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Abstract 

Background:  Antimicrobial resistance develops following the accrual of mutations in the bacterial genome, and may 
variably impact organism fitness and hence, transmission risk. Classical representation of tuberculosis (TB) dynam-
ics using a single or two strain (DS/MDR-TB) model typically does not capture elements of this important aspect of 
TB epidemiology. To understand and estimate the likelihood of resistance spreading in high drug-resistant TB inci-
dence settings, we used epidemiological data to develop a mathematical model of Mycobacterium tuberculosis (Mtb) 
transmission.

Methods:  A four-strain (drug-susceptible (DS), isoniazid mono-resistant (INH-R), rifampicin mono-resistant (RIF-R) and 
multidrug-resistant (MDR)) compartmental deterministic Mtb transmission model was developed to explore the pro-
gression from DS- to MDR-TB in The Philippines and Viet Nam. The models were calibrated using data from national 
tuberculosis prevalence (NTP) surveys and drug resistance surveys (DRS). An adaptive Metropolis algorithm was used 
to estimate the risks of drug resistance amplification among unsuccessfully treated individuals.

Results:  The estimated proportion of INH-R amplification among failing treatments was 0.84 (95% CI 0.79–0.89) for 
The Philippines and 0.77 (95% CI 0.71–0.84) for Viet Nam. The proportion of RIF-R amplification among failing treat-
ments was 0.05 (95% CI 0.04–0.07) for The Philippines and 0.011 (95% CI 0.010–0.012) for Viet Nam.

Conclusion:  The risk of resistance amplification due to treatment failure for INH was dramatically higher than RIF. We 
observed RIF-R strains were more likely to be transmitted than acquired through amplification, while both mecha-
nisms of acquisition were important contributors in the case of INH-R. These findings highlight the complexity of 
drug resistance dynamics in high-incidence settings, and emphasize the importance of prioritizing testing algorithms 
which allow for early detection of INH-R.

Keywords:  Drug resistant tuberculosis, Epidemiological modelling, Fitness cost, Tuberculosis transmission dynamics, 
Resistance amplification
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Background
Despite being both a preventable and curable disease, 
more than 10 million people develop tuberculosis (TB) 
each year, with 1.4 million deaths in 2019 [1]. Although 
63 million lives have been saved through improvements 

in programmatic TB management this century, the 
increase in drug-resistant (DR-TB) cases is increas-
ingly concerning [1]. Multidrug-resistant TB [MDR-TB; 
defined as resistance to both first-line drugs isoniazid 
(INH) and rifampicin (RIF)] is a particular barrier to TB 
control efforts [2]. In 2019, 465,000 people were diag-
nosed with MDR-TB [1]. MDR-TB can be acquired by 
transmission (primary resistance) or develop in  vivo 
through inadequate or incomplete treatment (second-
ary resistance), and the relative contribution of these 
mechanisms is likely to vary by context [3]. In all settings, 
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though, careful optimization of both clinical and public 
health management of MDR-TB is required to ensure 
good outcomes.

Mathematical modeling is increasingly used to sup-
port programmatic optimization for TB [4–6]. Account-
ing appropriately for DR-TB in mathematical models of 
disease is critical, as it differs considerably from drug-
sensitive TB (DS-TB) in both epidemiological parameters 
and relevant outcomes. Some variation in disease char-
acteristics is relatively well-understood, including the 
prolonged treatment duration [7], adverse event rates [8] 
and diagnostic pathway performance [9, 10]. However, 
considerable uncertainties persist regarding important 
characteristics of MDR-TB, including pathogen’s fit-
ness, transmissibility and risk of resistance amplification 
related to treatment [11, 12]. Attempts to better charac-
terize these features of MDR-TB have been challenging, 
in part due to the diversity of gene mutations which may 
confer resistance, many of which have limited clinical and 
epidemiological outcome data to inform model param-
eterization. Computational biological approaches have 
recently been used to bridge this gap, providing tools to 
estimate the fitness and resistance impact of novel TB 
mutations [13–15].

Modeling also offers an opportunity to quantify ampli-
fication and transmission of drug-resistant TB, by fitting 
dynamic models to observed data. We therefore aimed to 
incorporate epidemiological data into an empirically cali-
brated model, in order to explore parameter estimation 
for drug resistance amplification and transmission asso-
ciated with both INH and RIF.

Methods
Constructing the mathematical model and defining 
epidemiological parameters
We designed a deterministic compartmental model of 
Mtb transmission to capture five mutually exclusive 
health states with regards to TB infection and disease—
susceptible (S), early latent (LA), late latent (LB), infec-
tious (I) and recovered (R, 16). The model included four 
TB strains: drug-susceptible (DS-TB, compartment sub-
script S), isoniazid mono-resistant (INH-R, compart-
ment subscript H), rifampicin mono-resistant (RIF-R, 
compartment subscript R) and MDR-TB (compartment 
subscript M). It is to be noted that the strains are not 
phylogenetically related.

We assumed homogenous mixing in a closed 
population:

All deaths are replaced as new births (rate π) entering the 
susceptible compartment. This includes both deaths due 

(1)N = S+ LAS + LAH + LAR + LAM + LBS + LBH + LBR + LBM + IS + IH + IR + IM + R

to TB disease (μi), as well as a universal population-wide 
death rate (μ).

When individuals in a population are infected with 
Mtb, they transition from the susceptible compartment 
(S) to the early latent compartment (LA). The force 
of infection (λ) associated with each strain (Eq.  2) is 
defined as:

where “x” indexes the drug resistance pattern—S, H, R or 
M.

β is the “effective contact rate” for DS-TB, defined as 
the product of the average number of contacts between 
two individuals per unit time and the probability of 
DS-TB transmission per contact. The relative transmis-
sibility of the different strains is denoted rX and uses 
the DS-TB strain’s transmissibility as reference ( rS = 1 ). 
In other words, rX represents the TB strains’ relative 
fitness.

People entering the early latent compartment (LA) can 
either progress (within two-years) directly to the active 
disease compartment (I) at rate ε, or transition to the late 
latent compartment (LB) at rate κ. Progression from LB to 
the active disease state occurs at a much slower rate (ν), 
and is referred to as reactivation. Once individuals have 
entered the infectious compartment, one of the following 
six processes can occur: (1) the person may be correctly 
identified as having active DS-TB and commenced on 
treatment (rate τ), thence progressing towards cure and 
transitioning to the recovered (R) compartment; (2) per-
son may be correctly identified to have DS-TB or DR-TB 
and commenced on treatment but experiences treatment 
failure without experiencing resistance amplification 
to other drugs and stay in the same infectious compart-
ment; (3) spontaneous recovery (rate γ) with transi-
tion to the recovered compartment (R); (4) TB-related 
death (μi) (5) dying of natural causes or (6) the infecting 
strain could acquire resistance (αH and/or αR) to isonia-
zid (INH-R), rifampicin (RIF-R) or MDR-TB and move 
to IH, IR and ultimately to IM compartments. To capture 
the progressive accrual of resistance with each transition, 
only one level of additional resistance not already present 
can be obtained during a disease episode. People who 
have spontaneously recovered from past TB or success-
fully completed treatment are both represented as a sin-
gle compartment (R) on the assumption that prognosis is 
equivalent regardless of the infecting strain from which 
each person recovers. Once treatment is complete, the 

recovered person can transition back to LA through rein-
fection, represented as δ. We define δ (Eq. 3) as:

(2)�X = rX × β × IX
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where, RRr is the “relative risk of re-infection once 
recovered”.

Latently infected people also have a risk of re-infection 
with the same or other strains represented as θ in the 
model; and the re-infecting strain would “override” the 
existing strain. We define θx (Eq. 4) similarly to δx as:

where, RRi is the “relative risk of re-infection once 
latently infected”.

Figure 1 and Additional file 1: figure S1 which is a repre-
sentation of the model, along with Eqs. 5–18, captures all 
the intermediary steps and parameters as explained in the 
paragraph above.

It is to be noted that the figure does not show individuals 
who are latently infected with a given strain will have the 
same strain if they develop active disease. An elaborated 
diagram in presented in the supplementary sheets where all 
the compartments modelled have been shown (Additional 
file 1: Fig. S1).

Ordinary differential equations used to define the four-
strain model

(3)δX = RRr ∗ �X

(4)θX = RRi ∗ �X

(5)
dS

dt
= π − (�S + �H + �R + �M + µ)S

(6)

dLAS

dt
=�SS − (∈ + κ + µ)LAS

+ θS(LBS + LBH + LBR + LBM)+ δSR

(7)

dLAH

dt
=�HS − (∈ + κ + µ)LAH

+ θH (LBS + LBH + LBR + LBM)+ δHR

(8)

dLAR

dt
=�RS − (∈ + κ + µ)LAR

+ θR(LBS + LBH + LBR + LBM)+ δRR

(9)

dLAM

dt
=�MS − (∈ + κ + µ)LAM

+ θM(LBS + LBH + LBR + LBM)+ δMR

(10)

dLBS

dt
= κLAS − (ν + θS + θH + θR + θM + µ)LBS

(11)

dLBH

dt
= κLAH − (ν + θS + θH + θR + θM + µ)LBH

(12)

dLBR

dt
= κLAR − (ν + θS + θH + θR + θM + µ)LBR

(13)

dLBM

dt
= κLAM − (ν + θS + θH + θR + θM + µ)LBM

(14)

dIS

dt
=∈ LAS + νLBS − αHIS − αRIS − (γ + τS + µi + µ)IS

(15)

dIH

dt
=∈ LAH + νLBH + αHIS − αRIH − (γ + τH + µi + µ)IH

Fig. 1  Structure of four strain Mtb transmission model. The symbols 
S, LA, LB, I and R represent uninfected/susceptible, early latent, 
late latent, infected and recovered health states, respectively. The 
subscript “X” used in LA and LB compartments and other parameters, 
indexes the drug resistance patterns, with S, H, R and M representing 
susceptible, isoniazid mono-resistance, rifampicin mono-resistance 
and multidrug resistance respectively. The infectious compartment 
is elaborated in the figure to show the amplification flows of INH and 
RIF respectively, parameterized with αH and αR (red arrows). The green 
arrows represent infection/transmission flows, black arrows represent 
constant progression flows. Compartments stratified according 
to resistance profiles are shown in blue. (π–birth rate, λX—force of 
infection, ε–rate of early progression, κ–rate of late progression, ν–
reactivation rate, γ–spontaneous recovery rate, θX–risk of re-infection 
once latently infected, μ–mortality rate, μi–TB-specific mortality rate, 
τX–treatment rate, δX—risk of re-infection after recovery)
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Parameter estimation
Parameters can be categorized as universal, country-
specific and time-variant parameters, as presented in 
Table 1.

Universal parameters
From the literature we gathered information on dis-
ease-specific and epidemiological parameters to cali-
brate the Mtb transmission model. We considered 
these parameters to be universal to all TB settings and 
so assigned the same values for all strains and settings 
(Table 1A).

(16)

dIR

dt
= ∈ LAR + νLBR − αHIR + αRIS − (γ + τR + µi + µ)IR

(17)dIM

dt
=∈ LAM + νLBM + αHIR + αRIH − (γ + τM + µi + µ)IM

(18)dR

dt
= (τS + γ )IS+(τH + γ )IH+(τR + γ )IR+(τM + γ )IM−(δS + δH + δR + δM + µ)R

Once we defined the parameters in our model, we next 
reviewed literature for information on the prior distribu-
tions of uncertain parameters (Table 1B).

Defining time‑variant model processes
To capture the rise of drug resistance over time, we 
allowed the case detection rate (CDR, a proportion, 
defined in Eq. 20) and the treatment success rate (TSR) 
to vary with time. TSR is the probability of a person being 
first tested and ultimately put on treatment to be cured, 
or simply put the probability of treatment success at pres-
entation. This parameter was further varied by strain.

People diagnosed with active TB are commenced on 
treatment upon identification and move from the infec-
tious compartments (I, IH, IR and IM) to the recovered 
compartment (R). The transition from the infectious 
to the recovered compartment is represented using the 

Table 1  Epidemiological parameters used for calibrating the model and their prior distribution ranges

CDR case detection rate

A) Universal parameters

Parameter Value Prior distribution Sources

Early progression (ε) (year−1) 0.401775 Uniform [0.1–0.8] [17]

Transition to late latency (κ) (year−1) 3.6525 Uniform [1.0–7.0] [17]

Reactivation (ν) (year−1) 0.002008875 Uniform [0.0009, 0.006] [17]

Spontaneous recovery (γ) (year−1) 0.2 Gamma [0.16, 0.29], mode = 0.20 [18]

Natural mortality (μ) (year−1) 0.0142

TB-specific mortality (μi) (year−1) 0.2 Gamma [0.06, 1.06], mode = 0.08 [18]

Relative risk of reinfection once infected 0.21 – [19]

B) Country-specific and time-variant parameters (used for model calibration)

Parameter Country Prior distribution Sources

The Philippines Viet Nam

Transmission rate (β) [1–35] [1–30] Uniform Fitted

Fitness cost of INH-R TB strain [0.50–1.20] Uniform [20], [21]

Fitness cost of RIF-R TB strain [0.50–1.20] Uniform [22], [12]

Fitness cost of MDR-TB strain [0.50–0.99] Uniform [23]

Proportion of failures developing RIF-R TB (ρR) [0.01–0.99] Uniform Fitted

Proportion of failures developing INH-R TB (ρH) [0.01–0.99] Uniform Fitted

Relative risk of reinfection once recovered [0.50–1.50] Uniform Fitted

CDR start time [1950 -1970] Uniform Fitted

CDR final value [0.30–0.80] Uniform Fitted
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parameter “τ”. τ is dependent on the TB detection rate “d” 
and the TSR and is mathematically expressed in Eq. 19.

where, “d” is calculated by solving the following CDR 
equation:

which can be re-written as:

(* “t” represents time in Eqs. 19, 20 and 21).
Sigmoidal functions were used to model progressive 

increases for both the CDR and the TSR between 1950 
and 2020. The final value of the TSR was set to the most 
recent TSR estimate reported by the WHO. In contrast, 
the final value of the CDR was varied during calibra-
tion. This allowed flexibility in simulating the historical 
dynamics of TB control in the countries considered.

Defining the amplification rate
Treatment for tuberculosis begins once individuals are 
detected with TB and the TB strain is correctly identi-
fied. Treatment then proceeds and may result in three 
possible outcomes: death, successful treatment or treat-
ment failure. Treatment failure can further be associ-
ated with acquiring new resistance to one additional 

(19)τ (t) = d(t) ∗ TSR (t)

(20)CDR(t) =
d(t)

d(t)+ γ+ µi + µ

(21)d(t) =
CDR(t)

(1− CDR(t)) ∗ (γ + µi + µ)

drug that was not previously present in the infecting 
organism. INH and RIF are part of the standard regi-
men for the treatment of drug-susceptible strains. Gain 
in resistance to either INH or RIF is represented using 
amplification rates αH or αR respectively in the model. 
Mathematical representation of INH and RIF mono-
resistant amplification is shown in Eqs. 22 and 23.

where, ρH = Proportion of previously INH-susceptible 
individuals that acquire resistance on treatment failure, 
ρR = Proportion of previously RIF-susceptible individu-
als that acquire resistance on treatment failure, and “t” 
stands for time.

Model calibration to prevalence and notification data
Prevalence data
The model presented above was calibrated to country-
specific data. We fitted the models using TB prevalence 
estimates from national TB prevalence (NTP) surveys 
(Viet Nam: 2006–2007 and 2017–2018; The Philip-
pines: 2007 and 2016) and drug-resistance prevalence 
from national DR-TB surveys (DRS, Viet Nam: 2011; 
The Philippines: 2009, 2016). The detailed estimates are 
presented in Table 2.

(22)
Rate of amplification (αH ) = d(t) ∗ (1− TSR (t))∗ρH

(23)
Rate of amplification (αR) = d(t) ∗ (1− TSR (t))∗ρR

Table 2  Summaries of prevalence survey results and drug resistance survey data for Philippines and Viet Nam

A) TB prevalence data

Country Year TB prevalence (per 100, 000) 95% CI Sources

Viet Nam 2006–2007 307.2 248.8–365.6 [24]

2017–2018 322 260–399 [25]

The Philippines 2007 660 510–810 [26]

2016 1159 1016–1301 [27]

B) Drug resistance data

Country Drug resistance Year Drug resistance (%) 95% CI Sources

Viet Nam Isoniazid mono resistance 2011 14.86 12.15–17.56 [28]

Rifampicin mono resistance 2011 0.23 0.1–0.35 [28]

MDR-TB 2011 6.93 4.22–9.63 [28]

The Philippines Isoniazid mono resistance 2009 9.44 7.95–10.92 [29]

Rifampicin mono resistance 2009 1.008 0.71–1.304 [29]

MDR-TB 2009 5.8 4.3–7.5 [29]

The Philippines Isoniazid mono resistance 2016 12.43 11.1–13.75 [27]

Rifampicin mono resistance 2016 0.82 0.44–1.19 [27]

MDR-TB 2016 3.35 2.53–4.41 [27]



Page 6 of 12Karmakar et al. BMC Infectious Diseases           (2022) 22:82 

Notification data
We used WHO-reported TB notifications as a calibration 
target for both models. For Viet Nam, in 2018, 102,171 
cases were notified and for The Philippines 382,543 cases 
were notified and we calibrated to the per capita notifica-
tion rates corresponding to these values.

Uncertainty analysis
An Adaptive Metropolis (AM) algorithm was used to 
estimate model parameters [30], including drug resist-
ance amplification rates. An AM algorithm adapts con-
tinuously to the target distribution. It uses the history 
of the process to tune the effective proposal distribution 
suitably. The size and the spatial distribution of the pro-
posal distribution is significantly affected due to adapta-
tion. Moreover, AM is easy to implement and use, with 
no additional computational cost. As soon as the simu-
lation process starts, AM algorithms start using the 
cumulating information. This gives the algorithm a major 
advantage because at an early stage of the simulation, the 
rapid start of adaptation enables the search to be more 
effective. This even diminishes the number of function 
evaluations needed [30].

The AM algorithm [30] was used to generate samples 
from the posterior distribution of the parameters from 
25,000 iterations for each country. The primary esti-
mates are reported as the posterior median value for all 
parameters of interest such as amplification proportions, 
CDR, relative fitness of each modelled strain and the rel-
ative risk of infection once recovered (δ). The intervals 
reported are obtained by calculating the 25th and 75th 
percentile of each parameter’s posterior distribution. 
Programming was done in Python 3.7.3 and all code and 
associated data are publicly available on GitHub (github.
com/malanchak/AuTuMN).

Results
Calibration of the model
Figure  2A–C show the model fits to reported INH-R, 
RIF-R and MDR levels for the high DR-TB settings, The 
Philippines and Viet Nam respectively.

Table  3 shows the posterior distributions of all cali-
brated parameters.

Drug resistance amplification and transmission
We observed higher proportions of drug resistance 
amplification for INH compared to RIF for both the high 
DR-TB incidence settings we simulated (Fig. 3). The esti-
mated risk of INH-R amplification when treatment fails 
was 0.84 (95% CI 0.79–0.89) for The Philippines and 0.77 
(95% CI 0.71–0.84) for Viet Nam. The estimated risk of 
RIF-R amplification when treatment fails was 0.05 (95% 
CI 0.04–0.07) for The Philippines and 0.011 (95% CI 

0.010–0.012) for Viet Nam. This meant approximately 
84% and 77% of the people who failed treatment in The 
Philippines and Viet Nam respectively would end up with 
resistance to INH.

The model was used to estimate the proportions of 
incident DR-TB due to transmission compared to DR 
amplification (Table  4). In the Philippines, the propor-
tions of incident INH-R TB due to transmission was 50% 
(43–70), RIF-R TB was 52% (43–70) and MDR-TB was 
40% (28–52). For Viet Nam, the proportions of incident 
INH-R TB due to transmission was 67% (54–73), RIF-R 
TB was 63% (55–71) and MDR-TB was 43% (34–51).

In The Philippines, the model estimates for ampli-
fication from DS to INH-R was 26 per 100,000 (95% 
CI 15–33) people, followed by 10 per 100,000 (95% CI 
6–14) people then gain resistance to RIF and moving to 
the MDR compartment. Comparing this to acquiring 
RIF resistance first, we see 2 per 100,000 (95% CI 1–3) 
moving from DS to RIF-R, followed by only 0.05 (95% CI 
0.02–0.08) people gaining resistance to INH to move to 
the MDR compartment. A similar observation was seen 
for Viet Nam, the model estimates for amplification from 
DS to INH-R shows 6 per 100,000 (95% CI 4–8) people 
followed by people 4 per 100,000 (95% CI 3–5) gaining 
resistance to RIF and moving to the MDR compartment. 
In case of DS to RIF-R transition the estimates were 0.08 
per 100,000 (0.06–0.11) people, followed by 0.0007 per 
100,000 (0.0004–0.001) people gaining resistance to INH 
to move to the MDR compartment.

Estimates for relative strain fitness and CDR
The posterior estimates of relative fitness associated 
with INH-R strains for The Philippines was 0.87 (95% 
CI 0.83–0.92) and 0.98 (95% CI 0.95–1.00) for Viet Nam. 
The relative fitness associated with RIF-R strains for The 
Philippines was 0.78 (95% CI 0.74–0.84) and 0.77 (95% CI 
0.73–0.81) for Viet Nam. The relative fitness associated 
with MDR-TB strains in The Philippines was 0.67 (95% 
CI 0.58–0.71) compared to 0.64 (95% CI 0.56–0.75) for 
Viet Nam.

Our study also provided information on estimates of 
CDR with high precision for both the settings, as inclu-
sion of notification and prevalence of infection data for 
the analysis helped in constraining the parameter. The 
estimates obtained for The Philippines was 0.49 (95% CI 
0.47–0.51) and for Viet Nam was 0.66 (95% CI 0.63–0.69).

Discussion
From this modeling study we were able to construct a 
model which successfully replicated epidemiological 
dynamics in two high burden TB settings, incorporat-
ing parameters drawn from microbiological fitness data. 
Using this model to explore the development of drug 
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Fig. 2  Model calibration: A Isoniazid mono resistance, B Rifampicin mono resistance and C MDR-TB. The red dots with the line represent the 
empiric data (including intervals) obtained from the drug resistance surveys of the Philippines and Viet Nam. The model predictions are represented 
in blue solid line as median, interquartile range (dark blue shade) and central 95% credible interval (light blue shade)
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resistance in these contexts, we found that a much higher 
proportion of treatment failure resulted in amplification 
for INH-R rather than for RIF-R. This finding is consist-
ent with observed higher rates of INH-R globally [31, 
32] and allows consideration of factors which might be 
mechanistically important for understanding and plan-
ning a programmatic response. For example, in a preva-
lence survey from 1975, the rate of INH-R in Canadians 
with TB following an initial course of therapy was 75.6% 
[33].

One factor likely to play a significant role in preferen-
tial INH-R amplification is current methods of DR-TB 
detection which prioritize RIF’s resistance identification. 
According to WHO and many country guidelines, TB 
patients with strains found to be resistant to RIF  need 
to start on a recommended MDR-TB treatment regi-
men. Longer MDR-TB regimens, and historical second-
line therapy regimens, frequently have INH included 
in them, irrespective of resistance to INH being either 
undetermined or confirmed. Re-treatment regimens in 
particular have often incorporated prolonged durations 
of INH therapy—for example the category II regimen 
used in the Philippines comprised of  8  months of INH, 
RIF and ethambutol supplemented by streptomycin for 
the initial 2  months, and pyrazinamide for the initial 
3 months (2SHRZE/HRZE/ 5HRE) [34], and older treat-
ment regimens used in Viet Nam comprised of 8 months 
of INH and ethambutol supplemented by initial two 
months of streptomycin, pyrazinamide and rifampicin 
(2SHRZ/6HE, 28). These factors may be further amplified 
by use of isoniazid in the private sector and/or through 
community pharmacy settings, where worse guideline 

adherence and increased risk resistance development has 
been shown [35, 36] but with poorer treatment outcomes 
compared to NTPs [37, 38].

In addition to programmatic insights, our model pro-
vides novel information on parametrizing CDR. This 
is important, as this parameter cannot be measured 
directly yet plays a significant role in informing robust 
mathematical model of TB transmission. As with any 
mathematical representation our model has certain limi-
tations. Our model was calibrated to TB prevalence and 
DR surveys to estimate the risk of resistance amplifica-
tion. But the definition of a TB case may change between 
surveys, even within the same country. We have adopted 
a simplified model structure that does not capture fac-
tors such as age, comorbidities and other heterogeneity 
associated with TB epidemics. These factors may affect 
the risk of resistance amplification. Our model is pri-
marily built for pulmonary tuberculosis and does not 
include extra-pulmonary TB data, as our primary focus 
was on transmission. For the same reason, this model 
has been parametrized from adult TB data given the 
limited TB transmission from young children to others. 
In our model we assumed the risk of INH-R amplifica-
tion is the same starting from IS, as compared to start-
ing from IR; the same applies for RIF-R amplification. We 
even assumed the fitness cost of MDR-TB is independent 
of that of INH-R of RIF-R. Therefore, these limitations 
can potentially influence the estimated risk of resistance 
amplification.

Furthermore, it is difficult to compare the results gen-
erated by our model with existing studies because the 
findings are novel and not many researchers have tried 

Table 3  Posterior distribution of parameters obtained using the AM algorithm

DR- TB related parameter Estimate (median, 50% CI)

The Philippines Viet Nam

Proportion of previously INH-susceptible individuals that acquire resistance 
on treatment failure

0.84 (0.79–0.89) 0.77 (0.71–0.84)

Proportion of previously RIF-susceptible individuals that acquire resistance 
on treatment failure

0.05 (0.04–0.07) 0.011 (0.010–0.012)

Relative fitness of INH-R TB strains 0.87 (0.83–0.92) 0.98 (0.95–1.00)

Relative fitness of RIF-R TB strains 0.78 (0.74–0.84) 0.77 (0.73–0.81)

Relative fitness of MDR-TB strains 0.67 (0.58–0.71) 0.64 (0.56–0.75)

CDR final/maximum value 0.49 (0.47–0.51) 0.66 (0.63–0.69)

Universal parameters Estimate (median, 50% CI)

The Philippines Viet Nam

Rate of rapid progression (ε) (year-1) 0.33 (0.28–0.37) 0.22 (0.19–0.29)

Rate of transition towards late latency (κ) (year-1) 5.49 (4.78–5.95) 3.62 (3.13–4.92)

Rate of re-activation (ν) (year-1) 0.003 (0.002–0.004) 0.0017 (0.0016–0.0018)

Relative risk of re-infection after recovery (δ) 0.74 (0.64–0.86) 0.64 (0.56–0.81)
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Fig. 3  The estimated risk of INH-R and RIF-R amplification when treatment fails. The probability density function (red line) represents the 
posterior distribution of the estimates of amplification and the white background represents the prior ranges. The dashed blue line is the median 
of the estimates. A Proportion of previously INH-susceptible strains that acquire resistance on treatment failure and B proportion of previously 
RIF-susceptible strains that acquire resistance on treatment failure
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to estimate risk of monoresistance amplification of INH 
using a four strain TB transmission model. Two studies 
which reported similar findings were—(1) study con-
ducted in the KwaZulu-Natal Province of South Africa 
for extremely drug resistant TB transmission, reported 
84% of the participants failed treatment [39]. (2) A study 
from Kampala, Uganda found proportion of patients that 
acquired resistance were low, to which the author men-
tions that the study only reflects a single cycle of treat-
ment in a heavily treated cohort of patients and therefore 
their results may underestimate the degree of drug-
resistance amplification [40]. With respect to estimates 
for transmission, the results are comparable to the study 
conducted by Kendall et al. where they report estimated 
percentage of MDR-TB resulting from transmission var-
ied substantially with different countries notification 
data; for example, 48% (30–75%) in Bangladesh versus 
99% (91–100%) in Uzbekistan [41].

Historically, diagnosis of MDR-TB has been reliant 
on culture-based phenotypic testing, which in high-
burden settings may be applied selectively, such as after 
treatment failure. As part of the global policy to con-
trol DR-TB, many high burden settings have pledged to 
deploy the molecular diagnostic assay Xpert MTB/RIF 
(detects resistance only in RIF), which is a nucleic acid 
amplification test that can be directly applied to spu-
tum samples [42, 43]. As the presence of RIF resistance 
is highly predictive of MDR-TB, these policies have led 
to significant improvements in the appropriate initia-
tion of second-line therapy [44]. However, as our work 
highlights, these algorithms may also be associated 
with selecting for and further amplifying INH resist-
ance. Alternative molecular tools, such as the line probe 
assay MTBDRplus [45], Abbott RealTime MTB RIF/INH 
(Abbott), FluoroType MTBDR [46], BD MAX MDR-TB 
assay  [47], Roche cobas MTB [48] and whole genome 
sequencing can identify both RIF and INH resistance, 
and may offer the programmatic advantages of rapid 
MDR-TB diagnosis while avoiding this secondary effect 
[49]. Further research into the association between spe-
cific INH resistance mutations and differential risk of 
transmission will be helpful in better defining the public 
health impact of this effect [50].

An interesting observation was made between the esti-
mates of the fitness cost of each resistant strain and their 
respective transmission dynamics for both the countries. 
We see that the RIF-R and MDR-TB have similar fitness 
in both countries indicating homogeneity of the popula-
tion, while INH-R strains seem to have a considerable dif-
ference between the two countries. This is reflected in the 
transmission dynamics observed for the INH-R strains, 
where Viet Nam has a higher transmission rate compared 
to The Philippines. This could mean the INH-R strains 
in Viet Nam, although under significant drug pres-
sure in the host, are more transmissible, perhaps due to 
strain-specific factors or local host/pathogen interaction. 
The same correlation cannot be made for RIF-R strains. 
They have similar fitness cost in both countries, but the 
transmission rate is higher in Viet Nam compared to The 
Philippines.

Comparing fitness cost of INH-R strains to the pro-
portions of individuals who develop INH-R due to 
treatment failure (ρH) for both the high burden DR-TB 
setting, we see that the fitness cost is inversely related to 
ρH. While INH-R strains in Viet Nam have a higher fit-
ness cost than The Philippines, the number of individu-
als acquiring resistance due to treatment failure is lower 
in Viet Nam. The estimates for CDR were also higher 
in Viet Nam compared to The Philippines. As, ρH and 
CDR is directly proportional to the amplification rate as 
defined in Eq. 22, we can say that the amplification rate 
αH is inversely proportional to the fitness cost of INH-R 
strains. Therefore, an increase in the mycobacterial fit-
ness for INH-R can lead to a potential increase in trans-
mission rate but a decrease in the amplification rate. In 
case of RIF-R strains, the fitness cost was similar for both 
the settings. The slight difference in the amplification rate 
can be explained by the higher CDR observed in Viet 
Nam. Factors such as age, behavior, and gender ratio of 
the overall population, could possibly be a reason to see 
this type of differences. But it is beyond the scope of this 
paper to predict the effects of these external influences 
on this model.

Conclusion
While rapid molecular diagnostics will continue to be 
important for programmatic adoption, it is also impor-
tant to recognize that the principle of unrecognized 
resistance amplification demonstrated here can be 
repeated for any resistance not routinely addressed in 
diagnostic algorithms. It is therefore essential to incor-
porate genome sequencing into surveillance programs, 
to maximize the clinical and public health benefits [51]. 
With recent developments in next generation sequenc-
ing techniques, we have now have high-throughput diag-
nostic tools for the detection of DR-TB which are both 

Table 4  Estimates obtained for proportions of incident DR-TB 
due to direct transmission rather than DR amplification

DR-TB Estimate (median, 50% CI)

The Philippines Viet Nam

INH-R TB 50 (43–70) 67 (54–73)

RIF-R TB 52 (43–70) 63 (55–71)

MDR-TB 40 (28–52) 43 (34–51)
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fast and efficient [52]. While such tools are currently in 
routine use only in high resource settings, the benefits 
associated with these tools should be prioritized for high 
burden contexts to support optimal individual and pro-
gram outcomes [53, 54].
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