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The accumulation of plasma acylcarnitines 
are associated with poor immune recovery 
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Abstract 

Background: Antiretroviral therapy (ART) can reduce opportunistic infections and mortality rates among individu-
als infected with human immunodeficiency virus (HIV); however, some HIV-infected individuals exhibit poor immune 
recovery after ART. Hence, we explored the association between metabolome profiles and immune recovery in HIV-
infected individuals following ART.

Methods: An untargeted metabolomics approach was used to analyze plasma samples from 18 HIV-negative indi-
viduals and 20 HIV-infected individuals, including 10 immunological non-responders (INR,  CD4+ T cell rise < 100 cells/
μl) and 10 immunological responders (IR,  CD4+ T cell rise > 300 cells/μl) after 2 years of ART. These individuals were 
followed for the next 6 years and viral loads and  CD4+ T cell count were measured regularly. Orthogonal projection 
on latent structures discriminant analysis (OPLS-DA), ANOVA, correlation, receiver operating characteristic (ROC), and 
survival analyses were used for selection of discriminant metabolites.

Results: Eighteen lipid metabolites were identified which could distinguish among control, INR, and IR groups. 
Among them, myristoylcarnitine (MC), palmitoylcarnitine (PC), stearoylcarnitine (SC), and oleoylcarnitine (OC) were 
significantly elevated in INR plasma samples compared with those from the IR and control groups and were nega-
tively associated with  CD4+ T cell count. Additionally, ROC analysis using a combination of MC, PC, SC, and OC had 
high sensitivity and specificity for differentiating INR from IR (AUC = 0.94). Finally, survival analysis for the combination 
of MC, PC, SC, and OC demonstrated that it could predict  CD4+ T cell count in patients undergoing long-term ART.

Conclusions: High levels of lipid metabolites, MC, PC, SC, and OC are associated with poor immune recovery in 
patients receiving ART and these data provide potential new insights into immune recovery mechanisms.
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Background
Antiretroviral therapy (ART) can suppress plasma viral 
RNA to undetectable levels, promote immune recov-
ery, and efficiently reduce opportunistic infections and 
mortality rates among individuals infected with human 
immunodeficiency virus (HIV) [1–4]; however, some 
HIV-infected individuals, referred to as “immunologi-
cal non-responders” (INR) have poor immune recov-
ery after ART, and are at increased risk of rapid disease 
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progression and death [5]. Poor immune recovery has 
been associated with sex, baseline  CD4+ and  CD8+ T cell 
count, and HIV RNA levels, as well as related to altera-
tions in T cell phenotype, function, and PD-1 expression. 
Further, recent reports have demonstrated that various 
metabolites, such as serine and polysaccharides, can 
affect the proliferation and immune function of  CD4+ T 
cells in healthy people [6–9].

Metabolomics is a powerful discovery tool for explora-
tion of biomarkers and potential disease mechanisms, in 
conditions such as liver disease, cardiovascular disease, 
prostate cancer, obesity, and diabetes. A recent study 
measured lipoproteins by nuclear magnetic resonance 
and found that HIV-infected patients with high levels of 
large HDL particles, HDL cholesterol, and larger sized 
LDL particles had superior immunological recovery 
after treatment [10]. In addition, a Spanish research team 
investigated the metabolic characteristics of gut bacte-
ria in immunological responders (IR) and INR, demon-
strating that the gut microbiome interacts with immune 
recovery [11]. Nevertheless, limited information is avail-
able regarding the association of plasma metabolite pro-
files with immune recovery in HIV-infected individuals 
following ART. Here, we attempted to discover associa-
tions between metabolites and immune recovery, and to 
identify biomarkers which could predict  CD4+ T cell 
count during continuous treatment and after ART in 
HIV-infected individuals, using a metabolomic approach.

In this study, we describe the plasma metabolite pro-
files of controls, IR, and INR, detected by ultra-high-
performance liquid chromatography-tandem mass 
spectrometry (UPLC-MS/MS). We demonstrate asso-
ciations of myristoylcarnitine (MC), palmitoylcarnitine 
(PC), stearoylcarnitine (SC), and oleoylcarnitine (OC) 
with poor immune recovery in individuals receiving ART 
and found that levels of these lipids could predict  CD4+ 
T cell count in later treatment.

Methods
Study subjects
All subjects enrolled were men who have sex with men 
recruited from the First Affiliated Hospital of China 
Medical University and provided written informed con-
sent. The study protocol was approved by the Research 
and Ethics Committee of The First Affiliated Hospital of 
China Medical University, in compliance with the Dec-
laration of Helsinki. Twenty ART-treated HIV-infected 
individuals, including 10 INR and 10 IR, where INR 
and IR were defined by a  CD4+ T cell count rise after 
2  years of < 100 or > 300 cells/μl of ART (viral loads < 20 
copies/ml) were collected from the Red Ribbon Clinic. 
Treatment regimens comprised nucleoside reverse 
transcriptase inhibitors (NRTI) plus non-NRTI (TDF/

AZT + 3TC + EFV/NVP). Subjects selected for inclu-
sion did not have any laboratory abnormalities related to 
glucose, or kidney or liver function measurements, and 
were not co-infected with hepatitis, tuberculosis, syphi-
lis, or other infectious diseases. In addition, 18 HIV-neg-
ative individuals were used as healthy controls. Age and 
body mass index (BMI) did not differ significantly among 
three groups. Participant characteristics are presented in 
Table 1.

HIV viral load test
Plasma samples were prepared and analyzed using the 
COBAS® TaqMan® system with COBAS® AmpliPrep/
COBAS® TaqMan® HIV-1 Test Kits v2.0 (Roche Molec-
ular Systems, USA). The upper and lower detection 
limits of the kit were  107 copies/mL and 20 copies/mL, 
respectively.

Detection of  CD4+ T cell count
Fresh anticoagulant blood was stained with TriTEST 
anti-CD4-FITC/CD8-PE/CD3-PerCP reagent in Tru-
count tubes (BD Biosciences, San Jose, CA, USA). Then, 
hemolysin was added to lyse the red blood cells.  CD4+ T 
cells were detected and enumerated using a FACS Cali-
bur flow cytometer (BD Biosciences, San Jose, CA, USA).

Metabolomic profiling
Venous blood samples were drawn after an overnight 
fasting. Plasma samples were obtained and assigned a 
unique identifier using a laboratory information man-
agement system, and kept at -80℃ until processed. An 
automated MicroLab STAR® system (Hamilton Com-
pany, Reno, NV, U.S.A) was used to prepare samples, 
as described previously [12, 13]. Briefly, several recov-
ery standards were added before extraction for quality 
control purposes; proteins were precipitated in metha-
nol by vigorous shaking, followed by centrifugation to 
remove proteins; the resulting extracts were divided 
into five parts, of which four were analyzed using differ-
ent methods and one was retained as a backup. Samples 
were placed momently on a TurboVap® (Zymark, West-
borough, MA, USA) to deplete the organic solvent, then 
stored overnight in nitrogen before analysis.

Detailed descriptions of non-targeted metabolomics 
analysis can be found in published work [13]. In sum-
mary, sample extracts were dried and resuspended in spe-
cific solvents for each of four methods: one aliquot was 
analyzed by hydrophilic interaction liquid chromatogra-
phy/UPLC-MS/MS, with negative ion mode electrospray 
ionization (ESI); two aliquots were analyzed using two 
separate reverse phases (RP)/UPLC-MS/MS methods, 
with positive ion mode ESI; and the final aliquot was ana-
lyzed by RP/UPLC-MS/MS with negative ion mode ESI. 
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All methods were conducted using a Waters ACQUITY 
UPLC and a Thermo Scientific Q-Exactive high resolu-
tion/accurate mass spectrometer, which were coupled 
with a heated electrospray ionization (HESI-II) source 
and an Orbitrap mass analyzer, with a working mass 
resolution of 35,000. The scanning range varied slightly 
between different methods but covered 70–1000  m/z. 
Raw data files were extracted and archived.

Data extraction and compound identification proce-
dures were as previously described [14]. Briefly, Metab-
olon software and hardware were used to extract the 
original data, identify peak values, and carry out qual-
ity control processes, while proprietary visualization 
and interpretation software were used to confirm peak 
identification.

Data processing, bioinformatics, and statistical analysis
For metabolomics data, variables with > 20% missing 
values were excluded [15]. For the remaining variables, 
missing values were replaced with the lower limit of 
detection. Metabolite data detected across multiple days 
were normalized by setting the medians to equal one 
and then normalizing each data point proportionately. 
The multivariate statistical methods, orthogonal partial 
least square discriminant analysis (OPLS-DA) was con-
ducted using SIMCA 14.1 (Umetrics, Sweden). One-
way ANOVA with Fisher’s LSD test was performed for 
comparisons of variables among the three groups, and 
the Benjamini and Hochberg false discovery rate (FDR) 

method was used for corrections, with a cut-off level of 
5%. A heatmap of the 30 metabolites that differed sig-
nificantly among the three groups was produced using 
MultiExperiment Viewer 4.9.0 [16]. Fold-change values 
of A/B were calculated as the ratios of mean levels of 
metabolites in group A to those in group B. Metabolite 
Set Enrichment Analysis were performed using Meta-
boAnalyst 4.0 [17].Correlation analysis was performed 
using the Spearman correlation test. Receiver operating 
characteristic (ROC) analysis was used to assess abil-
ity to predict immune recovery. For ROC analysis of the 
four-metabolite combination, predicted probability was 
calculated for inclusion in the ROC analysis by binary 
logistic regression. Then, the best diagnostic thresholds 
for metabolites, with the highest sensitivity and specific-
ity values, were selected and used to regroup the 20 HIV-
infected subjects, followed by Kaplan–Meier survival 
analysis plus a log-rank test to evaluate the influence of 
potential biomarkers on  CD4+ T cell count. Statistical 
analyses were conducted using R (http:// cran.r- proje ct. 
org/) and GraphPad Prism 8.0.2. Two-sided test p val-
ues < 0.05 were considered significant.

Results
Overall metabolic signatures of plasma samples
An untargeted metabolomics assay was performed to 
detect plasma metabolites in controls,  IR and INR after 
2  years of ART. A total of 330 known compounds were 
identified. To reduce noise in the analysis, variables 

Table 1 Characteristics of subjects enrolled in this study

Data are expressed as the median (interquartile range), unless otherwise stated. NA not available, INR immunological non-responders, IR immunological responders, 
AST aspartate aminotransferase, ALT alanine aminotransferase

Characteristics Controls INR IR p-value (IR vs INR)

Number of subjects 18 10 10

Male (%) 100 100 100

Age (years) 37 (35, 38) 33 (29, 49) 39 (30, 43)  > 0.05

Body mass index (kg/m2) 23 (20.3, 23.0) 21.7 (20.6, 22.8) 21.5 (20.9, 21.9)  > 0.05

Glucose (mmol/L) NA 5.3 (4.5, 5.6) 5.0 (4.9, 5.4)  > 0.05

AST (U/L) NA 26.5 (23.8, 30.2) 24.6 (23.0, 37.0)  > 0.05

ALT (U/L) NA 26.5 (20.3, 35.0) 31.0 (19.0, 50.0)  > 0.05

Triglyceride (mmol/L) NA 1.23 (1.00, 1.33) 1.28 (1.09, 1.79)  > 0.05

Total cholesterol (mmol/L) NA 3.44 (3.36, 3.90) 4.06 (3.56, 4.28)  > 0.05

Viral load (copies/mL) NA  < 20  < 20

CD4+ T cell count (cells/μL)

Baseline NA 162 (95, 179) 97 (79, 154)  > 0.05

At 2 years of ART NA 219 (163, 234) 456 (383, 510)  < 0.05

Drug regimen

 EFV + 3TC + AZT NA 2 1  > 0.05

 EFV + 3TC + TDF NA 1 1

 NVP + 3TC + AZT NA 7 8

http://cran.r-project.org/
http://cran.r-project.org/
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with > 20% missing values and xenobiotics were excluded. 
The remaining 241 metabolites included 125 lipids (52%), 
68 amino acids (28%), 7 peptides (3%), 14 carbohydrates 
(6%), 12 cofactors and vitamins (5%), 9 nucleotides (4%), 
and 6 energy metabolites (2%).

OPLS-DA, a supervised clustering method, was applied 
to determine which metabolites significantly contributed 
to the observed separation among groups. All metabolites 
were used to build OPLS-DA models and model param-
eters are presented in Table  2. The score plot showed 
good separation among the three groups (INR, IR, and 
controls), with  R2Y = 0.782, and  Q2  (cum) = 0.184, indi-
cating a good capacity for fitting and prediction (Fig. 1a). 
Since OPLS-DA may lead to over-fitted models, a per-
mutation test (999 iterations) was performed and the  Q2 
intercept value was -0.294, indicating that the model was 
not overfitted.

Furthermore, OPLS-DA models for binary group com-
parisons were generated and variable influence in pro-
jection (VIP) values were calculated. For control and 
INR samples, the model had 1 predictive and 4 orthog-
onal components, and its validation parameters were 
 R2Y = 0.999, and  Q2  (cum) = 0.763 (Fig.  1b). For control 
and IR samples, the model had 1 predictive and 5 orthog-
onal components, and its validation parameters were 
 R2Y = 1.000, and  Q2  (cum) = 0.462 (Fig.  1c). For IR and 
INR samples, the model had 1 predictive and 1 orthog-
onal component, and its validation parameters were 
 R2Y = 0.601, and  Q2  (cum) = 0.076 (Fig.  1d). In all these 
models, permutation tests (999 iterations) were con-
ducted, and all resulting  Q2 intercept values were nega-
tive, indicating that the models were not overfitted. VIP 
scores > 2 were considered to indicate variables contrib-
uting to the separation of groups.

Identification of metabolites which could distinguish IR 
from INR metabolomics profiles
To select potential biomarkers of immune recovery, 
metabolites were identified which differed significantly 
among the three groups and between IR and INR with a 
p value < 0.05 (FDR < 5%) based on the results of ANOVA. 
We found that the levels of 30 metabolites differed 

significantly among the three groups: most were lipids, 
all differed between INR and control samples, 14 differed 
between IR and control samples, and 16 between IR and 
INR. The heatmap depicts levels of these 30 metabolites 
and shows two main variable clusters (Fig. 1e). The levels 
of some steroids were decreased in IR and INR compared 
with control samples, while high levels of fatty acids and 
acylcarnitines were detected in INR samples compared 
with control and IR samples.

Furthermore, fold-change values (calculated as the 
ratio of the means between two groups) > 1.5 were taken 
into consideration. Using these screening criteria, 18 
metabolites were identified; all were lipids and were ele-
vated in INR relative to IR and control samples (Table 3). 
Acylcarnitines, including MC, LC, OC, SC, and PC had 
both high fold change and VIP values which could distin-
guish INR from IR and control samples. In addition, vari-
ous fatty acids including polyunsaturated fatty acids and 
long chain fatty acids, also made contributions to distin-
guishing INR from controls. Metabolite set enrichment 
analysis showed that mitochondrial beta-oxidation of 
long chain saturated fatty acids and fatty acid metabolism 
were the main impaired pathways, which also suggest 
that acylcarnitines were the main differentiators between 
IR and INR (Fig. 2a). The levels of SC, MC, OC, PC and 
LC were not significantly different between control and 
IR samples, which suggest the mitochondrial beta-oxi-
dation of IR samples were similar to control samples but 
were seriously impaired in INR samples (Fig. 2b).

Acylcarnitine levels were negatively correlated with  CD4+ 
T cell count
Based on our finding that acylcarnitines were the main 
differentiators between INR and IR, we further explored 
the associations of acylcarnitines with immune recov-
ery. We found that  CD4+ T cell count in HIV-infected 
subjects were negatively correlated with MC (p = 0.034, 
r = -0.476; Fig.  3a), PC (p = 0.047, r = -0.45; Fig.  3b), 
SC (p = 0.008, r = -0.574; Fig.  3c), and OC (p = 0.007, 
r = -0.581; Fig.  3d), while LC was not significantly asso-
ciated with  CD4+ T cell count (p = 0.077, r = -0.406; 

Table 2 Parameters for OPLS-DA models

# P predictive, O orthogonal

Model OPLS-DA models Permutation

Components# R2X (cum) R2Y (cum) Q2 (cum) R2 intercept Q2 intercept

Controls vs IR vs INR 2P + 1O 0.250 0.782 0.184 0.513 − 0.294

Controls vs INR 1P + 4O 0.408 0.999 0.763 0.994 − 0.249

Controls vs IR 1P + 5O 0.421 1.000 0.462 0.999 − 0.142

IR vs INR 1P + 1O 0.134 0.601 0.076 0.936 − 0.017
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Fig. 1 Metabolite profiles in the control, INR, and IR groups. a–d OPLS-DA score plots derived from untargeted metabolism profiles of plasma 
samples. e Hierarchical cluster analysis and heat map visualization of the top 30 variables ranked by ANOVA



Page 6 of 12Qian et al. BMC Infect Dis          (2021) 21:808 

Ta
bl

e 
3 

M
et

ab
ol

ite
s 

w
ith

 d
iff

er
in

g 
pl

as
m

a 
le

ve
ls

 a
m

on
g 

gr
ou

ps

Fe
at

ur
es

 th
at

 m
ee

t a
ll 

fo
llo

w
in

g 
co

nd
iti

on
s 

ar
e 

hi
gh

lig
ht

ed
 u

si
ng

 b
ol

d 
te

xt
: v

ar
ia

bl
e 

im
po

rt
an

t i
n 

pr
oj

ec
tio

n 
(V

IP
) v

al
ue

s >
 2

, p
 v

al
ue

s <
 0

.0
5 

(F
D

R 
< 

5%
), 

or
 fo

ld
-c

ha
ng

e 
(F

C)
 v

al
ue

s >
 1

.5
 o

r <
 0

.6
7

N
am

e
Pa

th
w

ay
Su

b 
pa

th
w

ay
IR

/c
on

tr
ol

IN
R/

co
nt

ro
l

IN
R/

IR

VI
P

p 
va

lu
e

FC
VI

P
p 

va
lu

e
FC

VI
P

p 
va

lu
e

FC

M
yr

is
to

yl
ca

rn
iti

ne
 (M

C
)

Li
pi

d
Fa

tt
y 

A
ci

d 
M

et
ab

ol
is

m
 (A

cy
l C

ar
ni

tin
e)

0.
11

9.
13

E−
01

1.
06

1.
81

4.
12

E−
04

2.
11

2.
13

1.
97

E−
03

1.
99

La
ur

yl
ca

rn
iti

ne
 (L

C
)

Li
pi

d
Fa

tt
y 

A
ci

d 
M

et
ab

ol
is

m
 (A

cy
l C

ar
ni

tin
e)

0.
46

6.
93

E−
01

1.
2

1.
69

7.
29

E−
04

2.
32

2.
27

6.
16

E−
03

1.
94

O
le

oy
lc

ar
ni

tin
e 

(O
C

)
Li

pi
d

Fa
tt

y 
A

ci
d 

M
et

ab
ol

is
m

 (A
cy

l C
ar

ni
tin

e)
0.

68
4.

34
E−

01
0.

91
1.

64
1.

29
E−

03
1.

74
2.

86
5.

79
E−

04
1.

9
St

ea
ro

yl
ca

rn
iti

ne
 (S

C
)

Li
pi

d
Fa

tt
y 

A
ci

d 
M

et
ab

ol
is

m
 (A

cy
l C

ar
ni

tin
e)

0.
71

4.
14

E−
01

0.
9

1.
71

8.
77

E−
04

1.
63

2.
80

3.
73

E−
04

1.
81

Pa
lm

ito
yl

ca
rn

iti
ne

 (P
C

)
Li

pi
d

Fa
tt

y 
A

ci
d 

M
et

ab
ol

is
m

 (A
cy

l C
ar

ni
tin

e)
0.

09
9.

21
E−

01
1.

03
1.

64
1.

83
E−

03
1.

65
2.

54
4.

21
E−

03
1.

6
2-

hy
dr

ox
yd

ec
an

oa
te

Li
pi

d
Fa

tt
y 

A
ci

d,
 M

on
oh

yd
ro

xy
2.

07
8.

42
E−

03
0.

54
1.

62
5.

35
E−

03
0.

52
0.

48
8.

77
E−

01
0.

95

10
-n

on
ad

ec
en

oa
te

 (1
9:

1n
9)

Li
pi

d
Lo

ng
 C

ha
in

 F
at

ty
 A

ci
d

1.
92

1.
53

E−
02

1.
88

2.
33

1.
00

E−
05

2.
70

1.
55

2.
76

E−
02

1.
44

C
is

-v
ac

ce
na

te
 (1

8:
1n

7)
Li

pi
d

Lo
ng

 C
ha

in
 F

at
ty

 A
ci

d
1.

64
4.

05
E−

02
1.

36
2.

34
4.

47
E−

06
1.

90
1.

95
6.

33
E−

03
1.

4

O
le

at
e 

(1
8:

1n
9)

Li
pi

d
Lo

ng
 C

ha
in

 F
at

ty
 A

ci
d

1.
71

2.
08

E−
02

1.
56

2.
37

1.
80

E−
05

2.
13

1.
63

3.
15

E−
02

1.
37

M
ar

ga
ra

te
 (1

7:
0)

Li
pi

d
Lo

ng
 C

ha
in

 F
at

ty
 A

ci
d

2.
03

1.
24

E−
02

1.
49

2.
32

3.
87

E−
06

1.
92

1.
55

1.
73

E−
02

1.
28

Pa
lm

ita
te

 (1
6:

0)
Li

pi
d

Lo
ng

 C
ha

in
 F

at
ty

 A
ci

d
1.

61
5.

35
E−

02
1.

38
2.

07
5.

20
E−

05
1.

76
1.

48
2.

74
E−

02
1.

27

St
ea

ra
te

 (1
8:

0)
Li

pi
d

Lo
ng

 C
ha

in
 F

at
ty

 A
ci

d
1.

44
1.

14
E−

01
1.

23
2.

19
8.

39
E−

06
1.

51
1.

96
3.

19
E−

03
1.

23

10
-h

ep
ta

de
ce

no
at

e 
(1

7:
1n

7)
Li

pi
d

Lo
ng

 C
ha

in
 F

at
ty

 A
ci

d
2.

18
3.

42
E−

03
2.

16
2.

21
7.

44
E−

05
2.

62
0.

95
2.

43
E−

01
1.

21

Pa
lm

ito
le

at
e 

(1
6:

1n
7)

Li
pi

d
Lo

ng
 C

ha
in

 F
at

ty
 A

ci
d

2.
09

2.
64

E−
03

2.
35

2.
11

1.
61

E−
04

2.
73

0.
80

3.
88

E−
01

1.
16

D
ih

om
o-

lin
ol

ea
te

 (2
0:

2n
6)

Li
pi

d
Po

ly
un

sa
tu

ra
te

d 
Fa

tt
y 

A
ci

d 
(n

3 
an

d 
n6

)
1.

68
1.

06
E−

01
1.

53
2.

11
2.

27
E−

05
2.

45
1.

63
7.

34
E−

03
1.

6

Ep
ia

nd
ro

st
er

on
e 

su
lfa

te
Li

pi
d

St
er

oi
d

2.
81

2.
58

E−
05

0.
28

1.
80

2.
07

E−
04

0.
40

0.
77

5.
41

E−
01

1.
41

A
nd

ro
st

er
on

e 
su

lfa
te

Li
pi

d
St

er
oi

d
2.

36
4.

13
E−

04
0.

27
1.

58
1.

41
E−

03
0.

36
0.

65
7.

03
E−

01
1.

35

A
nd

ro
 s

te
ro

id
 m

on
os

ul
fa

te
Li

pi
d

St
er

oi
d

2.
52

1.
26

E−
03

2.
84

1.
94

1.
02

E−
03

2.
88

0.
12

9.
48

E−
01

1.
01



Page 7 of 12Qian et al. BMC Infect Dis          (2021) 21:808  

Fig. 2 Acylcarnitines were identified as the metabolites exhibiting the main differences between IR and INR. a Metabolite Set Enrichment Analysis 
using 18 metabolites which could distinguish controls, IR, and INR. b Box-and-whisker plots of the metabolite levels in control (n = 18), IR (n = 10), 
and INR (n = 10) samples. ANOVA with Fisher’s LSD test (FDR < 5%) was used to compare the three groups. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 3e). These results indicate that elevated levels of MC, 
PC, SC, and OC in INR may be associated with decreased 
 CD4+ T cell count.

Levels of MC, PC, SC, and OC could be used to evaluate 
immune recovery
Given the negative correlations between levels of acylcar-
nitines and  CD4+ T cell count, we considered that these 
acylcarnitines were potential biomarkers for evaluation 
of immune recovery; therefore, we used ROC curves to 
evaluate the clinical value of these metabolites. The area 
under the curve (AUC) values for MC (p = 0.017; Fig. 4a), 
PC (p = 0.013; Fig.  4b), SC (p = 0.004; Fig.  4c), and OC 
(p = 0.005; Fig. 4d) were 0.82, 0.83, 0.88, and 0.87, respec-
tively, indicating that these metabolites may be useful 
for evaluation of immune recovery. Next, we conducted 
ROC analysis of the four metabolites combined and the 
resulting AUC value was 0.94, suggesting that this combi-
nation of metabolites may be more meaningful for evalu-
ation of immune recovery (p = 0.001; Fig. 4e).

Levels of MC, PC, SC, and OC could predict  CD4+ T cell 
count during long term ART 
To further validate these findings, we determined the 
cut-off point that generated from the largest sum of sen-
sitivity plus specificity values in the ROC analysis, to 
regroup the 20 HIV-infected individuals, based on  CD4+ 

T cell count data collected within 6 years after metabo-
lome sampling (at 2 years after ART), and set  CD4+ T cell 
count reaching 700 cells/μL as the outcome to conduct 
survival analysis. The results showed that MC (p = 0.043; 
Fig.  5a), PC (p = 0.004; Fig.  5b), OC (p = 0.023; Fig.  5c), 
and SC (p = 0.011; Fig.  5d) could help to predict  CD4+ 
T cell count within 6 years. Moreover, we regrouped the 
samples according to levels of MC, PC, SC, and OC: sam-
ples with all metabolites at high levels were classified into 
the ‘high levels’ group, while samples with all metabolites 
at low levels were classified into the ‘low levels’ group. 
The results showed that analysis combining MC, PC, SC, 
and OC could predict  CD4+ T cell count during long 
term ART (p = 0.037; Fig. 5e).

Discussion
In this investigation, we analyzed metabolite profiles in 
plasma samples from controls, IR, and INR after 2 years 
of ART. We identified 18 metabolites that could distin-
guish the control, INR, and IR groups. The acylcarnitines, 
MC, PC, OC, and SC, were identified as the metabolites 
with the main profile differences between IR and INR 
and were associated with poor immune recovery of HIV-
infected individuals receiving ART.

Our results indicate that lipid metabolites are the main 
differentiators that distinguish control, IR, and INR 
groups. HIV can disturb lipid and amino acid metabolism 
[18], while our data show that levels of lipid metabolites 

Fig. 3 Correlations between metabolite levels and  CD4+ T cell count. a–e The Spearman rank test was used to evaluate the correlation between 
acylcarnitines and  CD4+ T cell count
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in HIV-infected patients are still higher than that of 
HIV- negative individuals. In addition, some ART drugs 
can affect lipid metabolism, probably by inhibiting the 
degradation of adipogenic transcription factors, such as 
SREBPs and PPAR-c [19–21]. All HIV-infected  subjects 
in our study received NRTI combined with non-NRTI 
therapy for two years, and their viral loads were under 
the detection limit; therefore, the effect of the virus and 
drugs can be discounted, and the main cause of differ-
ences in lipid profiles can be attributed to immune recov-
ery, in this study.

Further, we found that the fatty acid metabolites, acyl-
carnitines, were clearly elevated in INR. Acylcarniti-
nes are synthesized by the combination of carnitine and 
acyl-CoA (activated fatty acid), and transported into the 
mitochondria by carnitine-acylcarnitine translocase [22]. 
Acylcarnitines are reconverted to acyl-CoAs with the 
help of carnitine-palmitoyltransferase-2 (CPT-2), and 
acyl-CoAs undergo β-oxidation in the mitochondrial 
matrix [23]. Increased levels of acylcarnitines are asso-
ciated with reduced CPT-2 activity [24, 25], hence, the 
increased levels of acylcarnitines identified in the INR 
group in our study may indicate mitochondrial dysfunc-
tional; for example, impaired translocase activity, which 
could result in the accumulation of acylcarnitines.

The association of high levels of acylcarnitines with 
poor immune recovery detected in this study may have 
been caused by  CD4+ T cell apoptosis. PC can stimulate 
the activity of caspase-3/7 and caspase-8 to induce apop-
tosis of murine  CD4+CD25+ T cells and the Jurkat cell 
line [26, 27]. Further, the combination of PC and carni-
tine can induce apoptosis of a colon cancer cell line, with 
 O2

− generation during β-oxidation in the mitochondria 
[28]. Therefore, we speculate that PC may induce apopto-
sis of  CD4+ T cells, by being absorbed by cells and then 
transported into mitochondria, where the increase in 
substrate results in  O2

− accumulation, potentially caus-
ing apoptosis. In addition, there is evidence that MC or 
PC can activate JNK and ERK in proinflammation and 
stress signaling pathways in some murine cell lines [29, 
30]. Acylcarnitines can also disrupt membrane barri-
ers to solutes, leading to membrane solubilization [31, 
32]. Hence, we hypothesize that long chain acylcarni-
tines may induce apoptosis of  CD4+ T cells by promot-
ing β-oxidation, leading to elevated oxidative stress, or 
membrane disruption; however, the specific mechanism 
underlying the induction of  CD4+ T cell apoptosis by 
acylcarnitines remains to be explored.

It was reported that the accumulation of long-chain 
acylcarnitines in plasma were associated with liver or 

Fig. 4 ROC analysis of acylcarnitine levels to distinguish  INR and IR groups. a–e ROC analysis of the levels of MC, PC, SC, OC, or the combination of 
MC, PC, SC, and OC
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renal fibrosis in non-HIV infection[33–35], while the 
fibrosis was contributed to the loss of  CD4+ T cells in 
HIV infection [36, 37]. Therefore, we postulated that 
acylcarnitines might associated with lymph node fibrosis 
and lead to poor immune recovery.

Our ROC analysis results demonstrate that MC, PC, 
SC, and OC can distinguish INR from IR, and the com-
bination of these four metabolites exhibited higher sen-
sitivity and specificity than any of them individually. 
Survival analysis also indicated that the combination of 
these four metabolites could be biomarkers for predic-
tion of  CD4+ T cell count to determine immune recovery 
in patients undergoing long term ART. Hence MC, PC, 
SC, and OC are important biomarkers of immune recov-
ery and potential targets for immune intervention and 
treatments.

This study has some limitations. Although the age 
and BMI of the control, IR, and INR groups were 
matched, the data of lifestyle factors, diets and dietary 
supplements unavailable may have affected the results. 
We identified four metabolites which could be used to 
clearly distinguish INR from IR and predict  CD4+ T cell 
count in patients undergoing long term ART; however, 

the results require verification in a future study with a 
larger sample size.

Conclusion
In conclusion, we compared the metabolite profiles in 
plasma samples among control, IR, and INR groups in 
a Chinese cohort and found that MC, PC, SC, and OC 
were negatively correlated with  CD4+ T cell count. The 
combined analysis of MC, PC, SC, and OC could be 
useful for indicating the immune status, and predicting 
immune recovery, during long term ART, potentially 
guiding clinical treatment decisions.
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Fig. 5 Analysis of the ability of acylcarnitine levels to predict  CD4+ T cell count. a–e Survival analysis of levels of MC, PC, OC, SC, or the combination 
of MC, PC, SC, and OC. Subjects were divided into high-level and low-level groups, according to the cutoff points with the largest sum of sensitivity 
plus specificity in ROC curves.  CD4+ T cell count of > 700 cells/μL were considered the end point. Kaplan–Meier survival curves and the log-rank test 
were used to assess predictive ability
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