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Abstract 

Objective  This study aimed to develop and validate a machine learning algorithm-based model for predicting 
invasive Klebsiella pneumoniae liver abscess syndrome(IKPLAS) in diabetes mellitus and compare the performance of 
different models.

Methods  The clinical signs and data on the admission of 213 diabetic patients with Klebsiella pneumoniae liver 
abscesses were collected as variables. The optimal feature variables were screened out, and then Artificial Neural Net-
work, Support Vector Machine, Logistic Regression, Random Forest, K-Nearest Neighbor, Decision Tree, and XGBoost 
models were established. Finally, the model’s prediction performance was evaluated by the ROC curve, sensitivity 
(recall), specificity, accuracy, precision, F1-score, Average Precision, calibration curve, and DCA curve.

Results  Four features of hemoglobin, platelet, D-dimer, and SOFA score were screened by the recursive elimination 
method, and seven prediction models were established based on these variables. The AUC (0.969), F1-Score(0.737), 
Sensitivity(0.875) and AP(0.890) of the SVM model were the highest among the seven models. The KNN model 
showed the highest specificity (1.000). Except that the XGB and DT models over-estimates the occurrence of IKPLAS 
risk, the other models’ calibration curves are a good fit with the actual observed results. Decision Curve Analysis 
showed that when the risk threshold was between 0.4 and 0.8, the net rate of intervention of the SVM model was 
significantly higher than that of other models. In the feature importance ranking, the SOFA score impacted the model 
significantly.

Conclusion  An effective prediction model of invasion Klebsiella pneumoniae liver abscess syndrome in diabetes 
mellitus could be established by a machine learning algorithm, which had potential application value.

Keywords  Machine learning, Diabetes mellitus, Pyogenic liver abscess, Klebsiella pneumoniae, Prediction model

Introduction
Pyogenic liver abscess is a purulent lesion caused by 
the invasion of pathogenic bacteria into the liver. The 
incidence of PLA varies slightly in various regions 
of the world and is increasing yearly [1]. The inci-
dence rate in European and American countries was 
about (1.0 ~ 4.1)/100,000, the annual incidence rate in 
some Asian countries was (12 ~ 18)/100,000, and the 
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annual incidence rate in mainland China was about 
(1.1 ~ 5.4)/100,000 [1–4]. Incidence is higher in males 
than females (3.3/100,000 vs. 1.3/100,000) [5]. Although 
the diagnosis and cure rates of PLA had improved sig-
nificantly with the development of medical technology, 
the mortality rate was still around 10% [6]. In China 
and throughout the Asia–Pacific region, the primary 
pathogen of PLA is Klebsiella pneumoniae [7], which 
is prevalent in diabetic patients [4]. Diabetic patients 
with Klebsiella pneumoniae liver abscess are likelier to 
develop the invasive syndrome, IKPLAS [8]. IKPLAS 
refers to Klebsiella pneumoniae liver abscess with meta-
static infection such as lung abscess, endophthalmitis, 
meningitis, necrotizing fasciitis, etc.IKPLAS has the 
characteristics of acute onset, rapid disease progression, 
and lack of specific clinical manifestations. If patients 
are not diagnosed and treated in time, the prognosis is 
generally poor [9]. Although there have been some stud-
ies on IKPLAS in the past, most of them are case reports 
[10–13], and there is no relevant literature report on its 
clinical prediction model.

Compared with traditional statistical methods, 
machine learning, as a branch of artificial intelligence, 
can analyze and obtain rules from existing data and con-
tinuously improve and build models based on algorithms 
and data [14]. Furthermore, it shows apparent advantages 
in clinical diagnosis and prognosis prediction [15, 16]. 
This study compared the performance of seven different 
machine learning methods in predicting the progres-
sion of the invasive Klebsiella pneumoniae liver abscess 
syndrome. Then, a model that can effectively identify 
high-risk patients is selected, which can help clini-
cal decision-making and provide new perspectives for 
research in this field.

Materials and methods
Patients pre‑processing
This study included patients with diabetes and Klebsiella 
pneumoniae liver abscesses admitted to Changzhou 
First People’s Hospital from January 1, 20,15 to Decem-
ber 31, 2021. The inclusion criteria were (1) Imaging 
showed liver abscess, and the puncture fluid or microbial 
blood culture was Klebsiella pneumoniae. (2) Diabetes 
diagnosis was based on the "Chinese Guidelines for the 
Prevention and Treatment of Type 2 Diabetes, 2020 Edi-
tion". The exclusion criteria were (1) Patients who died 
on admission. (2) Patients are automatically discharged 
or referred midway through. (3) Liver abscess second-
ary to primary or metastatic liver tumors. (4) Patients 
with abnormal coagulation function, platelet count, or 
dysfunction in the past. (5) The age is less than 18 years 
old. The primary observation was a diagnosis of IKPLAS 
during hospitalization. The diagnostic criteria of IKPLAS 

were liver abscess caused by Klebsiella pneumoniae and 
metastatic infection such as lung abscess, endophthal-
mitis, meningitis, necrotizing fasciitis, etc. The diagno-
sis of IKPLAS was judged by two physicians with senior 
professional titles in the clinic. Both physicians needed 
to be diagnosed with IKPLAS before establishing the 
diagnosis. Secondary observation indicators include 
general information (such as age, gender, comorbidities, 
etc.), the first laboratory (blood routine, liver and kidney 
function, etc.) and imaging (abdominal B-ultrasound) 
related indicators, treatment plans, etc. after admission. 
Among them, the medical history collection and rou-
tine blood test were collected on the day of admission, 
and the results of the first examination after admission 
by abdominal B-ultrasound, the treatment plan, and 
the prognosis were collected retrospectively after the 
patients were discharged from the hospital.

Data pre‑processing
Statistical analysis was performed using EmpowerStats 
software and Python 3.9, and the procalcitonin with too 
many missing values (number of missing values ≥ 30%) 
was deleted. Multiple imputations were performed for 
C-reactive protein, triglyceride, and cholesterol with a 
few missing values (number of missing values ≤ 30%) 
using the miceforest package in Python. Since differ-
ent indicators are not comparable due to their different 
dimensions, we use the Z-score method to standardize 
continuous variables. The formula is:

Where μ is the average of the continuous variable across 
all samples, and α is the standard deviation. The influ-
ence of dimensions on the data can be eliminated after 
data standardization. K-S-L test and Q-Q plot were used 
to test the normality of measurement data. The binary 
variables were described as counts, and percentages were 
evaluated using the Chi-square test or Fisher’s exact test. 
If the continuous variables conformed to a normal distri-
bution, they were compared using a t-test and expressed 
as means ± SEM. For a non-normal distribution, the 
Mann–Whitney U test was used. P < 0.05 was considered 
statistically significant.

Model training and evaluation
This research uses the python3.9 version, anaconda3 
integrated development environment. Based on the 
train_test_split module, the parameter is set to test_
size = 0.3, and the complete data is divided into a train-
ing set of 149 cases and a test set of 64 cases by stratified 
random sampling in a ratio of 7:3. This study used recur-
sive feature elimination (RFE) for feature screening [17]. 

z =
χ − u

σ
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RFE can effectively eliminate the redundancy between 
features and select the optimal feature combination. It 
takes the prediction accuracy as the evaluation standard 
and eliminates the minimum relevant variables through 
each iteration. Then cross-validation is used to find the 
optimal number of features. In this study, random for-
est (RF) was used as the primary classifier for RFE, and 
feature selection was performed on the training set. The 
Scikit-learn python software package was used to build 
seven machine learning prediction models. The logis-
tic regression model(LR) [18] was selected for the linear 
model. The Multilayer Perceptron (MLP) [19] model, also 
called artificial neural network (ANN), was chosen as 
an essential nonlinear prediction model. For the kernel-
based model, Support Vector Machine (SVM) [20] with 
Gaussian kernel (RBF) was selected.For the decision tree 
approach, the random forest(RF) [21] model,the Deci-
sion Tree (DT) [22]model and the XGBoost(XGB) [23]
model have also been used in clinical research. Finally, 
we chose a basic prediction model, the K-Nearest Neigh-
bor algorithm (KNN) [24]. After the model was estab-
lished, Bayesian optimization algorithm was used to find 
the maximum model Area Under Curve(AUC) value 
according to the Settings for parameter optimization. 

The specific optimized parameters were the C value of 
LR model, max_depth, min_samples_split, min_samples_
leaf, min_weight_fraction_leaf of DT model, and max_
depth, min_samples_leaf of LR model, n_estimators, 
max_features, max_depth, min_weight_fraction_leaf of 
RF model, n_estimators, max_leaves, max_depth, max_
bin of XGB model, C-value and gamma of SVM model, 
hidden1, hidden2, learning_rate_int of ANN model and 
n_neighbors of KNN model.A fivefold cross-validation 
method was used to evaluate the model’s generality in the 
training set. The model performance was evaluated using 
the test set, and the evaluation indicators were accuracy, 
precision, specificity, sensitivity (recall), F1-score, confu-
sion matrix and AUC. A schematic overview of the study 
design and model development is depicted in Fig. 1.

Results
Patients and variables
After screening by inclusion and exclusion criteria, 213 
patients were included in this study, all in line with the diag-
nosis of type 2 diabetes mellitus and Klebsiella pneumoniae 
liver abscess. Patients were grouped by the occurrence of 
IKPLAS, with 25 cases progressing to IKPLAS as the IKP-
LAS group and 188 cases as the NIKPLAS group. There 

Fig. 1  Overview of study design and model development
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Table 1  Baseline statistics for 213 patients Line 143

Characteristics ALL(N = 213) NIKLAS (N = 188) IKLAS (N = 25) P-value

Clinical findings
  AGE 61.5 ± 12.2 61.43 ± 12.05 61.92 ± 13.62 0.851

  Gender 0.150

    Female 60 (28.2%) 56 (29.79%) 4 (16.00%)

    Male 153 (71.8%) 132 (70.21%) 21 (84.00%)

    Smoke 30 (14.1%) 24 (12.77%) 6 (24.00%) 0.129

    Alcohol 23 (10.8%) 18 (9.57%) 5 (20.00%) 0.115

    DM(Year) 3.0 (2.0–10.0) 3.0 (2.0–9.2) 5.0 (2.0–10.0) 0.250

  Underlying disease

    Biliary diseases 46 (21.6%) 39 (20.74%) 7 (28.00%) 0.408

    CHD 19 (8.9%) 18 (9.57%) 1 (4.00%) 0.358

    Liver diseases 16 (7.5%) 15 (7.98%) 1 (4.00%) 0.478

Symptom at presentation
  Body temperature 38.6 ± 1.1 38.62 ± 1.09 38.61 ± 1.01 0.962

  Weakness 82 (38.5%) 62 (32.98%) 20 (80.00%) < 0.001

  Diarrhea 8 (3.8%) 5 (2.66%) 3 (12.00%) 0.021

  Vomiting 22 (10.3%) 20 (10.64%) 2 (8.00%) 0.684

  Abdominal pain 80 (37.6%) 72 (38.30%) 8 (32.00%) 0.541

  Chills 91 (42.7%) 78 (41.49%) 13 (52.00%) 0.580

Admission data
  SBP 125.5 ± 18.0 125.18 ± 16.93 127.72 ± 25.23 0.510

  DBP 75.4 ± 10.6 75.25 ± 9.87 76.92 ± 15.32 0.461

  GLU 10.3 ± 3.6 10.03 ± 3.38 12.67 ± 4.17  < 0.001

  WBC 11.6 (8.9–15.4) 11.6 (8.8–15.1) 12.5 (9.3–19.4) 0.055

  NE 9.9 (7.2–13.4) 9.8 (7.1–13.1) 10.6 (7.8–17.9) 0.159

  HB 116.0 (105.0–128.0) 117.0 (106.8–130.0) 106.0 (97.0–114.0)  < 0.001

  PLT 191.0 (119.0–273.0) 205.0 (124.0–290.0) 125.0 (51.0–182.0) 0.003

  ALT 57.0 (35.0–93.0) 57.0 (35.0–93.0) 58.0 (27.3–90.9) 0.509

  AST 40.0 (25.7–78.2) 39.0 (25.6–73.2) 52.0 (26.0–113.0) 0.207

  ALP 155.0 (103.0–240.0) 146.5 (103.0–240.0) 184.0 (133.0–239.0) 0.116

  LDH 221.0 (176.0–299.0) 219.5 (176.8–289.2) 265.0 (170.0–343.0) 0.052

  ALB 29.5 (26.7–33.2) 29.9 (27.2–33.5) 27.3 (24.1–29.9) 0.021

  TBIL 12.9 (8.6–21.4) 12.6 (8.5–19.8) 15.8 (9.8–31.1) 0.013

  DBIL 6.5 (4.2–10.9) 6.2 (4.0–10.4) 9.5 (5.6–13.5) 0.009

  IBIL 5.7 (3.8–9.2) 5.7 (3.8–8.4) 5.7 (3.8–11.7) 0.209

  BUN 5.0 (3.6–7.5) 4.9 (3.6–7.3) 5.8 (4.1–9.3) 0.082

  TC 3.2 (2.6–3.9) 3.3 (2.7–3.9) 2.7 (2.2–3.1) 0.014

  TG 1.4 (1.0–1.9) 1.4 (1.0–2.0) 1.3 (1.2–1.8) 0.755

  CRP 114.0 (69.7–184.6) 112.5 (69.7–173.4) 163.0 (72.3–222.4) 0.019

  PT 13.2 (12.4–14.1) 13.1 (12.3–13.9) 13.6 (13.0–15.3) 0.017

  D.DIMER 2.5 (1.2–4.7) 2.2 (1.2–4.2) 4.4 (3.7–8.2)  < 0.001

  MDRO 13 (6.1%) 10 (5.32%) 3 (12.00%) 0.190

  SOFA 1.3 ± 2.3 0.87 ± 1.50 4.88 ± 3.66  < 0.001

Radiologic findings
  Abscess location 0.672

    Right lobe 160 (75.1%) 140 (74.47%) 20 (80.00%)

    Left lobe 39 (18.3%) 36 (19.15%) 3 (12.00%)

    Both lobes 14 (6.6%) 12 (6.38%) 2 (8.00%)

    Abscess size (cm) 7.3 ± 2.5 7.41 ± 2.59 6.81 ± 2.04 0.271
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were 60 females and 153 males, as shown in Table 1. Through 
stratified random sampling, the data set was divided into the 
training set and test set. As shown in Table S1, there was no 
statistically significant difference between training set and 
test set(P ≥ 0.05). Clinical findings, Symptom at presentation, 
Admission data, and Radiologic findings in Table S1 will all 
be screened as variables. As shown in Fig. 2, When the num-
ber of feature variables is four, the recursive feature elimina-
tion method with random forest as classifier has the highest 
cross validation score. These four variables are hemoglobin, 
platelets, D-dimer, and SOFA score.Spearman correlation 
analysis was performed on these four features, as shown in 
Fig. 3, indicating no highly correlated redundant features.

Tuning of parameters
The four variables selected from the training set were put 
into the machine learning classifier to construct the pre-
diction model. Through Bayesian algorithm optimization, 

the parameters were adjusted with the average opti-
mal AUC value, and the specific parameter Settings are 
shown in Table S2. The five-fold cross-validation ROC 
curve of the training set can be seen in Fig.  4, where it 
can be seen that the SVM model and LR model have bet-
ter performance.

Evaluation of prediction models
The ROC curve of the test set can be seen in Fig. 5. The 
AUC values of most models are higher than 0,850, among 
which SVM (0.969) and LR (0.967) rank the top two, but 
the AUC values of XGB (0.799) and DT (0.800) are lower. 
Studies have shown that precision recall curve (PRC) has 
advantages over ROC in evaluating imbalanced datasets 
[25]. The dataset included in this study is also imbal-
anced, so PRC is also a valuable indicator. Figure 6 shows 
the PRC of the test set, and the Average Precision(AP) 
value was used as a criterion to evaluate the PR curve 

Table 1  (continued)

Characteristics ALL(N = 213) NIKLAS (N = 188) IKLAS (N = 25) P-value

  No. of abscesses 0.151

    Multiple 52 (24.4%) 43 (22.87%) 9 (36.00%)

    Solitary 161 (75.6%) 145 (77.13%) 16 (64.00%)

Treatment
  Drainage mode 0.003

    None 32 (15.0%) 23 (12.23%) 9 (36.00%)

    Catheterization 135 (63.4%) 120 (63.83%) 15 (60.00%)

    Puncture 40 (18.8%) 40 (21.28%) 0 (0.00%)

    Surgery 6 (2.8%) 5 (2.66%) 1 (4.00%)

Fig. 2  Recursive feature elimination method variable selection diagram
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[26]. The APs of the LR,SVM models were all above 
0.800. The confusion matrix was also calculated for all 
seven models (Table  2), and the DT model generated a 
large number of FPs (n = 19) during the prediction pro-
cess, while the other models were relatively few. DT, LR, 
and SVM models produced the least FNs (n = 1), and the 
KNN model produced the least FPs (n = 0). Table 3 shows 
each model evaluation result’s sensitivity (recall), speci-
ficity, accuracy, precision, f1, AP and AUC.

As shown in Table  3, there were significant perfor-
mance differences between the models. The AUC (0.969), 
F1-Score(0.737) and AP(0.890) of the SVM model were 
the highest among the seven models, and the all-around 
performance was the best. At the same time, its sensi-
tivity (0.875) is the highest and can effectively identify 
the occurrence of IKPLAS in the early stage. The KNN 
model had the best specificity (1.000) and could be used 
to reduce the occurrence of overdiagnosis and treatment.

Fig. 3  Spearman Correlation Analysis Heatmap

Fig. 4  Five-fold cross-validation ROC curve for the training set. A ANN model. B DT model. C KNN model. D LR model. E RF model. F SVM model. G 
XGB model
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Figure 7 shows the calibration curves of the seven mod-
els. Except that the XGB and DT models over-estimates 
the occurrence of IKPLAS risk, the other models’ calibra-
tion curves are a good fit with the actual observed results.

Figure  8 shows the Decision Curve Analysis of the 
seven models, which was first proposed in 2006 and 

has been used for prognostic decision analysis in can-
cer [27] and other fields [23]. The DCA curve shows a 
model compared to the Net Benefit situation under dif-
ferent High-Risk Thresholds between the two strategies 
of intervention in all patients (ALL) and no intervention 
in all patients (NONE). As shown in Fig.  6, there is no 

Fig. 5  ROC curves of seven models in the test set

Fig. 6  Precision Recall Curves for the seven models in the test set



Page 8 of 12Feng et al. BMC Infectious Diseases          (2023) 23:284 

significant difference in the benefits of treatment inter-
vention based on SVM and LR model between the risk 
threshold of 0.0 and 0.4. However, when the risk thresh-
old was between 0.4 and 0.8, the SVM model’s net inter-
vention rate was significantly higher than that of other 
models and the overall benefit rate was high. Model 
explanation.

To explain the output of our models, we used the 
SHapley Additive exPlanations(SHAP) algorithm to 
help us understand how a single feature affects the out-
put of the models [28]. Its most significant advantage is 
that it can reflect the influence of the features in each 
sample, and it also shows the positive and negative 
effects of the influence. Each row represents a feature, 
sorted by feature importance from top to bottom. The 
abscissa is the SHAP value. A point represents a sample, 
and the color represents the eigenvalue (red for high, 
blue for low). The SVM prediction model with the best 
all-around performance was selected to interpret the 
feature importance.

As shown in Fig.  9, the SOFA score ranks first in the 
feature importance of SVM model, and the higher the 
value, the higher the probability of the patient progress-
ing to IKPLAS. Platelet and hemoglobin were the second 
and third most important predictors of the SVM model, 
and both were negatively correlated with the outcome. 
D-dimer ranked last and was positively associated with 
the risk of IKPLAS.

Discussion
The high incidence of IKPLAS is mainly in the Asian 
population, which may be related to the fact that the 
Asian population is more likely to colonize the intes-
tine with K1/K2 serotype Klebsiella pneumoniae [29, 
30]. Diabetes is considered a significant risk factor for 
IKPLAS, and up to 63% of patients with a bacterial liver 
abscess in Taiwan have diabetes. This may be related to 
the impaired phagocytosis of K1/K2 Klebsiella pneu-
moniae in diabetic patients [31] and the more excellent 
vascular permeability in diabetic patients, which is con-
ducive to bacterial invasion [11]. The above two sero-
types of Klebsiella pneumoniae are also highly virulent 
Klebsiella pneumoniae, which show high viscosity in the 
String test [9]. Although the highly virulent Klebsiella 
pneumoniae is sensitive to most antibiotics, patients 
often have a poor prognosis if they are not recognized 
and treated early [32].

This study screened four characteristic variables: 
hemoglobin, platelets, D-dimer, and SOFA score. We 
interpreted the importance of the model characteristic 
variables by using the SHAP package, in which the SOFA 
score ranked first among all four models.

The SOFA score is a scoring system that measures 
the degree of impairment of significant organ function 
in patients with sepsis or suspected sepsis to determine 
prognosis [33]. Several studies have confirmed its predic-
tive value in the prognosis of infected patients [34, 35]. 
This study also suggests that the SOFA score is a signifi-
cant predictor of diabetes complicated by IKPLAS. As 
can be seen from the SHAP plot, the higher the SOFA 
score, the greater the risk of progression to IKPLAS. 

Table 2  Confusion matrices of 7 models

Confusion matrix Actual Prediction

Negative Positive

SVM Negative 52 4

Positive 1 7

LR Negative 49 7

Positive 1 7

RF Negative 53 3

Positive 4 4

XGB Negative 55 1

Positive 4 4

ANN Negative 51 5

Positive 5 3

DT Negative 37 19

Positive 1 7

KNN Negative 56 0

Positive 6 2

Table 3  Performance summary in terms of sensitivity (recall), specificity, accuracy, precision,F1-score,AUC​

Model Sensitivity (recall) Specificity Accuracy Precision F1-Score AP AUC​

SVM 0.875 0.929 0.922 0.636 0.737 0.890 0.969

LR 0.875 0.875 0.875 0.500 0.636 0.880 0.967

RF 0.500 0.946 0.891 0.571 0.533 0.680 0.879

XGB 0.500 0.982 0.922 0.800 0.615 0.650 0.799

ANN 0.375 0.911 0.844 0.375 0.375 0.640 0.897

DT 0.875 0.661 0.688 0.269 0.412 0.620 0.800

KNN 0.250 1.000 0.906 1.000 0.400 0.860 0.900
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Although the pathogenesis of IKPLAS is currently 
unclear, the study by Chen-Guang Zhang et  al. shows 
that most diabetic patients with IKPLAS are prone to 
sepsis [11]. Blood-borne transmission may be one of the 
more important ways.

In the feature importance ranking, platelets’ influ-
ence on SVM model ranked second.Jai Hoon Yoon et al. 
showed that thrombocytopenia is an independent risk 
factor for invasive syndrome in diabetic patients with 
Klebsiella pneumoniae liver abscess [10]. This is also con-
sistent with the conclusions about platelets in the SVM 
model established in this study. The mechanism of plate-
let reduction in diabetes combined with IKPLAS may be 
that when the body is infected, platelets are stimulated 
and activated to participate in the body’s inflammatory 
response by inducing the expression of membrane pro-
teins and the production of mediators and play the role of 
anti-infection and pathogen removal. Activated platelets 
produce and release pro-inflammatory, anti-inflamma-
tory, chemokines, antimicrobial, and other mediators to 
regulate the body’s innate immune or adaptive immune 
response [36]. The interaction between platelets and 
pathogens or their products, endothelial cells, and 
immune cells promotes endothelial cell damage and leu-
kocyte activation. As a result, the adhesion of platelets 
to it is enhanced, platelets are continuously activated 
in the circulation, and the body continuously produces 

anti-platelet antibodies and macrophage-colony stimu-
lating factors, which accelerates the destruction and con-
sumption of platelets [37].

The SHAP plot shows that hemoglobin is the third 
most important characteristic variable after the SOFA 
score, and the lower its value, the higher the risk of pro-
gression to IKPLAS. It has been shown that hemoglobin 
can be an indicator to assess the severity of the disease 
in infected patients, probably due to a systemic inflam-
matory response leading to decreased erythropoiesis, 
increased destruction of erythrocytes due to hemoly-
sis, and hemorrhage, which leads to a reduced ability of 
blood to transport oxygen and carbon dioxide and insuf-
ficient oxygen supply to the body, resulting in multi-
organ damage [38].

D-dimer is a specific molecular marker for secondary 
hyperfibrinolysis in vivo and is an effective indicator to 
reflect the coagulation state of the body. The coagula-
tion and fibrinolytic systems are usually closely linked 
to the development of inflammation. Infection can lead 
to damage of vascular endothelial cells and alveolar 
epithelial cells, which stimulates the coagulation sys-
tem, resulting in impairment of coagulation function 
and abnormal coagulation indexes in patients, further 
aggravated by elevated D-dimer along with infection 
[39, 40]. The above two promote each other, forming 
a vicious circle. The autoimmune function of diabetic 

Fig. 7  Seven machine learning model calibration curves
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patients is weakened, and the inflammatory response is 
enhanced after infection. Patients with diabetes com-
plicated with IKPLAS can have noticeable D-dimer 
changes in the early stage. In the SVM model, D-dimer 
was positively associated with the risk of developing 
diabetes with IKPLAS, which is consistent with the 
above findings.

In the field of IKPLAS, more studies are focused on 
the risk factors of IKPLAS.The study by Shixiao Li et al. 
[41] showed that patients with IKPLAS were more 
likely to develop chronic renal insufficiency, thrombo-
cytopenia, and increased total bilirubin than patients 
with non-IKPLAS. Hairui Wang et  al. [42]. A logis-
tic regression prediction model was used to predict 

Fig. 8  Decision curve analysis of seven machine learning models

Fig. 9  SHAP feature analysis of the SVM model
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the incidence of IKPLAS by incorporating clinical and 
CT features, with an AUC value of 0.842 in the valida-
tion set, and did not compare other prediction mod-
els.Unlike many studies, we first used seven machine 
learning models for prediction. Through parameter 
adjustment and verification, the SVM model with the 
best performance was selected, with an AUC value of 
0.969 and an AP value of 0.890, indicating that it was 
a reliable IKPLAS prediction model. At the same time, 
the variables included in this model are clinical indica-
tors, which are easy to collect and can be used by clini-
cians to conveniently judge the possibility of IKPLAS in 
patients with diabetes mellitus complicated with Kleb-
siella pneumoniae liver abscess.

Machine learning algorithms can build complex mod-
els that perform satisfactorily enough when the amount 
of data is sufficient. However, in specific applications, 
the amount of data is often insufficient, so it is essen-
tial to analyze these machine learning algorithms and 
obtain good results with relatively small sample sizes. 
In this study, the Power analysis was satisfied by calcu-
lating a power value of > 0.80, although we only used a 
small data set of 213 patients. The main reason for the 
excellent performance of the SVM model in this study 
is that it is a nonlinear learner that is more suitable for 
small samples, can ideally separate samples, and has 
better generalization.

There are still some limitations in this study. First, 
this is a single-center regression study, and some poten-
tial biases cannot be avoided. Secondly, for machine 
learning, the sample size of this study is insufficient. In 
order to further improve the accuracy of the model, we 
will collect more clinical data and further optimize the 
parameters.

Conclusion
In this study, we established and compared seven models 
to compare the performance of predicting the progres-
sion of diabetes with Klebsiella pneumoniae to IKPLAS 
and found that the SVM model had the highest overall 
predictive power. We also found that SOFA score, plate-
lets, hemoglobin, and D-dimer significantly affected the 
model’s predictions. In the future, we will expand the 
dataset to improve further the model’s accuracy and bet-
ter plan diagnosis and treatment for clinicians.
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