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Abstract 

Background: The prevalence of infectious diseases remains one of the major challenges faced by the Chinese 
health sector. Policymakers have a tremendous interest in investigating the spatiotemporal epidemiology of infec‑
tious diseases. We aimed to review the small‑scale (city level, county level, or below) spatiotemporal epidemiology of 
notifiable infectious diseases in China through a systematic review, thus summarizing the evidence to facilitate more 
effective prevention and control of the diseases.

Methods: We searched four English language databases (PubMed, EMBASE, Cochrane Library, and Web of Science) 
and three Chinese databases (CNKI, WanFang, and SinoMed), for studies published between January 1, 2004 (the year 
in which China’s Internet‑based disease reporting system was established) and December 31, 2021. Eligible works 
were small‑scale spatial or spatiotemporal studies focusing on at least one notifiable infectious disease, with the entire 
territory of mainland China as the study area. Two independent reviewers completed the review process based on the 
Preferred Reporting Items for Systematic Reviews and Meta‑Analyses guidelines.

Results: A total of 18,195 articles were identified, with 71 eligible for inclusion, focusing on 22 diseases. Thirty‑one 
studies (43.66%) were analyzed using city‑level data, 34 (47.89%) were analyzed using county‑level data, and six 
(8.45%) used community or individual data. Approximately four‑fifths (80.28%) of the studies visualized incidence 
using rate maps. Of these, 76.06% employed various spatial clustering methods to explore the spatial variations in 
the burden, with Moran’s I statistic being the most common. Of the studies, 40.85% explored risk factors, in which the 
geographically weighted regression model was the most commonly used method. Climate, socioeconomic factors, 
and population density were the three most considered factors.

Conclusions: Small‑scale spatiotemporal epidemiology has been applied in studies on notifiable infectious diseases 
in China, involving spatiotemporal distribution and risk factors. Health authorities should improve prevention strate‑
gies and clarify the direction of future work in the field of infectious disease research in China.
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Background
In traditional epidemiology, patterns are identified by 
examining the characteristics of person, place, and time, 
whereas in modern epidemiology, spatial perspective is 
incorporated into research designs and models [1]. In 
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the twenty-first century, the field of spatial epidemiology 
has evolved rapidly and is currently playing an important 
role in monitoring diseases, assessing the effectiveness of 
control and prevention measures, identifying high-risk 
regions, and helping authorities develop public health 
policies [2, 3].

China, the world’s most populous nation, has greatly 
reduced its infectious disease burden over the past two 
decades. However, infectious diseases remain one of the 
major challenges faced by the Chinese health sector [4, 5]. 
The most recent coronavirus disease 2019 (COVID-19) 
pandemic has raised concerns about infectious diseases. 
To further monitor and respond to possible infectious 
disease outbreaks, China created a list of notifiable 
infectious diseases (Additional file  1: Table  S1, two in 
Class A, 27 in Class B, and 11 in Class C), characterized 
by wide distribution, high prevalence, or severe threats, 
which is specified by the Law of the People’s Republic 
of China on the Prevention and Treatment of Infectious 
Diseases. The shift in infectious disease surveillance from 
paper forms to electronic documents also supports the 
use of data to promptly detect and respond to infectious 
disease outbreaks [6]. Before the mid-1980s, paper-based 
notifications were distributed monthly by post. Digitized 
monthly reports were adopted from the mid-1980s and 
through 2003. In 2004, a real-time Internet-based China 
Information System for Disease Control and Prevention 
(CISDCP) was established by the China CDC, which 
improved the timeliness and accuracy of surveillance 
[6]. The CISDCP collects patient case reports for all 
notifiable diseases from all medical institutions in China.

Spatial disparities exist in the distribution of 
infectious diseases owing to differences in economic 
development levels, population density, meteorological 
factors, and more [7, 8]. There is tremendous interest 
from policymakers, public health practitioners, and 
researchers in understanding the spatiotemporal 
epidemiology of notifiable infectious diseases in China. 
Many studies have focused on such diseases, including 
but not limited to sexually transmitted infections [9], 
intestinal infectious diseases [10], respiratory infectious 
diseases [10], and viral hepatitis (A, B, C, E, and more) 
[11]. However, these studies targeted different diseases, 
covering different periods and adopting different 
research scales (province, city, and county levels). 
Policymakers need systematic reviews to help select, 
appraise, and synthesize research findings. To our 
knowledge, there have been several systematic reviews 
on the spatiotemporal characteristics and analytic 
mechanism of specific infectious diseases globally, 
such as malaria [12], tuberculosis [13], leptospirosis 
[14], and dengue [15]. However, these reviews did not 
summarize and compare the transmission characteristics 

of infectious diseases and only included descriptive 
statistics because the spatial scale of the included 
studies was inconsistent [16]. Systematic reviews of the 
small-scale spatiotemporal epidemiology of infectious 
diseases in a country could give policymakers insights 
about how different infectious diseases share similarities 
and differences in the distribution of cases and 
determinants. In addition, exploring and summarizing 
the spatiotemporal dynamics of notifiable infectious 
diseases could provide local governments with important 
reference values for standardizing epidemic prevention 
protocols and equip policymakers with the information 
required to confidently determine the probable effects of 
area-targeted prevention and control policies.

This study aimed to systematically review the 
spatiotemporal epidemiology of notifiable infectious 
diseases in China. We focused on small-scale analyses, 
as considerable current interest in the field of spatial 
epidemiology can be observed in a smaller scale of 
research.

Methods
Data sources and search strategy
A broad search strategy using multiple electronic 
literature databases was employed to minimize the risk 
of bias. We searched seven literature databases from 
January 1, 2004 (the year the CISDCP was established) 
to December 31, 2021, including four English databases 
(Web of Science, PubMed, EMBASE, and Cochrane 
Library) and three Chinese databases (CNKI, WanFang, 
and SinoMed), following the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [17].

The search syntax (Additional file 1: Supplemental file 
3) was based on a combination of the following terms 
with the Boolean phrase ‘OR’ within groups or ‘AND’ 
between groups: (1) location-related terms, such as China 
and Chinese; (2) spatial analysis related terms, such as 
spatial, spatiotemporal, and geographical; (3) infectious 
disease-related terms, such as infectious diseases, 
epidemic, and virus diseases; and (4) notifiable infectious 
diseases in China-related terms, such as plague, cholera, 
and SARS.

EndNote Software Version 20 was employed to manage 
the citations.

Eligibility criteria
The following eligibility criteria were defined: (1) Chinese 
and English epidemiological articles published from 
January 1, 2004 to December 31, 2021; (2) the application 
of spatial analysis or mapping; (3) the research scope 
limited to Mainland China; (4) research scales at the 
city level, county level, or below; (5) data extracted from 
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the Chinese Centre for Disease Control and Prevention, 
National Health Commission of the People’s Republic of 
China, or other authorities; (6) related to one or more 
notifiable infectious diseases in China; and (7) published 
in a peer-reviewed journal.

The exclusion criteria were as follows: (1) studies 
including other countries or regions outside China; (2) 
a research scale at the provincial level; (3) a research 
scope of only specific provinces; (4) disease that were 
not notifiable infectious diseases in China; (5) qualitative 
articles; (6) review articles; and (7) editorials or published 
letters.

Study selection
After deduplication, two reviewers (JZ and GS) 
independently screened titles and abstracts. 
Disagreements were resolved by consulting a third 
reviewer (BZ) to make the decision. Subsequently, 
two reviewers (SH and NZ) examined the full text 
and assessed it according to the set criteria. Finally, all 
reviewers participated in the data extraction.

Data collection process
Information about the spatial methods and outcomes was 
extracted from each included study (shown in Table  1). 
Descriptive details obtained included first author, 
publication year, type of infectious disease, period of 
analysis, research scale, study type, spatial methods used, 
study aspects, and risk factors.

Results
Search results and included studies
Search results
A preliminary systematic literature search yielded 18,195 
records. After removing duplicates, 12,158 records were 
retained for screening of the titles and abstracts. Then, 
11,633 records were excluded as they did not meet the 
review eligibility criteria. Of the 525 potentially relevant 
studies screened in full text, 129 records were at the pro-
vincial level, 19 focused on diseases out of the list of noti-
fiable infectious diseases in China, 21 were qualitative 
analysis or review articles, and 285 focused on specific 
provincial units or cities rather than the whole territory. 
The endpoint of the screening process yielded 71 eligible 
studies (Fig. 1).

Characteristics of the studies included
Through a full-text review, we extracted contextual 
details of the included studies (Table  1). All 71 studies 
focused on the spatiotemporal characteristics of the 
incidence of specific infectious diseases. Given that this 
systematic review focused on small-scale research, the 
distribution was as follows: 31 studies were analyzed 

using city level data, 34 studies were analyzed using 
county level data, and six studies used community or 
individual data. Among the studies, the longitudinal 
cohort design (n = 57, 80.28%) was more common than 
cross-sectional design (n = 14, 19.72%). In addition to the 
analysis of spatial (or spatiotemporal) characteristics, 29 
studies also examined the risk factors (Table 1).

A total of 22 notifiable infectious diseases were 
included in 71 studies, including 18 class B and 4 class 
C infectious diseases. Among class B infectious diseases, 
13 focused on COVID-19, seven on human infection 
with H7N9 virus, six on tuberculosis, four on dengue, 
three on rabies, three on hemorrhagic fever, three on 
syphilis, two on malaria, two on measles, two on Japanese 
encephalitis, two on anthrax, two on hepatitis C, and 
one each on hepatitis B, Acquired immune deficiency 
syndrome (AIDS), brucellosis, leptospirosis, severe acute 
respiratory syndrome (SARS), and human infection 
with H5N1 virus. Among class C infectious diseases, 
12 focused on hand, foot and mouth disease (HFMD) 
and two each on influenza, influenza A(H1N1) virus 
infection, and echinococcosis (Tables  2). Notably, some 
studies have also investigated certain subcategories of 
infectious diseases or their transmission within a specific 
group, such as fetal syphilis, AIDS among men who have 
sex with men (MSMs), severe HFMD, SS + tuberculosis, 
SS  − tuberculosis, P. vivax malaria, and P. falciparum 
malaria.

All studies were published after 2006, of which 66 stud-
ies used data for a certain period between 2004 and 2021, 
mostly due to the implementation of the direct network 
reporting system of legal infectious diseases in China. 
The remaining five literature used data earlier than 2004, 
and they studied infectious diseases including rabies, 
hemorrhagic fever, Japanese encephalitis, SARS-Cov and 
malaria (Fig.  2). There are some studies of short dura-
tions, with COVID-19 outbreaks close to the present, 
and short durations of SARS and influenza A(H1N1) 
virus infection outbreaks.

Spatiotemporal methods
Among the included studies, a variety of spatial and 
spatiotemporal methods were employed to visualize 
risk patterns, explore spatial clusters, and model 
determinants of disease transmission. These methods 
can be divided into four categories: visualization, cluster 
detection, spatial exploration, and spatiotemporal 
modelling.

Fifty-eight articles (81.69%) presented or referred to 
the method of visualizing case distributions to describe 
the spatiotemporal epidemiology of notifiable infectious 
diseases in China. The most frequently used method 
was rate maps (n = 57), with data usually aggregated 
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Table 1 Contextual details of studies included

References Infectious disease Period of analysis Research scale Study type Study aspects Risk factors

[18] Hemorrhagic fever 1994–1998 County level Longitudinal Characteristics N/A

[19] HFMD 2008.1–2009.10 City level Longitudinal Characteristics N/A

[20] HFMD 2008.5 County level Cross‑sectional Characteristics; Risk 
factors

Population density and 
climate

[21] HFMD 2008.5–2011.12 County level Longitudinal Characteristics N/A

[22] Syphilis 2004–2010 County level Longitudinal Characteristics N/A

[23] Rabies 2005–2011 Individual level Longitudinal Characteristics N/A

[24] Brucellosis 2004–2010 County level Longitudinal Characteristics; Risk 
factors

Livestock density, climate, 
elevation, and coverage of 
vegetation

[25] HFMD 2008.5.1–2009.3.27 County level Longitudinal Characteristics; Risk 
factors

Climate

[26] Japanese Encephalitis 2002–2010 County level Longitudinal Characteristics N/A

[27] Tuberculosis 2005–2011 County level Longitudinal Characteristics N/A

[28] HFMD 2008.5 County level Cross‑sectional Characteristics; Risk 
factors

Climate, population 
density, and socio‑
economic factors

[29] HFMD 2008.5 County level Cross‑sectional Characteristics; Risk 
factors

Climate, population 
densities, and economic 
factors

[30] HFMD 2008.05.01–2009.03.27 County level Cross‑sectional Characteristics N/A

[31] Hemorrhagic fever 2005–2012 County level Longitudinal Characteristics N/A

[32] HFMD 2008.5–2013.8 County level Longitudinal Characteristics N/A

[33] Hepatitis C 2008–2012 City level Longitudinal Characteristics N/A

[34] Syphilis 2011 County level Cross‑sectional Characteristics N/A

[35] Malaria 2002–2010 County level Longitudinal Characteristics N/A

[36] H7N9 2013.2–2014.5 City level Longitudinal Characteristics N/A

[37] H7N9 2013.3–2014.12 Individual level Cross‑sectional Characteristics; Risk 
factors

Climate, spatial–temporal 
factors, and distance to 
the nearest migration 
route or habitat of birds

[38] Dengue 2004–2013 City level Longitudinal Characteristics N/A

[39] Dengue 2004–2013 City level Longitudinal Characteristics N/A

[40] Japanese Encephalitis 2013 County level Cross‑sectional Characteristics N/A

[41] Hepatitis B 2005–2014 City level Longitudinal Characteristics N/A

[42] Anthrax 2005–2012 County level Longitudinal Characteristics; Risk 
factors

Occupational exposure

[43] Anthrax 2005–2013 County level Longitudinal Characteristics; Risk 
factors

Livestock density, 
elevation, coverage of 
vegetation, component of 
topsoil, and climate

[44] Rabies 1960–2014 City level Longitudinal Characteristics N/A

[45] HFMD 2008–2012 County level Longitudinal Characteristics N/A

[46] Hepatitis C 2008–2013 City level Longitudinal Characteristics; Risk 
factors

Socio‑economic factors

[47] Measles 2005–2014 City level Longitudinal Characteristics N/A

[48] Dengue 2005–2013 County level Longitudinal Characteristics N/A

[49] Hemorrhagic fever 2006–2010 City level Longitudinal Characteristics N/A

[50] Malaria 2005–2014 County level Longitudinal Characteristics N/A

[51] SARS 2012.11.16–2003.05.21 County level Longitudinal Characteristics; Risk 
factors

Population density and 
transport accessibility

[52] Measles 2005 − 2014 City level Longitudinal Characteristics N/A

[53] Tuberculosis 2005–2014 Individual level Longitudinal Characteristics N/A

[54] H7N9 2013.2.19–2014.2.16 County level Longitudinal Characteristics N/A
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Table 1 (continued)

References Infectious disease Period of analysis Research scale Study type Study aspects Risk factors

[55] AIDS 2006–2015 County level Longitudinal Characteristics; Risk 
factors

Population density and 
socio‑economic factors

[7] Dengue 2005–2017 County level Longitudinal Characteristics; Risk 
factors

Climate and coverage of 
vegetation

[56] Syphilis 2010–2015 County level Longitudinal Characteristics N/A

[57] H7N9 2013.02.19–2017.09.09 County level Longitudinal Characteristics; Risk 
factors

Population density, live‑
poultry markets density, 
live‑poultry density, and 
water bird habitat

[58] HFMD 2009 County level Longitudinal Characteristics; Risk 
factors

Climate and socio‑
economic factors

[59] Leptospirosis 2005–2016 County level Longitudinal Characteristics N/A

[60] Rabies 2005–2013 County level Longitudinal Characteristics; Risk 
factors

Climate, socio‑economic 
factors, and transport 
accessibility

[61] Tuberculosis 2005–2015 County level Longitudinal Characteristics N/A

[62] Tuberculosis 2005–2015 City level Longitudinal Characteristics; Risk 
factors

Climate

[63] Influenza 2005–2018 City level Longitudinal Characteristics; Risk 
factors

Vaccine number, 
surveillance protocol, and 
rate of influenza A (H1N1) 
pdm09

[64] H1N1 2009.05.10–2010.04.30 County level Longitudinal Characteristics; Risk 
factors

Transport modes

[65] H7N9 2013.2.19–2017.9.30 City level Longitudinal Characteristics N/A

[8] COVID‑19 2020.1.24–2020.2.20 City level Longitudinal Characteristics; Risk 
factors

Climate, transport 
accessibility, population 
density, and medical 
facilities

[66] COVID‑19 2019.12.8–2020.3.31 Community level Cross‑sectional Characteristics N/A

[67] Tuberculosis 2013–2018 County level Cross‑sectional Characteristics N/A

[68] COVID‑19 2020.1.23–2020.3.23 City level Longitudinal Characteristics; Risk 
factors

Population movement

[69] COVID‑19 2020.1.11–2020.7.31 City level Longitudinal Characteristics N/A

[70] COVID‑19 2020.01.17–2020.03.20 County level Cross‑sectional Characteristics; Risk 
factors

Transport accessibility and 
population density

[71] COVID‑19 2020.01.25–2020.3.13 City level Cross‑sectional Characteristics; Risk 
factors

Population movement

[72] COVID‑19 2019.12–2020.03.25 City level Cross‑sectional Characteristics; Risk 
factors

Socio‑economic factors

[73] COVID‑19 2019.12.1–2020.4.30 City level Longitudinal Characteristics; Risk 
factors

Population movement, 
climate, air quality and 
socio‑economic factors

[74] COVID‑19 2020.1.10–2020.10.5 City level Longitudinal Characteristics N/A

[75] COVID‑19 2020.1–2020.10 City level Longitudinal Characteristics N/A

[76] COVID‑19 2019.12.2–2020.6.20 Individual level Cross‑sectional Characteristics N/A

[77] H7N9 2013.2.19–2014.3.31 City level Longitudinal Characteristics N/A

[78] Tuberculosis 2007.1.1–2007.12.31 City level Longitudinal Characteristics; Risk 
factors

Altitude, longitude, 
climate, education 
burden, population 
density, air quality, and 
economic factors

[79] Echinococcosis 2018 City level Cross‑sectional Characteristics N/A

[80] Influenza 2004–2017 City level Longitudinal Characteristics; Risk 
factors

Air quality

[81] H7N9 2013–2017 Individual level Longitudinal Characteristics N/A
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Table 1 (continued)

References Infectious disease Period of analysis Research scale Study type Study aspects Risk factors

[82] H5N1 2004–2019 City level Longitudinal Characteristics N/A

[83] COVID‑19 2020.1.24–2020.3.5 City level Longitudinal Characteristics; Risk 
factors

Population movement 
and spatial–temporal 
factors

[84] COVID‑19 2020.1.24–2020.12.28 City level Longitudinal Characteristics; Risk 
factors

Spatial–temporal factors

[85] HFMD 2017 City level Longitudinal Characteristics; Risk 
factors

Climate

[86] HFMD 2017 City level Longitudinal Characteristics N/A

① H7N9: Human infection with H7N9 virus. ② AIDS: Acquired immune deficiency syndrome. ③ H1N1: Influenza A(H1N1) infection. ④ HFMD: Hand, foot and mouth 
disease. ⑤ H5N1: Human infection with H5N1 virus. ⑥ SARS: Severe acute respiratory syndrome. ⑦ N/A: Not applicable

Fig. 1 Flow diagram of study selection
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Fig. 2 Research durations of studies included
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according to administrative boundaries. Kernel density 
maps were used in four studies. Other methods included 
excess hazard maps (n = 2), spatially smoothed percentile 
map (n = 1), continuous distribution map (n = 1), and rel-
ative risk map (n = 1).

The use of at least one cluster detection method 
was reported in 54 studies (76.06%), of which the most 
frequently used method was Moran’s I statistic (n = 41), 
followed by Kulldorff space–time scan statistic (n = 26), 
LISA cluster maps (n = 24), and Getis-Ord Gi* statistic 
(n = 18). The K-nearest neighbor test, standard deviation 
elliptical analysis, and optimized/emerging hotspot 
analysis were applied twice. The average nearest neighbor 
distance method and density-based spatial clustering of 
applications with noise were used in the same study.

A range of other methods based on the spatial 
exploration of cases was also identified. Six methods of 
spatial exploration, including the hierarchical cluster 
analysis, Bayesian hierarchical model, Spearman rank 
correlation analysis method, empirical orthogonal 
function analysis, and Fréchet distance approach, were 
used in different studies.

Spatiotemporal modelling was applied in 29 studies 
(40.85%) to explore risk factors. The geographically 
weighted regression model (GWR) was the most 
frequently used method, utilized in seven studies. 
Poisson regression (n = 6), the geographical detector 
method (n = 4), the Bayesian spatial model (n = 3), and 
linear regression (n = 3) were ranked successively. The 
generalized linear model (GLM), Lasso regression, 
boosted regression trees (BRT), and spatial Durbin model 
(SDM) were used more than once (Table 3).

Spatiotemporal distribution characteristics
Spatiotemporal analysis focused on 22 infectious diseases 
that accounted for nearly half of all 45 notifiable infec-
tious diseases; and the characteristics of these infectious 
diseases was shown in Table 2. We counted the high-risk 
spatiotemporal clusters of infectious diseases that need 
attention in each region based on the seven geographi-
cal divisions of China (Fig.  3). The results showed that 
clusters of twelve infectious diseases existed in South 
China, which had the most infectious disease clusters. 
East, Southwest, and Northwest China each had eleven 
infectious diseases’ cluster area. Central China had eight. 
Northeast and North China each had seven.

Infectious diseases which mainly clustered in South China
Specifically, the main cluster area of infectious diseases 
was different. Rabies, HFMD, and influenza A(H1N1) 
virus infection mainly clustered in South China. The 
incidence of rabies experienced M-shaped fluctuations 
between 1960 and 2014. Since the most recent peak 

(2007), the number of cases has declined, but the 
geographic range has expanded. The high-value clusters 
were mostly located in South, Central, and East China, 
and expanded to North China. From 2008 to 2013, the 
cluster scope of HFMD in South China expanded with 
the shrinkage of North China. Influenza A(H1N1) virus 
infection is widely distributed in densely populated areas 
of China, especially in the Pearl River Delta, central 
Hefei, and northern Hubei (shown in Table 2).

Infectious diseases which mainly clustered in East China
Human infection with H7N9 virus and syphilis mainly 
clustered in East China. The high-value clusters 
of human infection with H7N9 virus were mainly 
distributed along the eastern and southeastern coastlines 
of China, and it had recently shifted to more inland 
areas. The distribution of syphilis cases expanded from 
2004 to 2011; areas with high-high clusters were mainly 
located in the East, Northeast, and Southwest China, and 
expanding to Northwest China (shown in Table 2).

Infectious diseases which mainly clustered in Southwest 
China
Dengue, malaria, Japanese encephalitis, AIDS, and 
leptospirosis mainly clustered in Southwest China. 
Dengue cases increased between 2004 and 2017, with 
primary clusters mainly distributed along the southeast 
coastal areas and southwest border regions of China 
and transmitted to the inland and southwest areas. A 
great advance had been made in the control of malaria 
in China, but with high-value clusters mainly located in 
Southwest, East, and South China from 2002 to 2014. 
Japanese encephalitis expanded its high-high cluster 
limits from Guizhou, Sichuan, Yunnan, and Chongqing 
to central China, such as the Western Hunan and 
Shaanxi-Shanxi-Henan borders. AIDS cases reported 
among MSM increased rapidly from 2006 to 2015, with 
the clusters expanding from East and South China to 
Southwest China. High-high clusters of leptospirosis are 
usually located in inter-provincial border areas (shown in 
Table 2).

Infectious diseases which mainly clustered in Northwest 
China
Tuberculosis, measles, anthrax, hepatitis B, hepatitis C, 
and human infection with H5N1 virus mainly clustered 
in Northwest China. The geographical range of tuber-
culosis transmission decreased from 2005 to 2018. Most 
of the primary clusters were located in Northwest and 
Central China, especially in the Xinjiang province. The 
clustering time of SS + tuberculosis was concentrated 
before 2010, whereas that of SS  − tuberculosis was 
mainly concentrated after 2010. It is worth noting that 
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Table 3 Spatiotemporal methods used in studies included

① GWR: Geographically weighted regression model. ② GLM: Generalized linear model. ③ BRT: Boosted regression trees. ④ GAM: Generalized additive model. ⑤ 
SDM: Spatial dubin model. ⑥ GMM: Gaussian mixed model

Category Number Method Number References

Visualization 58 Rate map 57 [7, 8, 18, 19, 20, 22, 24, 25, 26, 28, 29, 30, 31, 35, 
36, 37, 38, 39, 41, 42, 44, 45, 47, 48, 49, 50, 51, 
52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 
66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 
80, 84, 85, 86]

Kernel density map 4 [23, 45, 53, 66]

Excess hazard map 2 [18, 58]

Spatially smoothed percentile map 1 [18]

Continuous distribution map 1 [18]

Relative risk map 1 [67]

Cluster (Hotspot) Detection 54 Moran’s I statistic 41 [7, 8, 18, 21, 22, 25, 26, 27, 29, 31, 33, 34, 36, 38, 
39, 40, 41, 45, 47, 49, 50, 54, 55, 56, 59, 62, 65, 
66, 67, 68, 69, 70, 71, 73, 75, 79, 80, 82, 83, 85, 
86]

Kulldorff space–time scan statistic 26 [7, 18, 26, 27, 31, 32, 33, 35, 40, 42, 43, 45, 46, 49, 
50, 55, 61, 65, 67, 69, 73, 74, 75, 76, 79, 83]

LISA cluster map 24 [7, 8, 18, 21, 22, 26, 29, 33, 34, 38, 39, 40, 41, 45, 
47, 49, 55, 56, 59, 69, 70, 73, 74, 75]

Getis‑Ord Gi* statistic 18 [21, 33, 34, 36, 38, 39, 49, 53, 56, 62, 65, 66, 68, 
73, 74, 75, 77, 80]

K‑nearest neighbor test 2 [18, 21]

Standard deviation elliptical analysis 2 [66, 81]

Optimized/emerging hot spot analysis 2 [83, 84]

Average nearest neighbor distance method 1 [23]

Density‑based spatial clustering of 
applications with noise

1 [23]

Spatial exploration 10 Hierarchical cluster analysis 3 [52, 82, 86]

Bayesian hierarchical model 2 [54, 58]

Spatial Markov chain model 2 [83, 84]

Spearman rank correlation analysis method 1 [75]

Empirical orthogonal function analysis 1 [30]

Fréchet distance approach 1 [25]

Spatial/Spatio‑temporal modelling 29 GWR 7 [20, 46, 62, 68, 72, 73, 78]

Poisson regression 6 [24, 42, 46, 61, 63, 72]

Geographical detector method 4 [8, 25, 29, 85]

Bayesian spatial model 3 [22, 51, 63]

Linear regression 3 [55, 64, 71]

Lasso regression 2 [58, 73]

GLM 2 [57, 72]

BRT 2 [43, 57]

SDM 2 [83, 84]

GAM 1 [70]

Logistic regression 1 [37]

Granger causality analysis 1 [24]

Cochran‑Armitage trend test 1 [55]

Kruskal–Wallis test 1 [42]

Ecological niche model 1 [7]

GMM 1 [60]
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the primary clusters of fetal syphilis decreased by more 
than 65% in 2015 compared to 2010. Measles had clusters 
in most of Xinjiang, Tibet, and Qinghai, with a tendency 
to decrease from 2005 to 2014. The primary clusters of 
Anthrax covered the Qinghai-Sichuan border and some 
counties in Gansu and Tibet. Hepatitis B and hepatitis C 
both had high-value clusters in Qinghai, Gansu, Xinjiang, 
and Inner Mongolia, while there was a cluster of hepa-
titis B in western Henan and hepatitis C in some cities 
in Northeast China. Human infection with H5N1 virus 
is a subtype of highly pathogenic avian influenza that has 
gradually disappeared since its outbreak in 2009 (shown 
in Table 2).

Infectious diseases which mainly clustered in Central China
COVID-19 mainly clustered in Central China. In 2020, 
the COVID-19 outbroke and tended to be decentralized 
and localized, and incidences were scattered across 
China; however, the number dropped dramatically, with 
the primary clusters located in Hubei Province and its 
surrounding areas (shown in Table 2).

Infectious diseases which mainly clustered in Northeast 
China
Hemorrhagic fever mainly clustered in Northeast China. 
The geographic limits of hemorrhagic fever expanded in 
China from 1994 to 2012. Areas with high incidence were 
mainly concentrated in Northeast and Northwest China, 
with a tendency toward East and North China (shown in 
Table 2).

Infectious diseases which mainly clustered in North China
Brucellosis and SARS mainly clustered in North China. 
Areas with a high incidence of brucellosis were mainly 
located in Northeast and Northwest China, where animal 
husbandry was developed, with a tendency to expand 
to North China. SARS mainly occurred in Beijing, Pearl 
River Delta (shown in Table 2).

Risk factors of notifiable infectious diseases in China
Twenty-nine articles further explored the risk factors 
that influenced the spread of infectious diseases. Of the 
22 infectious diseases analyzed, 14 were included in the 
risk factor analysis. According to the results, potential 

Fig. 3 Geographical distribution map of notifiable infectious diseases in China. The clusters of 22 notifiable infectious diseases included in this 
review were distributed across the indicated region (based on the seven geographical divisions of China) and had been marked in the map. If there 
are clusters (but not the main cluster) of the infectious disease in this region, the name and periods of existence presented in black; if there is the 
main cluster of the infectious disease in this region, the name and periods of existence presented in red
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risk factors for infectious diseases mainly include mete-
orological, socio-economic, population, and spatial–tem-
poral factors, and public health conditions. Among these 
factors, climate (n = 16), socioeconomic factors (n = 9), 
population density (n = 8), transport accessibility (n = 5), 
population movement (n = 4), and air pollution (n = 4) 
had a broad impact on various infectious diseases (Addi-
tional file 1: Supplemental file 2).

Discussion
In this systematic review, we included 71 studies on the 
small-scale spatiotemporal epidemiology of notifiable 
infectious diseases in China, involving 22 infectious 
diseases. Specifically, 13 studies on COVID-19, 12 on 
HFMD, seven on human infection with H7N9 virus, and 
six studies on tuberculosis, which were widely distributed 
in China during certain periods and attracted public 
concern, were included. It indicated that researchers 
have paid considerable attention to emerging infectious 
diseases and some infectious diseases that impose a 
heavy burden in China. Small-scale spatiotemporal 
epidemiology analysis has enhanced the understanding 
of the patterns and determinants of notifiable infectious 
diseases.

Spatial methods have been widely used in the 
spatiotemporal analysis of notifiable infectious diseases in 
China, especially for visualization and cluster detection. 
Although the rate map was the most commonly used 
method, a wide range of novel visualization techniques 
were applied, including kernel density maps, excess 
hazard maps, and spatially smoothed percentile maps. 
For the cluster detection methods, spatial autocorrelation 
analysis based on Moran’s I statistics was applied most 
frequently in 41 studies, in which approximately half 
of the studies were presented visually using the LISA 
cluster map. The Kulldorff space–time scan statistic 
and Getis-Ord Gi* statistic were the most commonly 
used cluster detection methods. The results of cluster 
detection are sensitive to changes in the boundaries 
into which they are grouped [87]; thus, analysis on a 
small scale, such as city or county level, is much better 
than at a province level, helping identify high-risk 
areas more accurately. Nevertheless, assessing the 
presence of this effect should be a priority for future 
studies using aggregated data from spatiotemporal 
epidemiology studies [13]. Notably, in studies that 
incorporated more than one cluster detection method, 
areas identified as hotspots were not identical, with the 
extent of agreement between alternative methods being 
highly variable. As a result, an accumulating body of 
research suggests the use of multiple clustering detection 
methods and requires their overlap to represent truly 
high-risk areas [88, 89]. 29 studies were analyzed using 

spatiotemporal modelling to explore the risk factors 
influencing the spread of infectious diseases. The 
geographically weighted regression model, Poisson 
regression, and the geographical detector method were 
the three most commonly used methods. Accounting 
for spatial correlation could improve model fit, as 
confirmed in the studies included in this systematic 
review, because conventional regression models assume 
spatial independence of model residuals and ignore the 
potential presence of spatial autocorrelation [24, 62, 
77]. Different spatial analysis methods own different 
advantages in visulation, cluster detection and risk factor 
exploration. Researchers choose spatial analysis methods 
based on data availability and research objectives, 
sometimes use different methods for sensitivity analysis. 
For instance, Moran’s I is one of the most common 
spatial autocorrelation indicators, which has the unique 
advantage of detecting four types of spatial clusters (high-
high, low-low, Low–high, high-low). Kulldorff’sspace-
time scan statistic is defined by a circular window with 
a geographic base and with height corresponding to 
time, thus the statistic may be used for either a single 
retrospective analysis, using historic data, or for time-
periodic prospective surveillance. GWR is applied 
under the assumption that the strength and direction of 
the relationship between a dependent variable and its 
predictors may be modified by contextual factors, while 
limitations of GWR include problems of multicollinearity 
and the approaches to calculating goodness of fit 
statistics.

While our review focused on methodological issues, 
some consistent observations about the characteristics 
of disease distribution also received attention. First, 
the trend of notifiable infectious diseases in China has 
presented certain patterns. The incidence and coverage 
of tuberculosis, human infection with H7N9 virus, 
rabies, hemorrhagic fever, malaria, measles, Japanese 
encephalitis, leptospirosis, influenza A(H1N1) virus 
infection, and SARS have decreased significantly in 
the past decade, of which, malaria has almost been 
eliminated [26, 31, 50, 51, 52, 59, 60, 62, 64]; this may 
be attributed to the extensive public disease control 
and ecological and health improvement in China [52]. 
However, dengue, syphilis, hepatitis C, AIDS, brucellosis, 
HFMD, and influenza showed the opposite trend because 
of the rapid development of tourism and the considerable 
increase in the migrant population in recent years [7, 
11, 22, 55, 58, 80, 90]. Through spatiotemporal analyses 
of the included studies, it was found that the primary 
clusters of dengue, hemorrhagic fever, syphilis, Japanese 
encephalitis, anthrax, hepatitis C, brucellosis, HFMD, 
and human infection with H7N9 virus were expanding 
[11, 22, 24, 26, 31, 43, 65, 80]. These diseases have a 
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common tendency to spread to the west and inland 
areas, which was explained by the included studies, 
as the phenomenon might be related to the increase in 
population mobility and improvement of transportation 
infrastructure that has made less developed and inland 
areas more closely connected with the outside world [64, 
91].

Second, through this systematic review, two main 
trends could be summarized to describe the regional 
transmission patterns of notifiable infectious diseases 
in China. Natural focal infectious diseases and vector-
borne diseases spread from specific areas, such as hot 
and humid areas, plateaus, and grasslands, to other 
areas. One possible explanation is that global warming 
and climate anomalies lead to an expansion in the 
activity range of virus hosts [24, 92]. On the other hand, 
clusters of infectious diseases, especially respiratory 
and intestinal infectious diseases, expanded to poor 
mountainous areas and minority regions in the western 
China. The reason might be the rapid urbanization 
process, more convenient public transport, connecting 
the latter two foci, and likely facilitating transmission 
across regions [24, 64]. In particular, the seasonal return 
of migrant workers to their hometowns might have 
facilitated the reintroduction of infectious diseases to 
rural communities in mountainous areas and minority 
regions, which are economically underdeveloped and 
lack health resources [52]. These reasons have greatly 
increased the epidemic prevention pressure on local 
governments.

Risk factors of infectious diseases have been well 
explored. In almost all reviewed studies, meteorological 
factors, socioeconomic factors, population factors, and 
potential contact with livestock (if zoonotic disease) were 
documented to be significantly related to the incidence 
rates of notifiable infectious diseases in China, although 
it is difficult to rule out publication bias favoring studies 
with positive findings. This result is consistent with our 
observation that most of the diseases were gathered in 
the area east of the Hu Huanyong Line, including rabies, 
dengue, Japanese encephalitis, leptospirosis, and influ-
enza A(H1N1) virus infection, which were contributed by 
the warm and humid climate, relatively advanced econ-
omy, high population density, and frequent population 
movements in the area east of the Hu Huanyong Line. 
However, factors which have a notable impact on the 
spread of the disease, such as medical facilities, exposure 
to livestock or poultry, and government interventions, 
were rarely considered. Future studies could incorpo-
rate these into models as independent variables of inter-
est or control variables. In addition, small-area analyses 
enable researchers to fully explore the causal relationship 
between diseases and their potential risk factors, making 

it more statically unbiased [93]. Using aggregate data at 
the province or country level often leads to a modifiable 
areal unit problem (MAUP), which refers to the fact that 
aggregating data into larger sizes or geographical units 
for spatial analysis can cause many problems, including 
accuracy, scale, quality (possible bias), and confounding 
factors [94]. One of the best ways to solve the MAUP is to 
use data that provide detailed information about spatial 
units at the small-area level; if failed to do so, it is difficult 
to guarantee the reliability of the results [95].

Over the past four decades, China has experienced 
a large-scale modification in the landscape due to 
industrialization and urbanization, which has possibly 
led to rapid changes in the regional transmission 
pattern of infectious diseases in China [5, 96]. Although 
the number of cases in China has declined steadily 
over the past few years, most infectious diseases have 
paradoxically occurred in a wider geographical area, 
which ought to draw more attention from policymakers. 
Given the limited resources available, targeted efforts 
in different areas are required. First, local governments 
should pay attention to the temporal and spatial trends 
in the expansion of infectious diseases and prepare 
for epidemic prevention in advance. In cluster areas, 
sufficient funding is needed to improve sanitation and 
sanitation infrastructure [97]. Second, comprehensive 
control measures, including political commitment to 
control programs, inter-sectoral coordination, sensitive 
surveillance systems, accessibility to modern vaccines, 
awareness education, and cooperation should be 
strengthened in China [98]. Third, health education 
and promotion campaigns among both residents and 
physicians are priorities in atypical areas [99].

There are still a few limitations in the small-scale 
spatiotemporal epidemiology of notifiable infectious 
diseases in China. First, some diseases are widely 
distributed in China, but their spatiotemporal 
epidemiology has not been studied on a small scale, 
especially infectious diseases in class C. In addition, 
previous studies must be updated owing to the earlier 
production time. Second, ArcGIS, SaTScan, and Geoda 
are still the most commonly used software, limiting the 
application of new spatiotemporal methods. There is 
scope for the development of new tools for the analysis 
and visualization of spatial data. Third, it is important 
to systematically summarize the temporal and spatial 
characteristics of notifiable infectious diseases in 
China on a small scale. However, for the current 
research status, there are still over half of notifiable 
infectious diseases in China that have not been studied 
in small-scale spatiotemporal epidemiology, including 
gonorrhea and scarlet fever. For the included studies, 
the research time interval overlapped significantly. 
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Applying spatiotemporal epidemiological methods to 
study infectious diseases can inform decision-makers 
and other stakeholders regarding where and when to 
improve targeted response measures to mitigate further 
transmission. Fourth, the data of most studies included 
were compiled from the CISDCP, which could indicate 
that the data were underreported. Passive surveillance 
data could cause some cases to go unreported because 
of their milder clinical symptoms, or some could be 
delayed in reporting because of delayed diagnosis in 
rural settings. Researchers should increase the number 
of studies in which data are collected through active 
surveillance.

Conclusion
In summary, small-scale spatiotemporal epidemiology 
has made great progress in the past 20  years and 
been widely applied in improving the understanding 
of notifiable infectious diseases in China, including 
the distribution, clusters, trends, risk factors, and the 
mechanisms driving the local epidemiology. As data 
types and sources become increasingly rich and complex, 
we encourage researchers to use the latest publicly 
available data and to focus on infectious diseases that 
have not yet been studied in China, and more attention 
should be paid to systematically exploring the factors that 
contribute to spatial differences in infectious diseases.
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