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Abstract 

Background:  Coronavirus disease 2019 (COVID-19) is accompanied by activated immune-inflammatory pathways 
and oxidative stress, which both induce indoleamine-2,3-dioxygenase (IDO), a key enzyme of the tryptophan (TRP) 
catabolite (TRY​CAT​) pathway. The aim of this study was to systematically review and meta-analyze the status of the 
TRY​CAT​ pathway, including the levels of TRP and kynurenine (KYN) and the activity of IDO, as measured by the ratio of 
KYN/TRP.

Methods:  This systematic review searched PubMed, Google Scholar, and Web of Sciences and included 14 articles 
that compared TRP and tryptophan catabolites (TRY​CAT​s) in COVID-19 patients versus non-COVID-19 controls, as well 
as severe/critical versus mild/moderate COVID-19. The analysis was done on a total of 1269 people, including 794 
COVID-19 patients and 475 controls.

Results:  The results show a significant (p < 0.0001) increase in the KYN/TRP ratio (standardized mean difference, 
SMD = 1.099, 95% confidence interval, CI: 0.714; 1.484) and KYN (SMD = 1.123, 95% CI: 0.730; 1.516) and significantly 
lower TRP (SMD = − 1.002, 95%CI: − 1.738; − 0.266) in COVID-19 versus controls. The KYN/TRP ratio (SMD = 0.945, 
95%CI: 0.629; 1.262) and KYN (SMD = 0.806, 95%CI: 0.462; 1.149) were also significantly (p < 0.0001) higher and TRP 
lower (SMD = − 0.909, 95% CI: − 1.569; − 0.249) in severe/critical versus mild/moderate COVID-19. No significant dif‑
ference was detected in kynurenic acid (KA) and the KA/KYN ratio between COVID-19 patients and controls.

Conclusions:  Our results indicate increased activity of the IDO enzyme in COVID-19 and severe/critical patients. 
The TRY​CAT​ pathway is implicated in the pathophysiology and progression of COVID-19 and may signal a worsening 
outcome of the disease.
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Background
Infection with severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) may cause coronavirus disease 
2019 (COVID-19) [1]. Some COVID-19 patients may 

experience acute respiratory distress or even severe acute 
respiratory syndrome (SARS), which may necessitate 
admission to an intensive care unit [1, 2]. SARS can also 
cause organ failure and death, especially in older people 
and people with type 2 diabetes mellitus (T2DM), high 
blood pressure, heart disease, stroke, dementia, obesity 
[1–3], and a high body mass index [4].

COVID-19 is characterized by activated immune-
inflammatory pathways and, in some cases, 
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hyperinflammation [5, 6]. Most importantly, during 
SARS-CoV-2 infection, the cytokine network is activated, 
with elevated levels of many pro-inflammatory cytokines 
such as interleukin (IL)-1β, IL-18, IL-6, tumor necro-
sis factor (TNF)-α, and interferon (IFN)-γ [7–10]. Mild 
COVID-19 may progress into SARS with pneumonia 
(and lowered oxygen saturation and lung lesions on chest 
computerized tomography scan), intravascular coagula-
tion, multisystem failure, and death if these pro-inflam-
matory cytokines are overproduced during a cytokine 
storm [2, 7, 8]. Profound tissue damage, even extending 
to organ failure, may be the consequence of enduring 
increases in IFN-γ secretion [11]. COVID-19 is accom-
panied by increased production of reactive oxygen spe-
cies (ROS) and ensuing oxidative damage, contributing to 
severe COVID-19 [12–14].

During infection, increased levels of IFN-γ, IL-1β, 
IL-6, and ROS may induce indoleamine-2,3-dioxygenase 
(IDO), which activates the catabolism of tryptophan 
(TRP), thereby lowering serum TRP and increasing tryp-
tophan catabolites (TRY​CAT​s), including kynurenine 
(KYN), 3-OH-kynurenine (3HK), kynurenic acid (KA), 

quinolinic acid (QA), and xanthurenic acid (XA) [15]. 
Activation of the TRY​CAT​ pathway protects against 
hyperinflammation and microbial invasion by different 
processes including scavenging ROS, TRP starvation, and 
negative immunoregulatory effects [15, 16].

Furthermore, some TRY​CAT​s, such as XA and KA, 
have antioxidant properties [17], whereas KYN, KA, XA, 
3HK, and QA have negative immune regulatory effects, 
such as inhibiting IFN-γ production [16, 18]. Nonethe-
less, following overproduction of TRY​CAT​s, several 
detrimental consequences may appear, including oxida-
tive stress, immune activation, and neurotoxic effects 
[19–25].

In COVID-19, some authors reported increased activ-
ity of the TRY​CAT​ pathway as indicated by lowered 
TRP and increased KYN levels and an increased KYN/
TRP ratio [26–28], which reflects IDO activity [29]. Fig-
ure  1 shows the possible role of the TRY​CAT​ pathway 
in COVID-19. Probably, the IDO enzyme, which is the 
first and rate-limiting enzyme of the TRY​CAT​ pathway, 
is induced in COVID-19 by increased levels of IFN-γ, 
IL-1, IL-6, TNF-α, and ROS [15]. Moreover, stimulation 

Fig. 1  Summary of TRY​CAT​ pathway in COVID-19. BMI body mass index, C cohort, T2DM type 2 diabetes mellitus, IFN-γ interferon-Gamma, IL-6 
interleukin 6, IL-1β interleukin-1 beta, O&NS oxidative and nitrosative stress, O2 oxygen, CCTA​ chest computed tomography abnormalities, AhR aryl 
hydrocarbon receptor, IDO indoleamine 2,3 dioxygenase, TDO tryptophan 2,3-dioxygenase, KAT kynurenine aminotransferase, KMO kynurenine 
3-monooxygenase, KYNU kynureninase, TRP tryptophan, KYN kynurenine, KA kynurenic acid, 3HK 3-hydroxykynurenine, AA anthranilic acid, XA 
xanthurenic acid, 3HA 3-hydroxyanthranilic acid, PA picolinic acid, QA quinolinic acid, NAD +  nicotinamide adenine dinucleotide. Created with 
BioRender.com
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of the aryl hydrocarbon receptor (AhR) by coronaviruses 
and IDO-induced KYN levels may cause the “systemic 
aryl hydrocarbon receptor activation syndrome” (SAAS), 
which aggravates hyperinflammation, hypercoagulation, 
and organ injuries [30]. It was hypothesized that TRY​
CAT​ pathway activation may worsen COVID-19 and 
probably decrease the patient’s recovery potential [26, 
31]. Nevertheless, no systematic review and meta-anal-
ysis were conducted on COVID-19 and severe/critical 
COVID-19 to examine whether the TRY​CAT​ pathway is 
activated.

Hence, the purpose of the current study was to system-
atically review and meta analyze the TRP and TRY​CAT​ 
results in COVID-19 patients versus controls and severe/
critical versus mild/moderate COVID-19.

Methods
The current meta-analysis was in compliance with the 
standards of Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) 2020 [32], the 
guidelines of the Cochrane Handbook for Systematic 
Reviews and Interventions [33], and the Meta-Analyses 
of Observational Studies in Epidemiology (MOOSE). In 
the present meta-analysis, we examine TRP and TRY​CAT​ 
levels. We also used the KYN/TRP and (KA + KYN)/TRP 
ratios to measure the activity of the IDO enzyme and 
the KA/KYN and KA/(KYN + TRP) ratios to measure 
the activity of the kynurenine aminotransferase (KAT) 
enzyme.

Search strategy
The search for literature started on December 15th, 2021 
and ended on December 31st, 2021, when all the required 
data were collected. We entered specific Mesh terms and 
keywords in electronic databases to find related articles 
in PubMed/MEDLINE, Google Scholar, and Web of Sci-
ence. These terms and keywords, focused on TRP, TRY​
CAT​s and COVID-19, are shown in the Additional file 1: 
Table S1. To ensure that we included all the related arti-
cles, we also searched the reference lists of previous 
reviews and grey literature.

Eligibility standards
We included published papers in peer-reviewed journals 
and written in the English language as the main criteria 
for selecting articles. However, we also reviewed manu-
scripts published in other languages such as Thai, French, 
Spanish, German, Italian, and Arabic. Inclusion criteria 
were: (a) observational case–control and cohort studies 
that quantified the concentrations of TRP and TRY​CAT​
s in serum, plasma, cerebrospinal fluid (CSF), and brain 
tissues of patients who showed a positive real-time poly-
merase chain reaction (RT-PCR) test for SARS-CoV-2 

and were either symptomatic or asymptomatic; and (b) 
studies reporting data in a control group consisting of 
healthy people, previously infected or recovered patients, 
or a subgroup of mild/moderate COVID-19 patients; and 
(c) the results are reported as quantitative scores with 
mean and standard deviation (SD) or standard error of 
the mean (SEM). We excluded the following studies: (a) 
systematic and narrative reviews and meta-analysis stud-
ies; (b) duplicate studies as well as animal and genetic 
studies; (c) articles that used other media, including 
saliva; and (d) the authors did not show mean and SD/
SEM of the measured biomarkers or any other mean to 
estimate these values. When the authors presented geo-
metric means, medians (interquartile range, range), or 
represented data as a graph, we sent emails to request the 
mean ± SD in the study groups. Without response from 
the authors, we used the estimation method described 
by Wan and Wang [34] to compute mean ± SD from the 
median with either interquartile range or range. In addi-
tion, Web Plot Digitizer (https://​autom​eris.​io/​WebPl​
otDig​itizer/) was also used to get quantitative informa-
tion from a graph.

Primary and secondary outcomes
The primary outcome is IDO activity, which we assessed 
through the KYN/TRP and (KYN + KA)/TRP ratios [35] 
in COVID-19 patients versus controls. Secondary out-
comes were the KA/KYN and KA/(KYN + TRP) indices 
which reflect KAT enzyme activity. The TRP and TRY​
CAT​s data were not only compared between people with 
COVID-19 and people who did not have COVID-19 
(study cohort 1), but they were also compared between 
people with severe/critical COVID-19 (some of whom 
died from it) and people with mild/moderate COVID-19 
(study cohort 2).

Screening and data extraction
The first author (AA) performed an initiatory review 
by evaluating the titles and abstracts to ensure which 
papers were eligible to be included. Consequently, eli-
gible full-text articles were downloaded after removing 
some publications according to the predetermined exclu-
sion criteria. All required data extracted from the articles 
were entered in a predefined excel spreadsheet file made 
for this project, including researcher’s names, publica-
tion date, quantitative data of TRP and TRY​CAT​s, the 
number of the participants either as a COVID-19 or con-
trol groups, demographic data such as age (expressed as 
mean ± SD), male/female count, type of sample, serum or 
plasma, severity level, country latitude in which the study 
was conducted, and quality scores of the studies (see 
below).

https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
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Furthermore, all extracted data in the excel spreadsheet 
were scrutinized by the second author (TS) immediately 
after the first author finalized entering the data. The last 
author (MM) was consulted in the case of controversial 
results. The last author slightly adjusted the “immune 
confounder scale (ICS)” published previously [36–38] to 
estimate the methodological quality of TRY​CAT​ stud-
ies. This ICS and the related repoint checklist are shown 
in Additional file 1: Table S2. These scores estimate key 
quality data such as sample size, covariate control and 
the time of sampling. The best methodological quality 
is obtained when the ICS score is close to 10 with the 
overall score ranging from 0 to 10. The redpoints score 
scale mainly focuses on the poor adjustment of the key 
confounders, which may cause biased TRY​CAT​s results 
(either due to biological or analytical variation), along 
with an uncontrolled study design. The range of the score 
scale is from 0 to 26 with values close to 26 indicating 
poor control and quality.

Data analysis
We employed the CMA V3 software to conduct the cur-
rent meta-analysis and we followed the PRISMA guide-
lines [39]. The presence of TRY​CAT​s in at least three 
studies was the determinant for conducting a meta-anal-
ysis. The biomarker’s outcomes as assessed in our system-
atic review and meta-analysis are displayed in Table  1. 
By calculating the mean values of the markers in their 
respective profiles (e.g. KYN/TRP ratio) and assuming 
dependency, we compared the synthetic scores indicat-
ing these profiles in COVID-19 patients (or subgroups) 
versus their controls. In the meta-analysis, IDO activity 

was estimated by specifying the direction of the effect 
size of KYN as positive (favoring COVID-19) and TRP 
as negative. Furthermore, KAT activity was estimated 
by entering KA with a positive direction (thus favor-
ing COVID-19) and TRP and/or KYN with a negative 
direction in the meta-analysis. A restricted maximum-
likelihood random-effects model was utilized based on 
our hypothesis that the included studies have different 
characteristics. The standardized mean difference (SMD) 
with 95% confidence intervals (95% CI) was computed as 
the indicator for the effect size. We considered the results 
to be statistically significant when p < 0.05 (two-tailed 
tests). SMD values of 0.8, 0.5, and 0.2 indicate large, mod-
erate, and small effect sizes, respectively [40]. Heteroge-
neity was examined by tau-squared values as mentioned 
previously and we also computed the Q and I2 metrics 
[41, 42]. We also used the leave-one-out approach to 
conduct sensitivity analyses to assess the robustness of 
the pooled combined meta-analysis effects and between-
study heterogeneity. We assessed possible differences in 
TRP and TRY​CAT​s between serum and plasma [37] by 
considering these subgroups as a unit of analysis. We 
compared the effects at different study levels and ran the 
meta-analysis across subgroups. We assessed the impact 
of small study effects, including publication bias, using 
the conventional fail-safe N approach, Kendall tau with 
continuity correction (using one-tailed p-values), and 
Egger’s regression intercept (using one tailed p-values). 
When Egger’s linear regression test indicates substantial 
asymmetry, we estimate the modified effect size after 
accounting for the impacts of missing studies using Duval 
and Tweedie’s trim-and-fill approach. We conducted 

Table 1  The number of COVID-19 patients and studies included in the meta-analyses and the side of standardized mean difference 
(SMD) and the 95% confidence intervals with respect to the zero SMD

KYN kynurenine, TRP tryptophan, KA kynurenic acid

Outcome profiles n studies Side of 95% confidence intervals Patient
Cases

Control
Cases

Total number 
of participants

 < 0 Overlap 0
and SMD < 0

Overlap 0 and 
SMD > 0

 > 0

Cohort 1: COVID-19 patients versus non-COVID-19 control

 KYN/TRP 10 1 0 2 7 329 475 804

 KYN 8 0 1 0 7 285 419 704

 TRP 7 5 1 1 0 275 409 684

 KA 4 0 1 2 1 113 94 207

 KA/(KYN + TRP) 8 1 1 4 2 285 419 704

 (KYN + KA)/TRP 10 1 0 3 6 329 475 804

 KA/KYN 8 3 3 2 0 285 419 704

Cohort 2: severe/critical COVID-19 patients versus mild/moderate COVID-19 patients

 KYN/TRP 9 0 0 1 8 270 503 773

 KYN 6 0 0 3 3 184 399 583

 TRP 5 3 2 0 0 153 282 435
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random-effect meta-regression analyses to estimate the 
impact of covariates including age, sex, country latitude 
in which the study was conducted, type of medium, 
severity of illness and quality scores of the studies.

Results
Search findings
During the selection process, 30 articles were investi-
gated in the current study based on the keywords shown 
in Additional file  1: Table  S1. The detailed information 
related to the inclusion–exclusion criteria of the research 
papers and the outcomes of our search process is pre-
sented in the PRISMA flowchart shown in Fig. 2. Nine-
teen full-text papers were eligible for the systematic 
review after 11 records were removed from the initial 
number of articles. Finally, the meta-analysis involved 14 
articles as 5 papers were excluded for reasons listed in 
Additional file 1: Table S3 [26, 27, 31, 43–53].

In this meta-analysis, we considered case–control 
and retrospective studies. This study examined 804 
subjects in study cohort 1 (329 COVID-19 patients 

and 475 non-COVID-19 controls), and 773 individu-
als in the second cohort (involving 270 severe/critical 
COVID-19 patients and 503 mild/moderate COVID-
19 patients). As shown in Additional file  1: Table  S3, 
we excluded 5 studies from the meta-analysis. In 
Cohort 1, TRY​CAT​s were examined in plasma in 6 
studies while 4 studies used serum, whereas in the sec-
ond cohort, 6 studies were based on plasma and 3 used 
serum. Liquid chromatography-mass spectrometry 
(LC–MS) was used in 5 studies, while 3 studies utilized 
liquid chromatography and two mass spectrometry 
(LC–MS/MS). In two studies, ultra-high-performance 
liquid-chromatography-mass spectrometry (UHPLC-
MS) and high-performance liquid chromatography 
were employed and the remaining studies used liquid 
chromatography–high-resolution mass spectrometry 
(LC–HRMS) and liquid chromatography-UV detection 
(LC-UV). All the included studies were conducted on 
patients who showed positive COVID-19 with vary-
ing degrees of severity. In the control group, some 
authors reported that they never got an infection with 

Fig. 2  Prisma flow chart
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COVID-19 and others just mentioned they were not 
infected.

Overall, within 14 eligible studies, there were 794 
COVID-19 patients (329 in case control studies and 
465 in retrospective studies) and 475 non-COVID-19 
controls. The ages of the participants were between 40 
and 95 years old. Brazil, USA, Latvia, Canada, France, 
China, Mexico, Sweden, Spain, and Italy each con-
tributed one study, while Australia and Austria each 
contributed two studies. However, most participants 
were from Italy due to the large sample size. Addi-
tional file  1: Table  S4 shows the median (min–max) 
ICS score, namely redpoint and quality scores which 
equaled 12.5 (min = 6, max = 17) and 3 (min = 3, 
max = 7), respectively.

COVID‑19 versus controls
The primary outcome variables KYN/TRP and (KYN + KA)/TRP 
ratio
The results of the systematic review on KYN/TRP in 
COVID-19 are shown in Table  1. We found that out of 
the ten included studies, the 95% CI for 7 (4 serum, 3 
plasma) were entirely on the positive side of zero, while 
only one (plasma) study was totally on the negative side 
of zero. The two other studies showed 95% CI that over-
lapped with zero but with SMD values that were greater 
than zero. Figure 3 shows the forest plot of KYN/TRP in 
COVID-19 patients versus non-COVID-19 controls. We 
performed subgroup analyses to examine the high het-
erogeneity as indicated by elevated values of τ2. These 
results showed a trend toward a possible difference 
(p = 0.059) between serum and plasma. The serum results 
displayed a huge and significant effect size between 
COVID-19 and controls, whereas the plasma findings 

Fig. 3  Forest plot with the results of a meta-analysis performed on the kynurenine/tryptophan (KYN/TRP) ratio in COVID-19 patients versus 
non-COVID-19 controls
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were non-significant (Table 2). In addition, in serum, the 
heterogeneity was lower as compared with plasma. We 
found 3 missing studies on the left side and imputation 
of these missing studies lowered the SMD to 0.573 (95% 
CI: 0.003; 1.144), although still significant. Serum results 
did not show any bias; while there was 1 missing study 
in plasma, and after imputation, the SMD decreased to 
0.462 (95% CI: − 0.155; 1.080).

Table 1 shows that in 6 studies (out of 10) the 95% CI 
were totally on the right side of zero and that only one 
study showed that the CI were completely on the left side 
of zero. The 95% CI of the other 3 studies crossed the 
zero line, but all showed SMD values that were greater 
than zero. Table 2 shows there is a significant difference 
in (KYN + KA)/TRP ratio between COVID-19 patients 
and controls with a large effect size of SMD = 0.789. 
Additional file  2: Fig. S1 displays the forest plot of the 
(KYN + KA)/TRP ratio. Table  3  shows no evidence of 
publication bias, although there were two missing stud-
ies on the left side and a somewhat lower adjusted SMD 
after imputation (SMD = 0.579).

Table 1 and Additional file 2: Fig. S2 display the forest 
plot of TRP in COVID-19. Table 2 shows an overall sig-
nificant decrease in TRP in COVID-19 with a high effect 
size (SMD = −  1.002). Although there were no signifi-
cant differences (p = 0.404) between plasma and serum, 
serum TRP was significantly decreased in COVID-19 
(SMD = −  1.216), whereas plasma TRP did not show 
significant differences. Table  3  shows no evidence of 

publication bias, although Duval and Tweedie’s trim and 
fill showed one missing value on the right side and impu-
tation yielded an adjusted SMD of − 0.817.

Table 1 shows that out of 8 KYN studies, the 95% CI of 
7 studies was completely on the right side of zero, while 
one CI intersected with zero. Additional file 2: Fig. S3 and 
Table  2  show the KYN results, indicating a highly sig-
nificant increase in KYN in COVID-19 (SMD = 1.123). 
Duval and Tweedie’s trim and fill showed two miss-
ing studies on the left side   and imputing these studies 
yielded a slightly decreased effect size (SMD = 0.961, 95% 
CI: 0.584; 1.338), which was still significant.

Secondary outcome variables
KA and KA ratios 
Table 1 and 2 and Additional file 2: Fig. S5 show the KA, 
KA/KYN and KA/(KYN + TRP) results. There was a sig-
nificant increase with a small effect size (SMD = 0.297) 
in KA/(KYN + TRP) in COVID-19 patients as compared 
with controls. However, after imputing one missing 
study, the SMD decreased to 0.023 and was no longer sig-
nificant (Table 3).

KA results were obtained in 4 studies. Table  1 and 
Additional file 2: Fig. S6 show that 3 studies intersected 
with zero, with 2 studies showing SMD values greater 
than zero and one study less than zero, while one study 
showed 95% CI, which were completely on the right side 
of zero. There was a high heterogeneity when serum 
and plasma were combined, with a significant difference 

Table 2  Results of meta-analysis performed on several outcome variables of the tryptophan catabolite (TRY​CAT​) pathway

KYN kynurenine, TRP tryptophan, KA kynurenic acid

Outcome feature sets n Groups SMD 95% CI z p Q df p I2 (%) τ2 Τ

Cohort 1: COVID-19 patients versus non-COVID-19 control

 KYN/TRP 10 Overall 1.099 0.714; 1.484 5.594  < 0.0001 85.310 9  < 0.0001 89.450 0.616 0.785

4 Serum 1.359 0.889;1.829 5.666  < 0.0001 9.104 3 0.028 67.049 0.145 0.390

6 Plasma 0.569 − 0.103; 1.241 1.661 0.097 38.093 5  < 0.0001 86.874 0.591 0.769

Q = 3.568, df = 1, p = 0.059

 KYN 7 Overall 1.123 0.730; 1.516 5.595  < 0.0001 29.745 7  < 0.0001 76.467 0.221 0.470

 TRP 7 Overall − 1.002 − 1.738; − 0.266 − 2.668 0.008 88.926 6  < 0.0001 93.253 0.892 0.944

 KA 4 Overall 0.164 − 0.120; 0.449 1.133 0.257 6.947 3 0.074 56.816 0.128 0.358

2 Serum 0.649 0.170; 1.129 2.653 0.008 0.617 1 0.432 0.000 0.000 0.000

2 Plasma -0.098 − 0.451;0.255 − 0.546 0.585 0.275 1 0.600 0.000 0.000 0.000

Q = 6.055, df = 1, p = 0.014

 KA/(KYN + TRP) 10 Overall 0.297 0.089;0.506 2.794 0.005 40.957 9  < 0.0001 78.026 0.255 0.505

 (KYN + KA)/TRP 10 Overall 0.789 0.261;1.318 2.926 0.003 87.188 9  < 0.0001 89.678 0.624 0.790

 KA/KYN 8 Overall − 0.398 − 0.967; 0.170 -1.373 0.170 66.867 7  < 0.0001 89.531 0.569 0.754

Cohort 2: severe/critical COVID-19 patients versus mild/moderate COVID-19 patients

 KYN/TRP 8 Overall 0.945 0.629; 1.262 5.848  < 0.0001 25.776 8 0.001 68.964 0.151 0.389

 KYN 6 Overall 0.806 0.462; 1.149 4.593  < 0.0001 13.343 5 0.020 62.528 0.108 0.328

 TRP 5 Overall − 0.909 − 1.569; − 0.249 − 2.699 0.007 28.165 4  < 0.0001 85.798 0.462 0.680
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(p = 0.014) between both media. Therefore, we con-
ducted a subgroup analysis showing that the results in 
serum contradicted those in plasma (see Table 2).

Severe/critical COVID‑19 versus mild/moderate COVID‑19
Table  1 shows that all 95% CI of the cohort 2 stud-
ies reporting on severe/critical versus mild/moderate 
COVID-19 were completely on the right side of zero 
(favoring severe/critical patients), except 1 study which 
crossed zero. There is a significant difference in the KYN/
TRP ratio between severe/critical versus mild/moderate 
COVID-19 with a huge effect size favoring severe/criti-
cal COVID-19 (SMD = 0.945). Figure 4 shows the forest 
plot of the KYN/TRP ratio between severe/critical ver-
sus mild/moderate patients. Publication bias with one 
missing study was detected and the adjusted SMD was 
slightly less than the observed but was still significant 
with a high impact size (SMD = 0.876). Additional file 2: 
Fig.  S7 and Table  2  show significantly lowered TRP in 
severe/critical COVID-19 as compared with mild/mod-
erate COVID-19 with a large effect size (SMD = − 0.909). 
Table 2 and Additional file 2: Fig. S8 show an overall sig-
nificant difference in KYN levels between severe/critical 
and mild/moderate COVID-19 with a large effect size 
(SMD = 0.806). Table 3 did not show evidence of publica-
tion bias in the KYN data in critical COVID-19.

Meta‑regression analysis
The meta-regression results are shown in Additional 
file  1: Table  S5 indicating that the type of medium 
affected the KYN/TRP (p = 0.047) and (KYN + KA)/TRP 
(p = 0.051) ratios, and also KA (p = 0.006). Furthermore, 

sample size had a significant (p = 0.022) effect on the 
KA/KYN ratio, and disease severity had a significant 
(p = 0.003) effect on the KA/(KYN + TRP) ratio.

Discussion
IDO and KAT in COVID‑19
The first major findings of this systematic review and 
meta-analysis are that (a) the KYN/TRP ratio is sig-
nificantly increased in COVID-19 patients compared to 
non-COVID-19 controls with a high effect size; and (b) 
the KYN/TRP ratio is dramatically increased in severe/
critical COVID-19 as compared with mild/moderate 
COVID-19 again with a large effect size. Importantly, 
the severe/critical COVID-19 patient samples included 
in this study mainly consist of critical patients who did 
not survive, and therefore, our results also suggest that 
an increased KYN/TRP ratio is associated with death due 
to COVID-19. These results indicate that IDO activity 
and the TRY​CAT​ pathway are upregulated in COVID-
19 and that it predicts critical disease and non-survival. 
The most probable cause of IDO enzyme activation in 
COVID-19 is the increased level of pro-inflammatory 
cytokines including IFN-γ, IL-1β and IL-6 [54, 55] and 
activated oxidative stress pathways [56], which both 
potently stimulate IDO [26, 57].

Further analyses showed that the changes in the 
KYN/TRP ratio are attributable to significant increases 
in KYN and decreases in TRP in COVID-19, again with 
large effect sizes. These results extend the findings of 
previous studies which showed associations between 
the severity of COVID-19 and increases in the KYN/
TRP ratio and KYN and decreases in TRP [26, 52, 53]. 

Table 3  Results on publication bias

Outcome feature sets Fail safe n Z Kendall’s τ p Egger’s t test (df) p Missing 
studies 
(side)

After adjusting

Cohort 1: COVID-19 patients versus non-COVID-19 control

 KYN/TRP (overall) 10.499 0.089 0.464 0.989 (8) 0.175 3 (left) SMD = 0.573 0.003; 1.144)

 KYN/TRP (serum) 11.244 0.679 0.248 1.223 (2) 0.172 0

 KYN/TRP (plasma) 4.373 0.563 0.286 0.347 (4) 0.372 1 (left) SMD = 0.462 (− 0.155; 1.080)

 KYN (overall) 11.647 0.494 0.310 0.269 (6) 0.398 2 (left) SMD = 0.961 (0.584; 1.338)

 TRP (overall) − 11.267 0.150 0.440 0.947 (5) 0.193 1 (Right) SMD = − 0.817 (− 1.618; − 0.017)

 KA (overall) 2.478 0.000 0.500 0.720 (2) 0.273 0

 KA/(KYN + TRP) (Overall) 1.673 1.162 0.122 0.549 (8) 0.298 1 (Left) SMD = 0.023 (− 0.358;0.405)

 (KYN + KA)/TRP (overall) 9.818 0.804 0.210 1.213 (8) 0.129 2 (Left) SMD = 0.579 0.0007; 1.157)

 KA/KYN (Overall) − 5.376 0.247 0.402 1.598 (6) 0.080 0

Cohort 2: severe/critical COVID-19 patients versus mild/moderate COVID-19 patients

 KYN/TRP (Overall) 10.226 1.251 0.105 2.362 (7) 0.025 1 (Left) SMD = 0.876 (0.562; 1.189)

 KYN (overall) 7.758 0.187 0.425 0.129 (4) 0.451 0

 TRP (overall) -5.887 1.959 0.025 5.897 (3) 0.004 0
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Thus, TRY​CAT​ pathway activation appears to contrib-
ute to a fatal course of the disease [58–60].

The second major finding of this study is that the 
KA/KYN ratio did not show a significant difference 
between COVID-19 patients as compared to non-
COVID-19 controls, indicating no significant changes 
in KAT activity. Serum KA was significantly increased 
in COVID-19 with a medium effect size (0.649), 
whereas in plasma a non-significant inverse associa-
tion was found. There is insufficient data to perform 
meta-analysis on other ratios reflecting kynurenine 
3-monooxygenase (KMO) and kynureninase (KYNU) 
activity. In this respect, Lawler et al., reported elevated 
levels of 3HK and QA in patients with COVID-19 com-
pared to healthy controls [49]. Likewise, Marin-Corral 
et  al. reported a high level of 3HK in severe/critical 
COVID-19 patients compared to those with mild/mod-
erate infection [52].

Role of the TRY​CAT​ pathway in COVID‑19
During infection, IDO activation and consequent 
increased TRY​CAT​s but lowered TRP levels are key 
components of the innate immune response. First, the 
TRY​CAT​ pathway has major intrinsic scavenging activi-
ties by neutralizing ROS [15]. Moreover, some TRY​CAT​
s have antioxidant properties on their own, as for exam-
ple, 3-hydroxyanthranilic acid (3HA) and 3HK, which 
are more effective as radical scavengers than tocoph-
erol, and XA, which has antioxidant activity comparable 
to that of butylated hydroxytoluene (BHT) [15, 17]. By 
protecting tissues from oxidative damage, KA has ade-
quate antioxidant effects [61, 62]. Second, reduced TRP 
exerts anti-inflammatory (reduced T cell proliferation 
and activation, sensitization of apoptosis of activated 
T cells, and induction of the regulatory phenotype) and 
antimicrobial (inhibiting the growth of viruses, bacteria 
and parasites) effects through TRP starvation [63–67]. 

Fig. 4  Forest plot with the results of a meta-analysis performed on the kynurenine/tryptophan (KYN/TRP) ratio in severe/critical COVID-19 versus 
mild/moderate COVID-19
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Third, TRY​CAT​s such as KA, KYN, QA, and XA may 
have a negative immune-regulatory effect by decreasing 
IFN-γ production and/or increasing IL-10 production 
[15, 18]. In addition, KA has potent anti-inflammatory 
effects, while diminished KA levels may aggravate tis-
sue damage and cell proliferation [68]. IFN-γ-induced 
stimulation of antigen-presenting cells upregulates the 
TRY​CAT​ pathway and results in a counter-regulatory 
effect that preserves homeostasis [69]. Due to the fact 
that TRY​CAT​s trigger apoptosis in Th-1, but not Th-2, 
cells, TRY​CAT​ pathway activation may suppress Th-1 
cells and promote Th-2 cell survival [70, 71]. As such, 
TRY​CAT​ pathway activation results in a negative feed-
back loop to limit ROS production, hyperinflammation, 
and the Th-1 response [18, 70]. Fourth, some TRY​CAT​s 
have neuroprotective effects including KA, anthranilic 
acid (AA) and XA. Thus, KA may inhibit N-methyl-
d-aspartate (NMDA), kainate glutamate ionotropic, 
and amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptors, and reduce glutamate libera-
tion through attenuating alpha 7 nicotinic acetylcho-
line receptors [16, 72]. XA inhibits vesicular glutamate 
transport (VGLUT), synaptic transmission via the 
NMDAR receptor, and excitatory postsynaptic poten-
tials [73]. Furthermore, AA has neuroprotective effects 
by blocking the synthesis of neurotoxic TRY​CAT​s such 
as picolinic acid (PA) and QA from 3HA [74].

Nevertheless, overproduction of some TRY​CAT​s may 
cause detrimental effects on COVID-19. KA is impli-
cated in deteriorating male COVID-19 patients through 
affecting the AhR, one of the master regulators of the 
immune-inflammatory response [75]. In addition, activa-
tion of AhR by TRY​CAT​s, mainly KYN, affects immune 
resistance against viral infections and the airway basal 
cells of the lung epithelium, which are responsible for 
tissue repair [50, 76]. Most importantly, coronaviruses 
activate the same receptor through an IDO-independent 
mechanism while the IDO-AhR pathway in employed 
by viruses, bacteria, and parasites to establish infection 
[30]. Consequently, a positive feedback loop is estab-
lished between increased TRY​CAT​s levels due to IDO 
activation and stimulation of the AhR by TRY​CAT​s and 
coronavirus [30]. Moreover, the AhR may enhance IDO 
transcription and regulate IDO activity [77]. These pro-
cesses may result in the SAAS which may result in acti-
vated immune-inflammatory pathways (increased M1 
cytokines), fibrosis (increased IL-22), thromboembolism 
(increased tissue factor and plasminogen activator inhibi-
tor-1, consequent multiple organ injuries including brain 
injuries, and eventually death [30].

Role of TRY​CAT​ pathway in comorbidities
Some TRY​CAT​s have depressogenic, anxiogenic and 
neurotoxic effects, and TRY​CAT​s like KYN are increased 
in neuropsychiatric illness including major depression, 
anxiety, and psychosis [15, 78]. Some TRY​CAT​s exhibit 
pro-oxidant properties as evidenced by increased ROS, 
hydrogen peroxide, and superoxide production, and 
increased oxidative damage, including lipid peroxida-
tion caused by 3HA, 3HK, and QA [19–25]. TRY​CAT​s 
such as QA and XA and PA may have direct neurotoxic 
effects by activating hippocampal NMDAR and causing 
excitotoxicity with apoptosis and hippocampal shrinkage, 
thereby inducing neurocognitive impairments [79, 80]. 
Elevated XA levels may cause severe neuronal damage, 
apoptosis, mitochondrial dysfunctions, disrupt gluta-
mate transmission, and impair presynaptic transmission 
caused by NMDAR stimulation [73]. Such effects may 
contribute to the development of neuropsychiatric dis-
orders such as depression, anxiety and chronic fatigue 
due to COVID-19 [81]. Indeed, TRY​CAT​s are confirmed 
to be associated with various mental disorders, includ-
ing depression, and anxiety [15, 18], somatization and 
chronic fatigue syndrome [82], cognitive impairments 
[83], and psychosis [37]. Moreover, some TRY​CAT​s, 
namely KYN, KA and 3HK are associated with musculo-
skeletal injuries due to their agonistic effects on the AhR 
[84–87]. Thus, increased TRY​CAT​ levels could exac-
erbate the neuro-immune and neuro-oxidative toxicity 
caused by increased oxidative stress and M1 and Th-1 
activation, resulting in comorbid affective disorders [81]. 
Therefore, it is safe to say that the accumulation of TRY​
CAT​s in SARS-CoV2-infected patients may play a role in 
the neuropsychiatric and cognitive syndromes of long or 
post-COVID syndrome [88].

Finally, it may be hypothesized that COVID-19-asso-
ciated TRY​CAT​ pathway activation may aggravate the 
existing disorders in this pathway in comorbid disor-
ders (obesity, dementia, T2DM, hypertension and heart 
disease, stroke, chronic obstructive pulmonary disease 
(COPD) and chronic kidney disease) [1–3]. Indeed, in all 
those comorbid diseases, the IDO enzyme is activated 
as indicated by an increased KYN/TRP ratio [89–95]. By 
inference, when COVID-19 develops in people with those 
comorbid illnesses, an amplified TRY​CAT​ response may 
occur, contributing to aggravated toxicity in addition to 
the consequences of inflammation and oxidative stress.

TRP and TRY​CAT​ assays in serum and plasma
Another finding of our meta-analysis revealed differences 
in the TRY​CAT​ levels between COVID-19 patients and 
controls depending on whether plasma and serum was 
examined. For example, the results of KYN/TRP ratio 
in serum were highly significant with a large effect size 
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(1.359), whereas in plasma no significant differences 
were found. Group analysis performed on the KA stud-
ies showed a significant difference in effect size between 
serum and plasma with serum KA yielding a positive 
medium effect size (0.649), whereas in plasma a negative 
effect size was established. Similar results were detected 
in the associations between TRY​CAT​s (e.g. KYN and KA) 
and schizophrenia with positive results in serum and 
often inverse results in plasma [37].

Limitations
Some limitations of the current systematic review and 
meta-analysis should be discussed. Not all studies clearly 
describe the types of medications, the treatment proto-
col, the relevant comorbidities, and even the vaccination 
status of the patients. Moreover, non survivors following 
COVID-19 were sometimes lumped together with survi-
vors. Due to the small sample sizes and paucity of data on 
some TRY​CAT​s, we were unable to estimate KMO and 
KYNU activity. Therefore, well-powered studies should 
be conducted in the different stages of COVID-19 (mild, 
moderate, severe, critical, and non-survival) to assay 
serum TRP and a more complete panel of serum TRY​
CAT​s.

Conclusions
Figure  1 summarizes the main findings of this study. 
The TRY​CAT​ pathway is highly activated in COVID-19 
and critical COVID-19 as indicated by increased IDO 
enzyme activity, which was assessed using the KYN/TRP 
ratio, and increased KYN but reduced TRP levels. KAT 
enzyme activity was not altered during COVID-19. TRY​
CAT​s probably contribute to the pathophysiology, sever-
ity and progression of COVID-19. The PRISMA checklist 
for all parts of our systematic review report is shown in 
Additional file 1: Table S6.
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