference genome (sensitivity 
analyses were performed with other coverage levels and 
are presented in the Supplementary materials). For each 
identified HCV subtype, all resulting consensus genome 
HCV sequences were aligned using the Muscle algorithm 
in AliView [22]. RaxML [23] was then used to reconstruct 
maximum likelihood (ML) phylogenetic trees for each 
subtype under a general time-reversible nucleotide sub-
stitution model with gamma-distributed rate-variation 
among sites (GTR + G). We used ClusterPicker [24] to 
identify possible transmission clusters defined as clades 
with > 90% bootstrap support and within-clades genetic 
distance < 3%. Other previously published cluster-defin-
ing criteria were considered [12], but did not affect our 
findings (Supplementary Materials).

We used BEAST 1.10.4 [25] to perform molecular clock 
analyses and reconstruct population growth history for 
each of the identified HCV subtypes. We used the Bayes-
ian Skyline population growth model (10 intervals), the 
GTR + G nucleotide substitution model, and the uncorre-
lated lognormal relaxed clock model. Since our datasets 
did not have enough molecular clock signal (estimated by 
TempEst [26], Supplementary Table  3) due to the sam-
ples being contemporaneous, we used previously pub-
lished estimates for evolutionary rates of HCV subtypes 

to inform our analyses. Specifically, we used normally 
distributed priors with mean = 1.48E-3 and standard 
deviation = 2.3E-4, mean = 1.18E-3 and standard devia-
tion = 2.1E-4, mean = 1.289E-3 and standard devia-
tion = 1.47E-4, for subtypes 1a, 1b, and 3a, respectively 
[27, 28]. All xml files can be found at https:// github. com/ 
HIVMo lEpi/ HCV_ IDPWID.

Results
Study population
A total of 164 IDPWID were recruited in Odesa, Ukraine, 
in June—September 2020 (Table  1). The median par-
ticipant age was 37  years (range 20–63  years) of whom 
18% were female. Any previous HCV testing (rapid or 
diagnostic tests) was reported by 84.1% (N = 138) of par-
ticipants. A previous positive HCV test was reported 
by 54.3% (N = 75). Only 22.7% (N = 17) of participants 
reporting a previous positive HCV test (N = 75), also 
reported ever receiving treatment for HCV (treatment 
regimen not reported). Rapid testing in this study identi-
fied seroprevalence of HCV of 67.7% (N = 111). In addi-
tion, 31.1% (N = 51) of participants tested positive for 
both HCV and HIV.

HCV sequencing data
Of the 164 people recruited, 90 samples resulted in 
polymerase chain reaction (PCR) amplification produc-
ing 57 samples with partial (> 50%) or NFLG sequences, 
and 33 samples with sequence coverage < 50% (Sup-
plementary Fig.  1). Lower coverage in some sam-
ples may be due to low sample quality (samples with 
degraded RNA), low viral loads, as well as low speci-
ficity of primer design due to unavailability of refer-
ence genomes from Ukraine. These samples were not 
included for further analysis and future amplification 
methods will need to be adapted to improve amplifica-
tion success rates. Of the samples that failed to amplify 

Table 1 HCV testing and treatment history

N %

Previous HCV test Yes 138 84.1

No 26 15.9

Previous HCV test result Positive 75 54.3

Negative 62 44.9

Unknown 1 0.7

Previous HCV treatment received 
(treatment regimen not reported)

Yes 17 22.7

No 58 77.3

Rapid Test HCV Positive 111 67.7

Negative 53 67.7

Rapid Test HCV/HIV Coinfected 51 31.1

https://github.com/HIVMolEpi/HCV_IDPWID
https://github.com/HIVMolEpi/HCV_IDPWID
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(74 or 45.1%), 35 were anti-HCV negative by rapid test, 
and 39 were anti-HCV positive. Of the 57 partial or 
NFLG HCV sequences generated (34.8% of the total of 
164 samples), genotypes 1a (N = 14), 1b (N = 23), and 3a 
(N = 20) were identified. Of these, 31 (54.4%) had pre-
viously tested positive for HCV but had not received 
treatment. Of those who had previously tested positive 
without treatment, five had received a positive anti-
HCV test before moving to Odesa. Three out of 57 
cases showed evidence of coinfection, i.e., simultaneous 
infection by multiple HCV subtypes, with genotypes 
1a/3a, 1b/3a, and 1b/1a, suggesting the occurrence of 
multiple exposures to HCV in IDPWID (Supplemen-
tary Fig.  2). A total of four participants (7.0% of the 
total HCV genomes generate) for whom HCV was 
sequenced and assembled, reported previously being 
tested positive for HCV and receiving treatment in 
the past. Further information about treatment history 
which is unavailable in this study would be necessary to 
interpret whether these cases represent chronic infec-
tion or re-infection. At least 22 of these 57 participants 
were newly diagnosed with HCV in this study: 11 of 
them tested negative before and the other 11 have not 
been tested before.

HCV phylogenetics and phylodynamics
Phylogenetic trees were reconstructed based on NFLG 
separately for subtypes 1a, 1b, and 3a and included 14, 
23, and 20 sequences, respectively (Fig. 1). We identified 
three subtype 1a (one triad and two dyads), four sub-
type 1b (one triad and three dyads), and one subtype 3a 
(a dyad) potential transmission clusters. Phylodynamic 
analysis showed that the time of most recent common 
ancestor (TMRCA) was in 1958 (95% Highest Posterior 
Density (HPD) 1915—1990), 1949 (1897—1983), and 
1955 (1907—1992) for subtypes 1a, 1b, and 3a, respec-
tively. The reconstructed Bayesian Skyline plots showed 
that the exponential growth of different HCV subtypes 
likely started in different decades (Fig. 1), with subtype 1b 
growing before the 1990s, subtype 3a growing before the 
2000s, and subtype 1a before the 2010s. The limited num-
ber of sequences in our analyses result in wide confidence 
intervals and prevent further interpretations of the past 
epidemic growth history. The TMRCAs for all subtype 
1a clusters, subtype 1b cluster 6, and the 3a cluster dated 
pre-conflict and were estimated to be between 1987 and 
2013, unlikely capturing a recent transmission event 
(Table 2 and Fig. 2). Three of the subtype 1b clusters were 
more recent: TMRCAs for cluster 4, 5, and 7 were esti-
mated to be in November 2011 (May 2005 – April 2016), 
May 2018 (August 2016—October 2019), and December 
2017 (October 2015—May 2019), respectively.

Discussion
Here, we present the first HCV NFLG sampled in 
Ukraine, and show that HCV can be sequenced using 
Oxford Nanopore MinION in a field-simulated envi-
ronment. We demonstrate the application of molecular 
clock analysis to estimate the timing of HCV transmis-
sion events relative to the timing of forced displacement, 
showing evidence that HCV transmission events are 
likely to occur soon after arrival to the host region.

Of the 57 participants from whom partial or NFLG 
HCV sequences were available, 29% were found in a total 
of eight potential transmission clusters. Two of these 
clusters originated after their members moved to Odesa: 
in both cases, the upper (older) bound of the TMRCA 
HPD of the HCV transmission event is after one of the 
cluster members left the regions of origin, indicating that 
the transmission happened post-migration. At the same 
time, the lower (more recent) bound of the TMRCA HPD 
is within at most one and a half years upon arrival of the 
last individual to the city. This suggests that transmissions 
likely happen within a narrow window upon IDPs arrival 
to host regions and thus prevention efforts in long-term 
displacement environments will be beneficial as soon 
after migration as possible. Importantly, the identified 
HCV clusters are an underestimation of the true number 
of HCV transmissions in this group and are only indica-
tive of transmission within the IDPWID community.

In both of the identified recent HCV clusters, although 
transmissions happened after displacement, all clus-
ter members originated from the same home regions 
(Donetsk and Crimea for clusters 4 and 7, respectively), 
which supports previous observations of the importance 
of social networks from the same home community 
amongst forcibly displaced people [29]. Our phylogeo-
graphic analysis of HIV sequences obtained from the 
same study population showed that upon relocation, 
the host population is likely to transmit HIV infec-
tions to IDPWID [17]. Unfortunately, similar analysis of 
HCV sequences, or further clustering analysis between 
migrant, home, and host communities, was not pos-
sible due to a lack of available genetic sequence data 
from autochthonous populations, despite Ukraine hav-
ing one of the highest HCV burdens in the world [5, 20]. 
At present, only one partial HCV genetic sequence from 
Ukraine is available in the GenBank database, collected 
in 2020 (GenBank Accession Number: OM939210). 
Inclusion of this sequences in our analysis was not pos-
sible as it has no additional epidemiological information 
available.

Furthermore, the wide HPD intervals for these analy-
ses, specifically when estimating the age of the tree, or 
TMRCA, are a limitation of the study. This is because 
our sample size is very low when analysing each subtype 
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separately as required for this analysis, and because all 
our samples are contemporaneous, sampled within a few 
months. Lack of older publicly available HCV genomes 

from Ukraine makes it impossible to get a narrower 
estimate.

Previous reports of genotype distribution in the gen-
eral population in Ukraine in the early 2010s showed 

Fig. 1 Left—Maximum Likelihood phylogenetic trees reconstructed for each HCV genotype and phylogenetic clusters marked on the trees. Tree 
tips colours correspond to the home regions of IDPWID (red – Donetsk; yellow – Luhansk; indigo – Crimea). Scale bars indicate substitutions/site/
year. Right – Bayesian Skyline plots reflecting effective population size over time estimated for each of the identified HCV subtypes (red horizontal 
line – median, black horizontal lines – 95% HPD). Black dotted lines represent the median and lower 95% HPD bound of the time to most recent 
common ancestor for each subtype. Y-axis indicates log effective population size
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low prevalence of HCV infection with subtype 1a 
(1.6%), and a high prevalence of 1b (42.1%), followed by 
genotype 3 (28.8%) [20]. In this study, we report much 
higher prevalence of HCV infection with the 1a (25%) 
subtype, and comparable levels of infection with 1b 
(40%) and 3a (35%) within IDPWID in Odesa. The HCV 
subtype 1b dominates epidemics in the neighboring 
Russian Federation (1a – 2.1%; 1b – 52.8%; 3 – 36.3%) 
and several Central Asian countries, such as Uzbeki-
stan and Azerbaijan, whilst 1a is more commonly found 
in western Europe [20]. Higher 1a prevalence amongst 
HIV co-infected patients compared to the general pop-
ulation has been linked to IDU mediated transmission 
elsewhere [30], and thus is expected in our study pop-
ulation, where HIV/HCV coinfection was prevalent. 

The increase in 1a prevalence in our study, reflected 
in the most recent growth of this subtype compared to 
subtypes 1b and 3a as estimated by our reconstructed 
Bayesian Skyline plots, follows the increase in HIV 
transmission in PWID [31].

Our results suggest that HCV seroprevalence in IDP-
WID residing in Odesa in 2020 (67.7%) is higher than the 
prevalence reported in 2015 in both autochthonous PWID 
(47.5%) and in PWID residing in Donetsk (55.2%) [10]. This 
may reflect our recruitment strategy, given the enhanced 
coupon distribution for HIV-positive participants who 
were not in ART treatment at the time of enrolment [17]. 
Of those previously reporting a positive anti-HCV test 
result, 22% had also received treatment in the past (treat-
ment regimen not reported), compared to only 9.4% 

Table 2 Cluster composition and time to the most recent common ancestor (TMRCA) for HCV phylogenetic clusters

Subtype Cluster Number of 
sequences

TMRCA TMRCA 95% HPD Time of IDPWID arrival to Odesa Home region

1a 1 3 1998 1982—2009 2014, 2014, 2016 Luhansk, Donetsk, Crimea

2 2 2005 1993—2013 2015, 2017 Donetsk, Donetsk

3 2 2000 1984—2011 2016, 2015 Donetsk, Luhansk

1b 4 2 Nov 2011 May 2005—April 2016 May 2015, Jun 2015 Luhansk, Donetsk

5 2 May 2018 Aug 2016—Oct 2019 Aug 2014, Mar 2018 Donetsk, Donetsk

6 2 1999 1982—2010 2018, 2017 Luhansk, Crimea

7 3 Dec 2017 Oct 2015—May 2019 Jun 2015, Sep 2017, Oct 2015 Crimea, Crimea, Crimea

3a 8 2 1987 1961—2004 2018, 2018 Crimea, Donetsk

Fig. 2 TMRCA uncertainties for HCV phylogenetic clusters in relation to conflict and migration timings. Green indicates TMRCA and black bars are 
95% HPD. Purple circle indicates time of latest IDPWID arrival to Odesa within that cluster. Red dashed line indicates the start of the conflict
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receiving treatment in a 2013 study, which may be due to 
a recent increase in targeted HCV treatment efforts for the 
PWID community in the area [32, 33]. We were also unable 
to generate HCV genomes from 39 HCV seropositive sam-
ples, potentially indicating successful treatment, spontane-
ously cleared infections, or poor sample quality (samples 
with degraded RNA) amongst other reasons detailed in 
Supplementary Fig. 1. Conversely, we generated four HCV 
genomes from IDPWID who previously received treat-
ment, of which two were found in potential transmission 
clusters, likely indicating a re-infection or an incomplete 
treatment course. Continued engagement in treatment is 
crucial for transmission and disease progression preven-
tion, but forcibly displaced people might face additional 
barriers in accessing these services [1, 3].

Many IDPWID in our sample initiated IDU after 
the beginning of the conflict (30.2%) or even after they 
migrated to Odesa (14.8%). Substance use amongst 
forcibly displaced people as a coping mechanism fol-
lowing conflict, violence, and migration stress is well 
documented in current literature [34]. In our study, two 
individuals who reported starting IDU after migration 
were found in HCV transmission clusters with those 
reporting 15 to 20 years IDU experience. Although IDP-
WID with prior experience of IDU may be more likely to 
seek and engage with harm reduction programs, efforts 
to inform and engage new injectors immediately follow-
ing displacement should be prioritised to reduce HCV 
transmission amongst this population.

Conclusions
Forced displacement is a highly heterogenous and com-
plex phenomenon, and is dependent on multiple factors 
including historical, economic, social, and political land-
scapes. The displacement journey may differ across time: 
exposure to risk factors and hardships may continuously 
evolve. We show that migration data coupled to phylo-
dynamic analysis can help resolve cluster characteristics 
and transmission timings amongst forcibly displaced 
people, which to the best of our knowledge has not yet 
been assessed for HCV transmission [35, 36]. Regions 
with large displaced populations, limited laboratory 
capacities, and high prevalence of infectious diseases can 
especially benefit from the proposed approach to inform 
the most effective time to implement preventative inter-
vention for this high-risk group [37].
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