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Abstract 

Background  It has been shown that stimulation of innate immunity may provide temporary protection against a 
variety of infectious diseases. Malaria has been shown to induce a robust innate immune response. This study was 
conducted to test the hypothesis that if the cumulative number of cases diagnosed with COVID-19 per 100,000 
population was correlated with the prevalence of malaria in African countries where both malaria and COVID-19 were 
prevalent.

Methods  In this ecological study, the cumulative incidence of COVID-19 and the prevalence of malaria were com-
pared in 53 African countries. A negative binomial regression analysis with the cumulative incidence of COVID-19 as 
the dependent variable, and the human development index (HDI) and the prevalence of malaria, as independent 
variables, were used.

Results  The mean cumulative incidence of COVID-19 was 522 cases per 100,000. Each 0.1 unit increase in HDI was 
associated with 2.4-fold (95% confidence interval 1.8–3.1) increase in the cumulative incidence of COVID-19. Preva-
lence of malaria was also independently associated with the cumulative incidence; each 10% increase in the preva-
lence was associated with 28% (10–41%) decrease in the cumulative incidence of COVID-19.

Conclusions  Malaria might protect people against SARS-CoV-2 through the stimulation of innate immunity. Stimula-
tion of the innate immune system could be the first line of defense in the pandemic preparedness arsenal.
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Background
Innate immunity is a part of the immune system that 
can provide temporary non-specific protection against 
a wide range of infectious agents [1, 2]. Live attenu-
ated vaccines such as Bacillus Calmette-Guérin (BCG); 
measles, mumps, and rubella (MMR) vaccine; and oral 
polio vaccine (OPV) have been shown to stimulate the 
innate immune system that provides non-specific pro-
tection against unrelated infections including influenza 
and severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) [3–5]. It has been shown that BCG vac-
cination can non-specifically protect newborns against 
non-tuberculous infectious diseases during the neona-
tal period [5]. In a systematic review, meta-analysis of 
five clinical trials showed that BCG vaccination is asso-
ciated with 30% reduction in all-cause mortality in chil-
dren aged less than 5 years [6]. Analysis of 10 cohort and 
two case–control studies evaluating the effect of measles 
vaccination on all-cause mortality in children residing 
in seven developing countries, revealed that the mortal-
ity was decreased by 30–86%, far larger than the value 
expected based on the protection provided by the vac-
cine only against measles [3]. Controlled clinical trials 
conducted in 1960’s and 70’s on more than 60,000 peo-
ple indicated that OPV vaccination is associated with 
an almost fourfold decrease in mortality and morbidity 
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attributable to influenza [7, 8]. OPV has also been shown 
to confer protection against SARS-CoV-2. A recent eco-
logical study showed that countries using OPV have a 
lower cumulative incidence of COVID-19 compared to 
those using inactive polio vaccine [9]. A cohort study also 
revealed that indirect exposure to the attenuated polio-
virus excreted by children who had received OPV was 
associated with a significant decrease in the incidence 
of symptomatic SARS-CoV-2 infection in their mothers 
for more than 6 months [4]. A recent randomized clinical 
trial conducted on more than 1000 adults aged between 
18 and 65 years, revealed that 3 months after OPV vac-
cination, the risk of laboratory-confirmed SARS-CoV-2 
infection is decreased by 43% [10]. Also, a recent eco-
logical study showed that the use of OPV compared with 
the inactivated polio vaccine, is associated with a lower 
mother-to-child human immunodeficiency virus trans-
mission rate too [11]. All these non-specific protective 
effects are believed to be conferred through the stimula-
tion of the innate immunity and are not just limited to 
live attenuated vaccines. Stimulation of the innate immu-
nity by human rhinovirus can also block SARS-CoV-2 
virus replication [12].

Malaria infection can induce a robust innate immune 
response [13], and if this stimulation conferred protection 
against SARS-CoV-2, then we expect to observe lower 
incidence rates of SARS-CoV-2 infection in areas where 
malaria is prevalent. This study was thus conducted to 
test if the cumulative number of cases diagnosed with 
COVID-19 per 100,000 population was correlated with 
the prevalence of malaria in African countries where 
both malaria and COVID-19 were prevalent.

Methods
Source of data
In this ecological study, the cumulative number of 
COVID-19 cases diagnosed was retrieved for each of 53 
African countries from “Our World in Data” website on 
April 19, 2021 (publicly available from https://​ourwo​rldin​
data.​org/​covid-​cases) [14]. The prevalence of malaria for 
all ages and sexes in 2019 were also retrieved for each 
country from the Global Burden of Disease (GBD 2019) 
Collaborative Network website on July 11, 2022 (publicly 
available from https://​vizhub.​healt​hdata.​org/​gbd-​resul​
ts/) [15].

There were other variables that might affect the inci-
dence of COVID-19 and the prevalence of malaria, 
including the quality of the health care system and 
the surveillance infrastructures that would certainly 
influence the detection rate and reporting of the dis-
eases. Therefore, an important part of this study was to 
account for confounding factors that might influence the 
conclusions.

The population and population density, the median 
age and the life expectancy at birth, the gross domes-
tic product (GDP) per capita, and the human develop-
ment index (HDI)—a measure reflecting levels of social 
and economic development in a country [16]—were also 
retrieved for each country from “Our World in Data” 
website on April 19, 2021 [14].

The stringency index is a composite metric calculated 
from nine response indicators—school closures, work-
place closures, cancellation of public events, restrictions 
on public gatherings, closures of public transport, stay-
at-home requirements, public information campaigns, 
restrictions on internal movements, and international 
travel controls [17]. It reflects the level of strictness of 
the government policies primarily aiming at restricting 
people’s behavior (mainly applied through lockdown), 
and ranges from 0 (no restriction) to 100 (highest levels 
of restrictions). The index was also retrieved for each of 
53 African countries for each day before April 9, 2021, 
from “Our World in Data” website (publicly available 
from https://​ourwo​rldin​data.​org/​graph​er/​covid-​strin​
gency-​index) [18]. The mean stringency index for each 
country was used for data analyses. Data about the type 
of polio vaccine used by each country was provided by 
the World Health Organization Global Polio Eradication 
Initiative (GPEI). The data for generating the Africa map 
were retrieved from Natural Earth, a public domain map 
dataset (https://​www.​natur​alear​thdata.​com/) [19].

Statistical analysis
R software version 4.2.0 (R Project for Statistical Com-
puting) was used for data analysis. Normal probability 
plot (using geom_qq and stat_qq of the ggplot2 package) 
was used to determine whether a continuous variable fol-
lows normal distribution. Wilcoxon rank sum test (using 
wilcox.test function) was used to compare the distribu-
tion of two continuous variables not normally distrib-
uted. Continuous variables were expressed as median 
(interquartile range [IQR]). Spearman’s ρ (using rcorr 
function of Hmisc package) was used to determine the 
extent of correlation between continuous variables not 
normally distributed.

The cumulative incidence of COVID-19 was calculated 
by dividing the number of cases diagnosed in each coun-
try by its population at the midpoint of the study period 
multiplied by 100,000. Because the incidence (depend-
ent variable in our analysis) had overdispersion, negative 
binomial regression analysis was used (with function glm.
nb of the R package MASS). The GDP per capita, median 
age, and life expectancy at birth had a significant high 
correlation with HDI; thus, to avoid multicollinearity, we 
have only used HDI and the prevalence of malaria in each 
country as independent variables in the model. Outliers 
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were included in all data analysis. A p value < 0.05 was 
considered statistically significant.

Results
Data for 53 African countries were studied. All the 53 
studied countries used OPV. None of the studied vari-
ables followed normal distribution (Additional file 1: Fig. 
S1). Median and IQR of the studied variables are pre-
sented in Table  1. The distribution of COVID-19 inci-
dence and malaria prevalence was not uniform in the 
studied countries (Fig. 1); they were negatively correlated 

(Spearman’s ρ = −0.6, p < 0.001)—the number of cases 
diagnosed with COVID-19 per 100,000 population was 
lower in countries where the malaria is prevalent and 
vice versa (Figs.  1 and 2). There were 20 countries with 
a malaria prevalence < 3% (an arbitrary chosen cut-off 
value) and 33 with the prevalence ≥ 3%. The cumulative 
incidence of COVID-19 and HDI in countries in the for-
mer group were significantly (p < 0.001) higher than those 
in countries in the latter group (Table 2, Additional file 1: 
Fig S2). HDI had a significant (p < 0.001) correlation with 
both the cumulative incidence of COVID-19 (ρ = 0.69) 
and malaria prevalence (ρ = −0.58). HDI ranged from 
0.39 in Niger to 0.80 in Mauritius and Seychelles where 
the prevalence of malaria was reported to be nil. HDI was 
also positively correlated with GDP per capita, median 
age, and life expectancy at birth (ρ > 0.63, p < 0.001) 
(Fig. 3).

The cumulative incidence of COVID-19, the dependent 
variable in our regression model, had a mean of 522 cases 
per 100,000; the variance exceeded 6.4 × 105. For over-
dispersion, we used a negative binomial regression. The 
model could explain 90% (Nagelkerke’s R2 = 0.90) of the 
variance observed in the incidence (Table 3).

In negative binomial regression, if Ci is the coef-
ficient of the ith independent variable in the model, 
then the adjusted incidence rate ratio (IRR) is exp(Ci). 

Table 1  Median (IQR) of studied variables in 53 African countries

a Cumulative incidence of COVID-19 per 100,000 Population
b Human development index

Variable Median (IQR) Range (min to max)

CasesPer100a 169 (71–471) 1–3411

HDIb 0.54 (0.48–0.61) 0.39–0.80

Malaria prevalence (%) 7.6 (1.2–24.8) 0.0–37.3

GDP per capita (× 1000 US$) 2.8 (1.6–6.5) 0.7–26.4

Median age (years) 19 (18–22) 15–37

Life expectancy at birth (years) 64 (61–67) 53–77

Population density (people/km2) 65 (23–110) 3–623

Stringency index 48 (41–57) 14–76

Fig. 1  Distribution of cumulative incidence of COVID-19 (left panel) and prevalence of malaria (right panel) in African countries. Note that the 
number of cases diagnosed with COVID-19 per 100,000 population is lower where the malaria is prevalent and higher where the prevalence is low. 
Complete data were not available for gray areas. Made with Natural Earth (https://​www.​natur​alear​thdata.​com/)

https://www.naturalearthdata.com/
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For example, the adjusted IRR for HDI is 6196 
[exp(8.7316), Table 3], which means that keeping other 
variables in the model constant, an increase of 1 unit 
in HDI is associated with an increase of 6196-fold in 

the dependent variable, the cumulative incidence of 
COVID-19. However, the HDI can only vary from 0 to 
1, and thus, here the IRR corresponding to a smaller 
change (0.1 unit increase in HDI)—exp(0.1 × Ci)— was 
calculated and reported. In a similar way as 1% increase 
in malaria prevalence was a little change, the IRR corre-
sponding to a larger change of 10% increase in malaria 
prevalence—exp(10 × Ci)—was presented here.

Based on the computations mentioned above, HDI 
was found to be an independent predictor of the cumu-
lative incidence of COVID-19; each 0.1 unit increase 
in HDI was associated with 2.4-fold [exp(0.1 × 8.7316); 
95% confidence interval (CI) 1.8–3.1] increase in the 
incidence (Table  3). Prevalence of malaria was also 

Fig. 2  Distribution of the cumulative incidence of COVID-19 in African countries with different prevalence of malaria stratified by the human 
development index. The curve was smothed and drawn based on the predicted values derived from the negative binomial regression (Table 2). The 
shaded area represnts the 95% confidence interval of the curve. The vertical gray dashed line corresponds to an arbitrary chosen malaria prevalence 
of 3%. *HDI: human development index

Table 2  Median (IQR) of cumulative incidence of COVID-19 per 
100,000 population (CasesPer100) and human development 
index (HDI) in countries stratified by malaria prevalence

Variable Countries with malaria prevalence p value

 < 3%, (n = 20)  ≥ 3%, (n = 33)

CasesPer100 796 (218–1737) 89 (54–169)  < 0.001

HDI 0.66 (0.53–0.73) 0.52 (0.46–0.55)  < 0.001
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independently associated with the cumulative incidence 
of COVID-19; each 10% increase in the prevalence was 
associated with 28% (95% CI 10–41%) decrease in the 
cumulative incidence of COVID-19 (Table 3).

Discussion
The mean cumulative incidence of COVID-19 in 53 Afri-
can countries (522 cases per 100,000, all using OPV) 
was much lower than the mean value reported for all 
146 countries using OPV in the world (1580 cases per 
100,000) [9]. The observed relatively lower incidence of 
COVID-19 in Africa could be attributed to its different 
demographic pyramid, difference in the prevalence of 
pre-existing conditions, genetic build-up of the popula-
tion, dissimilar sociocultural dynamics, and the trained 
immunity [20]. It could also be due to under-diagnosis 
and under-reporting of COVID-19 cases, a consequence 
of poor infrastructure of the health care system in some 
of the studied countries.

The cumulative incidence of COVID-19 was nega-
tively correlated with the prevalence of malaria. Wher-
ever the prevalence of malaria was high, the incidence of 
COVID-19 was relatively low (Figs. 1 and 2). This strong 

Fig. 3  Values of Spearman’s ρ between each of two studied continuous variables. HDI represents human development index; GDPperCapita, 
gross domestic product per capita; MedianAge, median age; LifeExpect, life expectancy; PrevMal, prevalence of malaria; CasesPer100, cumulative 
incidence of COVID-19 per 100,000 population; and PopDensity, population density

Table 3  Results of negative binomial regression

Nagelkerke’s R2 = 0.90
a Adjusted incidence rate ratio
b Human development index

Variable Coefficient (95% CI) Adj IRRa (95% CI) p value

HDIb 8.73 (6.09–11.41) 61.96 (4.40–902.90) × 102  < 0.001

Malaria 
prevalence 
(%)

−0.03 (−0.05 to −0.01) 0.97 (0.95–0.99) 0.003

Intercept 1.14 (−0.51 to 2.83) 3.13 (0.60–16.87) 0.149
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significant negative correlation still held after the model 
was adjusted for HDI, a confounding variable, so that 
each 10% increase in the prevalence of malaria was asso-
ciated with 28% decrease in the incidence of COVID-19. 
HDI had a strong correlation with GDP per capita, the 
median age, and the life expectancy in the studied coun-
tries (Fig.  3). This is not surprising; developed by the 
United Nations Development Programme (UNDP), HDI 
is a composite idex reflecting the average achievement 
in key dimensions of human development [16]. It is cal-
culated based on the life expectancy at birth (and thus, 
the median age of the population), gross national income 
(and thus, the GDP) per capita, and other factors. There-
fore, the regression model was only adjusted for HDI (to 
avoid multicollinearity), and it could explain 90% of the 
observed variations.

Many factors might affect the cumulative incidence of 
COVID-19 and the prevalence of malaria. The quality of 
the health care system and the surveillance infrastruc-
tures would certainly influence the detection rate and 
reporting of cases with COVID-19 and malaria. Coun-
tries with higher HDI have expectedly a better health 
infrastructure and reporting system and this would 
explain the observed strong positive correlation between 
HDI and the cumulative incidence of COVID-19 and 
the association found between the two variables in the 
model. Higher HDI may be translated into a better health 
infrastructure and sanitation, hence, better control of 
malaria—the prevalence of malaria was nil in Mauritius 
and Seychelles where the HDI was 0.8. All the studied 53 
African countries used OPV. Therefore, the type of vac-
cine could not be considered a factor in our analyses [9].

It has been shown that malaria can induce the innate 
immunity [13]. The parasite and its hemozoin induce 
the innate immunity through complex carefully orches-
trated interactions among immunological signals, cer-
tain cell metabolites, and epigenetic reprogramming 
[13, 21]. Kenyan children naturally infected with malaria 
have higher H3K4me3, an epigenetic modification to 
the nuclear histone H3, compared to healthy North 
American adult controls [13]. Epigenetic reprogramming 
underlies the induction of trained immunity [2]. These 
epigenetic changes result in unfolding of chromatin 
regions that enhances transcription and gene expression 
of factors involved in the immune response. The changes 
are only partially removed after the primary stimulus is 
eliminated. Nonetheless, the remaining changes may be 
enough to result in a strong, rapid immune response of 
the stimulated cells to challenge secondary stimuli (e.g., 
SARS-CoV-2) [1].

Studying the seasonal variation in the incidence of 
malaria and COVID-19 could have provided a better 
picture of the situation. If the hypothesis presented is 

correct and malaria could prevent SARS-CoV-2 infec-
tion, it is expected that the incidence of COVID-19 
would decrease soon after the rain or during the period 
with high incidence of malaria. That might be considered 
a limitation of this work, but based on the hypothesis, 
stimulation of the innate immunity results in a trained 
immunity that would last for a period, at least 6 months 
for OPV [4]. This sustained immunity would abolish the 
changes, if any, in the incidence of COVID-19—a sin-
gle exposure to malaria could be enough to cause the 
trained immunity that would last for a couple of months. 
This would be more pronounced in regions endemic for 
malaria where people are constantly exposed to the para-
site. Another limitation of the study would be the nature 
of the study design. No causal inference could be made 
from an ecological study. The design is just hypothesis-
generating. The coverage of vaccination against COVID-
19 was not also considered in our study. However, at the 
time of our data collection (April 19, 2021), most African 
countries either did not introduce COVID-19 vaccines or 
immunized a very small part of their populations.

Conclusions
African countries with higher prevalence of malaria had 
a lower incidence of COVID-19. Malaria might protect 
people against SARS-CoV-2 through the stimulation of 
innate immunity. Stimulation of the innate immune sys-
tem can be done in various ways. This could be the first 
line of defense in the pandemic preparedness arsenal.
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point within 1.5 × IQR greater than the 75th percentile. Points smaller than 
the lower whisker and greater than the upper whisker were considered 
outliers; all outliers were included in data analyses. *HDI: human develop-
ment index. Data Dictionary. Negative binomial regression model used in 
the current study using the original dataset.

Additional file 2: Raw data for the studied African countries.
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