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CASE REPORT
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Abstract 

Background:  Dengue virus (DENV) is endemic in many parts of the world. Antibody dependent enhancement 
(ADE) in DENV infections occurs when a person with primary immunity is infected by a second, different DENV strain. 
Antibodies to Zika virus (ZIKV), which emerged in the Western Hemisphere in 2015, are cross reactive with DENV and 
theoretically could provoke ADE in a DENV naïve individual.

Case presentation:  DENV infection was suspected in a child who had recently returned from a one-month stay 
in the Dominican Republic. The child presented with fever, vomiting, abdominal pain, and in hypovolemic shock. 
Volume and pressor resuscitation were unsuccessful, and the child died less than 24 h after hospitalization. Labora-
tory results suggested an early acute first DENV infection since serum, plasma, and spinal fluid had DENV1 detected 
by polymerase chain reaction (PCR), yet the serum lacked IgG antibodies to DENV nonstructural protein 1 (NS1) of all 
four DENV serotypes. This acute DENV infection occurred in the presence of a remote ZIKV infection as determined by 
antibodies to ZIKV NS1 envelope by multiplex microsphere immunoassay and an exceptionally high plaque reduction 
neutralization titer to ZIKV. ZIKV IgG avidity index was high, confirming a past infection. DENV1 RNA was detected in 
all ten organs and tissues examined by PCR. The severe and fatal complications reported here suggest that a remote 
ZIKV infection may provoke an exaggerated immune response leading to hypovolemic shock when primarily infected 
by DENV1.

Conclusion:  We report the first known patient in the United States with a rapidly progressive and fatal case of travel-
associated DENV in which prior exposure to ZIKV likely played a role in triggering an ADE phenomenon. This associa-
tion of prior ZIKV immunity and subsequent new dengue infection is a worrisome phenomenon and an important 
contribution to the body of knowledge on immunity to flaviviruses.
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Background
Dengue infection (DENV) is the most common mos-
quito borne viral disease in the world [1]. DENV is a 
positive sense RNA virus in the Flaviviridae family, 
genus flavivirus, that occurs as one of four serotypes [2]. 
Dengue viruses are closely related to Zika virus (ZIKV): 
both are members of the Flaviviridae family and have 
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immunologic cross-reactivity due to their amino acid 
homology [3, 4]. In children, DENV often causes an 
asymptomatic or mild and nonspecific illness 2–7  days 
following the bite of an infected Aedes mosquito. A very 
small proportion of infections will have the severe com-
plications of dengue hemorrhagic fever (DHF) or dengue 
shock syndrome (DSS).

Severe complications of DENV infection may occur 
with a first infection (primary infection) but are more fre-
quent when a patient is infected with a second DENV of 
a different serotype often due to a phenomenon known as 
antibody dependent enhancement (ADE) [5, 6]. In ADE, 
cross-reactive antibodies to pre-membrane and envelope 
proteins from the primary DENV virus serotype allow 
binding of the second DENV virus-IgG immune com-
plexes by Fc-receptors on monocytes, facilitating virus 
transport across cell membranes and increased viral rep-
lication. DENV non-structural protein 1 (NS1) causes 
direct damage to endothelial cells resulting in plasma 
leakage [6, 7]. In children, a second DENV infection 
has a ten-fold higher risk of DHF and DSS than a pri-
mary infection. Infants less than one year old, who have 
acquired DENV antibodies via transplacental passage 
from mothers with a history of previous DENV infection 
have a higher risk of DHF and DSS than infants born to 
mothers who have never had DENV [8].

While limited local transmission of DENV has been 
detected in Hawaii, Florida, and Texas, the major-
ity of DENV infections among United States residents 
are acquired during travel to visit friends or relatives in 
endemic areas including Southeast Asia, Latin America, 
and the Caribbean [9–12]. Florida, New York, and Cali-
fornia report the highest number of cases each year in 
the continental United States and numbers are reflec-
tive of global activity with peak years resulting in more 
imported cases [12]. The largest number of cases in New 
York City occurred in 2010 (N = 144), the year of a large 
DENV outbreak in Latin America. That year, three deaths 
were reported, which were the last reported DENV 
deaths in New York City until the case we describe here.

The ZIKV pandemic affected much of South, Central, 
and Latin America from 2015 to 2017, but may have 
been introduced into Brazil as early as 2013 [13]. This 
has prompted concern that DENV infection following 
a ZIKV infection may result in a similar ADE phenom-
enon as with a heterotypic DENV serotypes. Prospective 
studies to determine severity of dengue after Zika are 
planned in central America (SW personal communica-
tion with Steve Waterman, Centers for Disease Control 
and Prevention, September 6, 2019). We present the case 
of a child who had DHF/DSS and laboratory evidence 
of probable ADE as a result of a prior ZIKV infection. 
Currently, there are no published reports of pediatric 

mortality as a consequence of ADE following a ZIKV 
infection.

Case presentation
Patient’s clinical course
A previously healthy, United States born, Hispanic, 
school-aged female known to have sickle-cell trait pre-
sented to a New York City emergency department (ED) 
in August 2019 with a 4-day history of fever (maxi-
mum-38.4  °C), headache, abdominal pain, and vomit-
ing. The patient was diagnosed with acute gastroenteritis 
and discharged home. She presented to a second emer-
gency department 14  h later prompted by worsening 
abdominal pain and episodes of epistaxis, hematemesis, 
and black tarry stools. The patient had recently returned 
from a one month visit to the Dominican Republic two 
weeks prior to presentation (Fig. 1), during which it was 
reported that her cousin was hospitalized with dengue 
fever. Upon arrival to the second ED, she was afebrile 
(initial-36.6  °C, maximum-37.3  °C) with a pulse of 122 
beats/min, blood pressure of 122/62 mm Hg, and a res-
piratory rate of 21 breaths/min. Her oxygen saturation 
was 85% in room air, which increased to 98% with 100% 
oxygen delivery via non-rebreather. Significant findings 
on physical examination were skin pallor, cold extremi-
ties with a prolonged capillary refill, weak pulses, wax-
ing and waning consciousness, and a distended abdomen 
with rebound tenderness. The patient was determined 
to be in hypovolemic and septic shock. Broad-spectrum 
antibiotics were administered, and resuscitation efforts 
were initiated.

Timeline of patient risk from travel to onset of symp-
toms, ED visit, hospitalization and death. Key clinical 
factors are listed above, and laboratory findings are pre-
sented below the days post onset.

Initial laboratory results were significant for hypona-
tremia (130  mEq/L), hyperkalemia (5·5  mEq/L), and a 
severe metabolic acidosis (bicarbonate 6 mEq/L, venous 
pH < 6·8 and lactate level 14·2 mmoL/L). The white blood 
cell count was elevated at 32·9  k/µL with 61% neutro-
phils, 34% lymphocytes, and 3% immature granulocytes. 
The patient was anemic and thrombocytopenic with 
a hematocrit of 26·6% and a platelet count of 36  k/µL. 
Poikilocytosis (3 +), burr cells (3 +), anisocytosis (1 +), 
macrocytosis (1 +), spherocytosis (1 +), and schistocyto-
sis (1 +) were noted, but no sickling. A malaria antigen 
test was negative and no parasites were noted on thick 
or thin blood smears. Blood urea nitrogen was 21  mg/
dL and creatinine was 0·8  mg/dL, both elevated for the 
patient’s age. Liver enzymes were significantly elevated 
with an aspartate aminotransferase of 2137 U/L and ala-
nine transaminase of 744 U/L, and her serum albumin 
was subnormal at < 2·0  g/dL. Coagulation studies were 
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concerning for disseminated intravascular coagulation 
(DIC) with prolongation of her prothrombin time (PT) to 
32·2 s, partial thromboplastin time (PTT) to 95·1 s, and 
an Internal Normalized Ratio (INR) of 3·2. Lactic acid 
dehydrogenase (4,171 U/L) and uric acid (9·6  mg/DL) 
were also abnormal. An initial portable chest radiograph 
revealed clear lungs and a computerized tomography 
(CT) scan with contrast of the abdomen was obtained 
due to the concern for an intraabdominal process. The 
CT scan revealed significant ascites, bilateral pleural 
effusions, a small pericardial effusion, thickening of the 
bowel, a collapsed inferior vena cava, lack of enhance-
ment of the liver and spleen, and delayed nephrograms, 
all consistent with hypovolemic shock.

In the pediatric intensive care unit, the patient was 
intubated for altered mental status and worsening res-
piratory failure. Central venous and arterial access was 
obtained, and despite fluid resuscitation with both crys-
talloids and colloids, the patient became increasingly 
hypotensive with a narrow pulse pressure, requiring mul-
tiple vasopressors for blood pressure support. Repeat 
labs revealed worsening hyperkalemia (9·0 mEq/L) with 
refractory acidosis (bicarbonate < 5  mEq/L, arterial lac-
tate of 17  mmol/L). A repeat chest radiograph revealed 
increasing pleural effusions consistent with worsening 
capillary leak. Fulminant DIC developed exhibited by 
bleeding from the mouth, nares, mucosa, and the central 
line site. Repeat laboratory tests were consistent with a 
rapidly progressive coagulopathy with a PTT of > 300  s, 
PT of 53  s, INR of 6·0, fibrinogen level of 55  mg/dL, 
and D-Dimer of 2·43 μg/mL. The patient remained in 
catecholamine and fluid refractory shock despite the 
administration of packed red blood cells and fresh frozen 

plasma. Twelve hours after presentation to the second 
ED the patient suffered an asystole cardiac arrest. A bed-
side echocardiogram showed no evidence of pericardial 
tamponade. Despite all efforts the patient expired. Post-
mortem genetic testing confirmed the patient was het-
erozygous for hemoglobin AS (sickle cell trait).

Findings at autopsy
External examination revealed no rash. The oral and con-
junctival membranes were pale. There were pleural and 
pericardial effusions, as well as a small amount of perito-
neal fluid. The lungs were congested and edematous, with 
numerous, scattered, mucosal petechial hemorrhages 
along all bronchial branches. The epicardial surface also 
had scattered petechial hemorrhages and there were 
patchy, subendocardial hemorrhages of the left ventricle. 
The stomach mucosa was markedly erythematous, with 
associated dispersed patches of finely raised, lymphoid 
nodular stippling. The stomach, small and large intestines 
contained a small amount of blood. Sparse tissue hem-
orrhages were present within the peritoneal cavity and 
surrounded the adrenal glands, small intestine, and pos-
terior uterus. There were no intraparenchymal adrenal 
gland hemorrhages.  The mesenteric tissues had marked 
lymphadenopathy with associated patchy hemorrhagic 
congested areas. The spleen was enlarged and indurated, 
with slightly pale-pink, capsular discolorations. The liver 
parenchyma was congested. A discrete focus of acute 
parenchymal hemorrhage was noted within the pancre-
atic head, subjacent to the sphincter of Oddi. Through-
out the body cavity, within the visceral fascial planes, 
there was marked subcutaneous emphysema. The brain 
was edematous and the leptomeninges were congested 

Fig. 1  Patient timeline. HA headache, AMS altered mental status, DIC disseminated intravascular coagulation
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primarily adjacent to the superior sagittal sinus, in the 
distribution of the arachnoid granulations. The cerebro-
spinal fluid was bright red tinged.

Histopathologic examination was concordant with 
the gross findings of tissue and mucosal hemorrhage. 
Hemophagocytosis was seen in the lungs and bone 
marrow, there was marked sinusoidal congestion of the 
spleen, and red blood cell sickling (Fig.  2). Hepatocyte 
necrosis was present, and the kidneys showed many mul-
tifocal areas of tubule mineralization and marked edema 
of the glomeruli. The stomach had dense mucosal lym-
phocytic infiltration and prominent reactive lymphoid 
follicles.  Hemophagocytosis was marked within intra-
alveolar macrophages and among scattered bone marrow 
histiocytes. Sections of heart tissue did not show evi-
dence of myocarditis.

Laboratory diagnosis
Whole blood, serum, cerebrospinal fluid (CSF), and 
fresh frozen organ tissue samples were collected 5- and 
6-days post onset of symptoms and at autopsy (day 7). 

Molecular diagnostic testing was performed using an 
FDA approved, CDC developed 1-step real-time RT-PCR 
assay that detects and differentiates between the DENV 
serotypes 1, 2, 3, and 4 [14]. Real-time RT-PCR assays 
for the detection of ZIKV and Chikungunya virus were 
also performed [15, 16]. DENV1 was detected in whole 
blood, serum, cerebrospinal fluid, and in frozen tissue 
from ten organs (heart, lung, liver, spleen, kidney, adre-
nal gland, intestine, brain, stomach, and lymph node). 
The lowest cycle threshold (corresponding to the highest 
level of RNA) value was found in the liver, the tissue with 
the most marked pathologic changes (Table 1). The high-
est cycle threshold value was found in the heart where no 
significant histopathologic changes were detected. RT-
PCR for ZIKV and Chikungunya were negative.

Commercial laboratory antemortem serology test-
ing found Dengue Fever IgM = 1·73 (reference ranges: 
negative, < 0·80, equivocal 0·8–1·09, positive ≥ 1·10) and 
IgG = 7·59 (reference ranges: negative, ≤ 1·65, equivocal 
1·66–2·83, positive ≥ 2·84). Commercial assays for den-
gue were developed and cleared by FDA prior to arrival 

Fig. 2  Histopathology- Hematoxylin and eosin staining (magnification 400×) A Lung with alveolar macrophages containing intact erythrocytes 
(hemophagocytosis). B Spleen with markedly congested sinusoids. C Early, focal liver necrosis and sinusoidal hemorrhage. D Section of bone 
marrow with histiocyte containing intact erythrocytes (hemophagocytosis, green arrow) and red blood cell sickling (black arrow)
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of Zika in the Western Hemisphere. The available DENV 
IgG assays are based on a broadly cross-reactive envelope 
protein and cannot differentiate between Flaviviruses. 
The above IgM result is consistent with acute DENV 
infection whereas the IgG result, as shown by further 
testing below, is likely explained by cross reaction from 
previous Zika infection.

At the Wadsworth Center total antibodies 
(IgG + IgA + IgM) to ZIKV and DENV were evaluated 
using a suspension phase microsphere immunoassay 
[17]. The test was developed, validated, and approved for 
clinical use by the New York State’s Clinical Laboratory 
Evaluation Program (CLEP). Serum collected 5 days and 
6 days after onset had a high level of antibodies to Zika 
envelope and Zika NS1 yet lacked significant detectable 
antibodies to NS1 of the four dengue serotypes, thus rul-
ing out a previous dengue infection (Fig. 3a).

Cross species plaque reduction neutralization tests 
(PRNT 90) were performed in Vero cells and showed 
an exceptionally high titer to ZIKV (> 81,920) and lower 
titers to DENV1 (10,240) and DENV2 (2560) (Fig.  3b) 
[18]. Viral culture in Vero cells was attempted using 
plasma, spinal fluid and autopsy tissue. After two weeks 
no viral growth was detected.

An avidity index (AI) is a measure of IgG binding affin-
ity that was developed to determine the amount of time 
passed since a flavivirus infection [19–21]. IgG antibod-
ies mature over time becoming more selective through 
a process akin to natural selection [22]. Mutations in 
antibody-producing B lymphocytes create a pool from 

which non-neutralizing antibody producers are dese-
lected [8, 23]. IgG avidity increases in a nearly linear 
manner achieving AI of about 50% at 6  months post 
infection. After 6  months IgG avidity will continue to 
increase sometimes reaching 80–90%; however, exposure 
to another flavivirus will also boost the AI to these lev-
els. The Wadsworth Center has developed, validated, and 
received CLEP approval for an IgG avidity assay. Most 
adults living in dengue endemic areas have IgG avidity 
indices to dengue NS1 proteins in the 75–95% range [21]. 
The IgG AI for this patient was 85% to Zika envelope 
and 55% to Zika NS1, indicative of remote Zika infec-
tion > than 6  months prior to specimen collection. An 

Table 1  Dengue PCR results and Cycle thresholds

*Screened for Zika and chikungunya viruses

**Screened for chikungunya virus

Sample type Days post onset Dengue 1
Real-time PCR
Cycle threshold

Whole blood* 5 34.83

Whole blood* 7 26.43

Serum** 6 28.17

CSF 7 28.88

Tissue A-Mesentery #1 7 34.83

Tissue B-Kidney 7 28.77

Tissue C-Thymus 7 24.19

Tissue D-Pancreas 7 28.92

Tissue E-Mesentery #2 7 28.60

Tissue F-Liver 7 19.04

Tissue G-Lung 7 21.80

Tissue H-Heart 7 30.64

Tissue I-Lymph Node 7 30.31

Tissue J-Spleen 7 24.77

Fig. 3  a Multiplex microsphere immunoassay measurement of total 
antibodies to Zika envelope, Zika NS1, and the NS1 proteins of all four 
dengue serotypes are presented as the median fluorescence intensity 
(MFI) of 100 beads counted for each antigen coated beads on the 
Y axis. The target antigens are reported on the X axis. This multiplex 
analysis demonstrates past Zika infection. The dramatically lower level 
of antibodies to dengue NS1 proteins makes a past dengue infection 
unlikely. b Shows the virus being neutralized. Exceptionally high 
PRNT to Zika indicates past infection. The lower PRNT to DENV1 and 
DENV2 may indicate cross reaction of the Zika antibodies recognizing 
dengue since it is the envelope protein being neutralized
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IgG avidity to dengue was not performed for this patient 
since there were no significant levels of detectable IgG 
antibodies to the dengue NS1 proteins in the early acute 
infection.

Discussion and conclusions
We describe a case of fatal DHF/DSS due to DENV1 in 
a school-aged child whose exposure occurred in the 
Dominican Republic. Serologic evidence confirmed a 
prior ZIKV infection, but not a prior DENV infection 
which, along with the severity of the illness, was consist-
ent with ADE.

Research has shown that the risk of DHF/DSS is ele-
vated in the presence of preexisting DENV antibodies 
of a different serotype [8, 24, 25]. Since ZIKV antibodies 
are known to cross-react with DENV, it has been hypoth-
esized that individuals with ZIKV immunity may be at 
risk for ADE when then exposed to DENV. Antibodies 
to ZIKV likely have a decreased capacity to neutralize 
DENV, but still have binding affinity. Immune complexes 
composed of ZIKV antibodies attached to DENV would 
have the ability to fix complement and bind to cell surface 
Fc receptors enabling virus entry into phagocytic cells. 
Enhanced viral replication ensues leading to more severe 
manifestations of disease [8].

Data from DENV outbreaks in Cuba in 1977 and 1981 
support the ADE hypothesis. The 1977 outbreak was 
caused by DENV1 and resulted in an estimated 500,000 
cases [26]. In 1981, DENV2 was the responsible strain 
and there were over 10,000 severe illnesses with 101 
deaths in children [26]. A subsequent serosurvey found 
that the prevalence of DENV1 antibodies following the 
1977 outbreak was 44.5%. Among 124 severely ill chil-
dren who survived the 1981 outbreak, 98% had antibod-
ies to both DENV1 and 2, supporting the notion that the 
presence of those antibodies placed children at a higher 
risk for severe disease [24]. Furthermore, no child aged 
1–2 years old (born after the 1977 outbreak) was hospi-
talized during the 1981 outbreak [26].

Additional support for the ADE phenomenon comes 
from a safety and efficacy of trial of Dengvaxia, a live 
attenuated tetravalent  dengue  vaccine, that was studied 
in the Philippines [27]. Analysis of the data revealed that 
children less than 9 years of age without previous DENV 
immunity who received vaccine were found to have 
an increased risk of hospitalization for severe disease 
[28]. Data from a Nicaraguan pediatric cohort has further 
suggested that dengue ADE occurs within a narrow range 
of pre-existing antibody titer which places children at the 
highest risk for severe illness in the immediate years fol-
lowing their initial DENV infection or vaccination [25].

Hemophagocytic lymphohistiocytosis  (HLH), an 
immune dysregulation disorder featuring macrophage 

destruction of erythrocytes and uncontrolled cytokine 
production [29], is known to occur in DENV infections 
[30]. The patient described here met 5 of 8 HLH 2004 
classification criteria: fever, splenomegaly, bicytopenia, 
hypofibrinogenemia, and bone marrow hemophagocyto-
sis [31]. The features of HLH are difficult to distinguish 
from DHF/DSS and there is considerable diagnostic 
overlap with sepsis [32]. The interrelationship between 
ADE and HLH is unknown. Whether HLH complicated 
the patient’s course cannot be determined.

After ZIKV arrived in the Western Hemisphere in 
2015–2016, concerns arose that DHF/DSS could appear 
as a complication of antecedent ZIKV infection, par-
ticularly in children. Animal studies have shown that 
newborn mice born to mothers with ZIKV immunity 
had increased mortality when infected with DENV [33] 
and macaques with ZIKV immunity have increased 
viral loads and pro-inflammatory responses (without 
increased disease severity) when challenged with DENV2 
[34]. Epidemiology studies, however, were unclear on 
whether ZIKV immunity increased DENV severity [35, 
36], however, an analysis of the aforementioned Nicara-
guan children cohort following the 2019–2020 DENV2 
outbreak has confirmed that prior ZIKV increases the 
risk for severe DENV2 [37]. The authors hypothesized 
that prior ZIKV could provoke ADE in other DENV sero-
types, as occurred with this child [37].

The patient’s family reported travel to the Dominican 
Republic during the summers of 2016 and 2017, a time 
of peak ZIKV transmission in that country. It is likely the 
ZIKV exposure in this child occurred during one of these 
visits leading to the development of ZIKV antibodies that 
were responsible for enhancing the immune response to 
DENV1 acquired in 2019. We cannot entirely rule out the 
additional immunologic effects of an antecedent DENV 
infection acquired during a prior trip to the Dominican 
Republic, however, the antibody titers strongly implicate 
ZIKV ADE. While sickle cell disease (hemoglobin SS and 
SC) has been found to increase mortality to DENV the 
same has not been reported for persons with sickle cell 
trait [38, 39]. It is conceivable that in the face of hypox-
emia and acidosis, the patient’s sickle hemoglobin con-
tributed to the disease progression.

DENV, and other non-endemic arboviruses, may not 
be considered by providers in the United States and 
familiarity with WHO guidelines is warranted in com-
munities with frequent travel to flavivirus endemic 
countries [40]. Providers evaluating DENV compat-
ible illnesses should obtain a detailed history includ-
ing birthplace and recent travel. Early detection of 
signs of shock or other complications attributable to 
ADE DENV can help prevent a fatal outcome. DHF/
DSS patients require acute intensive medical care and 
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aggressive fluid resuscitation is recommended based on 
a rising hematocrit, which did not occur in this child 
[40]. Treating DHF/DSS differs from the management 
of septic shock from other etiologies as early fluid 
resuscitation is part of the mainstay of the latter’s treat-
ment. Without a high index of suspicion and or rapid 
assays to diagnose infection as well as prior immunity 
to DENV and or ZIKV, prompt and appropriate care 
remains a challenge.

We report the first known occurrence in a United 
States resident of DENV ADE precipitated by prior 
ZIKV immunity. As new and existing arboviruses 
emerge/reemerge it is important to understand how 
they may interact and the implications this has for 
both vaccine development and clinical care. Further 
research is required to decipher the immune responses 
to DENV, ZIKV, and other flaviviruses and to develop 
accurate rapid assays for clinical diagnosis.
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