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Abstract

Background: Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient
management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid
detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required.

Methods: In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-
LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain
coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-
LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-
polymerase chain reaction (qRT-PCR) assay was used as the reference assay.

Results: The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP
assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other
arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6–98.2) and
100% (95% CI = 78.5–100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the
simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ =
0.913, P < 0.001).

Conclusion: The RT-LAMP assay is applicable for the broad coverage detection of both the Asian and African ZIKV
strains in resource-deficient settings.
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Background
The Aedes mosquito-borne Zika virus (ZIKV) was dis-
covered in Uganda in 1947 [1] and until recently, caused
only sporadic human infections in Africa and Asia char-
acterized by mild and self-limiting disease [2–4]. An epi-
demic affecting almost three quarters of the population
in Yap Island, Federated States of Micronesia in 2007
was the first outbreak of ZIKV outside of Africa and
Asia [5]. Following that, in 2013–2014, ZIKV rapidly
spread to other countries in the Pacific, including French
Polynesia [6], New Caledonia [7], the Cook Islands, Solo-
mon Islands and Easter Island [8, 9]. Notably, the French
Polynesia outbreak resulted in almost 9000 suspected
cases, with an unusual increase of incidences involving
neurological deformities among infants born after the
outbreak [10]. In early 2015, ZIKV was identified in an
outbreak in Bahia, Brazil [11] and by November 2016,
transmission of ZIKV has since been reported in at least
48 other countries in the Americas [12]. It was during
the Brazil outbreak that health authorities observed a
surge in adverse pregnancy outcomes including congeni-
tal microcephaly, cerebral calcification and fetal growth
restriction, among infants born to ZIKV-infected
mothers [13]. Adults were clinically diagnosed with
Guillain-Barré syndrome following ZIKV infection [8,
14], although the associated pathophysiological mecha-
nisms have yet to be ascertained. The possible associa-
tions of ZIKV infection to these health disorders
compelled the World Health Organization to declare
ZIKV a Public Health Emergency of International Con-
cern on February 2016 [15].
The ZIKV epidemics highlighted the unfortunate cir-

cumstances that this disease undeservedly affected most
the economically marginalized populations [16] and by
chance, they happened to be living in regions where Ae-
des mosquitoes thrive [17]. The expansion and spread of
ZIKV, however, can be attributed to the wider geograph-
ical reach of Ae. albopictus that unlike Ae. aegypti can
survive in temperate areas [17]. In addition, the infection
can be transmitted through sexual contact [18, 19],
mother-to-fetus [20–22] and via blood transfusion [23–
25], albeit only in rare instances. Considering its far
reaching impact of the infection, it is crucial that the de-
velopment of rapid, cost-effective assays and portable
ZIKV detection instruments to be expedited for deploy-
ment to the most needing.
Current ZIKV diagnosis use either serological assays

detecting ZIKV-reactive antibodies or molecular detec-
tion of ZIKV RNA [26]. Serological assays detecting spe-
cific anti-ZIKV antibodies and the neutralization tests
detecting specific ZIKV neutralizing antibodies are la-
borious, time-consuming and complicate by possible
cross-reactivity with other flaviviruses [26, 27]. ZIKV
RNA detection by quantitative reverse transcription-

polymerase chain reaction (qRT-PCR) [28, 29] is often
considered the gold standard as it provides definitive
diagnosis. This method however, requires usage of costly
reagents and amplification and detection equipment.
The method also requires trained laboratory personnel
to perform. The loop-mediated isothermal amplification
(LAMP) method that provides simple, sensitive and
rapid nucleic acid amplification under isothermal condi-
tions promises to be a good alternative to qRT-PCR
[30]. The method has been used for the detection of
various RNA viruses including ZIKV [31–43]. Majority
of the earlier reports of RT-LAMP for ZIKV used
primers designed based on the lineage-specific regions
of ZIKV genome [31–40]. In the present study, we de-
scribed an improved RT-LAMP assay which took into
account the detection of ZIKV strains from both the Af-
rican and Asian lineages. The ZIKV RT-LAMP assay de-
scribed here was evaluated for ZIKV RNA detection
from simulated serum, saliva, and urine specimens.

Methods
Zika viruses
Three Asian ZIKV strains (P6–740, PRVABC59 and H/
PF/2013) [44–46] and one African ZIKV strain (MR766)
[1] were used. Strain P6–740 was obtained from Dr.
Robert Tesh (World Reference Center for Emerging Vi-
ruses and Arboviruses, The University of Texas Medical
Branch, Galveston, USA). Strain PRVABC59 was main-
tained in the laboratory by K. Zandi (author). Strain H/
PF/2013 and MR766 were provided by Dr. Li-Sze Lim
(Medical Innovation Ventures Pte. Ltd., Malaysia). The
viruses were propagated in Vero cells using Dulbecco’s
modified Eagle medium (DMEM, Gibco, NY, USA) sup-
plemented with 2% heat-inactivated fetal bovine serum
(FBS collected in South America, Capricorn, Germany),
0.1 mM non-essential amino acids (NEAA) and 2mML-
glutamine. The infected cells were incubated at 37 °C in
5% CO2 atmosphere for 7 days and the infected cell cul-
ture supernatants were then harvested and stored at −
80 °C until further use.

Simulated clinical samples
The study was approved by the UM Institutional Bio-
safety and Biosecurity Committee (Approval Number:
UMIBBC/NOI/R/TNCPNI/TIDREC-007/22072020) and
the UMMC Medical Ethics Committee (Ethics Commit-
tee/IRB Reference Number: 908.11). All ZIKV-positive
simulated clinical samples were prepared by spiking the
viral culture supernatant into actual human saliva, urine
and serum. The viral culture supernatant was serially di-
luted with the serum-free media to viral titers ranging
from 10− 2 to 104 plaque-forming unit/ml (PFU/ml). The
diluted viral culture supernatants were then mixed with
the saliva, urine and serum samples at a 1:9 ratio. The
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final viral titers of the simulated clinical samples ranged
from 10− 3 to 103 PFU/ml. The human saliva, urine and
serum without spiked ZIKV were used as ZIKV-negative
simulated clinical samples. A total of 24 simulated clin-
ical samples consisting 8 saliva, 8 urine and 8 serum
samples were prepared (Additional file 1: Table S1). The
saliva and serum samples were obtained from the same
healthy donor, while the urine sample was obtained from
another healthy donor. Only Asian ZIKV strains P6–740
was used for the preparation of simulated clinical
samples.

Viral plaque assay
The viral plaque assay was performed to determine the
infectious titer of the ZIKV used for the preparation of
simulated clinical samples. Briefly, the Vero cells were
seeded at a density of 2 × 105 cells/well in 24-wells plate
and allowed to grow overnight until more than 80% con-
fluency in DMEM supplemented with 10% FBS, 0.1 mM
NEAA and 2mML-glutamine. The overnight culture
media was replaced with a 10-fold serially diluted virus
stock in the serum-free media (200 μl of each virus dilu-
tion). The plate was placed on a rocker and gently
rocked for 1 h for virus adsorption. Subsequently, the
virus supernatants were removed from each well and
overlaid with 1 ml of DMEM supplemented with 2%
FBS, 0.8% carboxymethylcellulose (CMC, Sigma-Aldrich,
USA), 0.1 mM NEAA and 2mML-glutamine. The plate
was incubated at 37 °C in 5% CO2 atmosphere for 5 days.
After 5 days of incubation, the overlaid media was re-
moved and cells were fixed with 4% paraformaldehyde
(Sigma-Aldrich, USA) for 30 min at room temperature.
The cells were then washed using 1 × PBS for three
times. Finally, 0.5% crystal violet in 20% ethanol (Sigma-
Aldrich, USA) was used to stain the cells for 15 min in
order to enable the visibility of virus plaques. The virus
plaques were counted using the SMZ 1000 stereomicro-
scope (Nikon, Tokyo, Japan) and the virus infectious
titer was expressed in PFU/ml.

RNA extraction
The infected cell culture supernatant and simulated clin-
ical serum samples (140 μl) were subjected to RNA extrac-
tion using QIAamp Viral RNA Mini Kit (Qiagen,
Germany) following the manufacturer’s protocol. The
eluted RNA (60 μl) was stored at − 80 °C until further use.

Design of ZIKV-specific RT-LAMP assay primers
The virus genomes of both Asian and African lineages
were retrieved from GenBank. The genomes of other fla-
viviruses were also included for comparison. The se-
quences were aligned using Clustal X 2.0 [47]. The RT-
LAMP primers were designed following the criteria pre-
viously described [30]. Conserved regions among

flaviviruses were identified and excluded from the pri-
mer sequences. The RT-LAMP primers designed were
exhaustically compared with an alignment of ZIKV ge-
nomes retrieved from GenBank. The five nucleotides at
the 3′ end of F3, B3, FLP and BLP primers as well as the
five nucleotides at both 3′ and 5′ end of FIP and BIP
primers were considered critical sites for priming and
amplification. The coverage of the primers was further
validated by assessing the assay using both Asian and Af-
rican ZIKV strains.

RT-LAMP assay
The RT-LAMP reaction was prepared using the Loop-
amp RNA Amplification Kit (Eiken Chemical Co. Ltd.,
Japan). Each RT-LAMP reaction (25 μl) was added with
the inner primers (20 pmol each), outer primers (2.5
pmol each), loop primer (20 pmol each), Fluorescent De-
tection Reagent (Eiken Chemical Co. Ltd., Japan; 1 μl),
and the eluted RNA (5 μl). The RT-LAMP were per-
formed using LA-500 Loopamp real-time turbidimeter
(Eiken Chemical Co. Ltd., Japan) according to the fol-
lowing conditions: 90 min at 63 °C followed by 5 min of
assay inactivation at 80 °C. The turbidity of RT-LAMP
reaction was measured at 650 nm every 6 s. The thresh-
old time (Tt) value was recorded when the turbidity
crossed the threshold cut-off value at 0.07 absorbance
units [48, 49].

Cross-reactivity of RT-LAMP assay
The cross-reactivity of the ZIKV RT-LAMP primers was
evaluated against other arboviruses including dengue
virus type 1 (DENV-1), DENV-2, DENV-3, DENV-4,
Japanese encephalitis virus (JEV), Langat virus (LGTV),
Sindbis virus (SINV), Chikungunya virus (CHIKV), and
Getah virus (GETV). All these viruses were attained
from the TIDREC viral repository [48–52]. Nuclease-
free water was used as the negative control.

Detection limit of RT-LAMP assay
The detection limit of the RT-LAMP assay was assessed
by using a 10-fold serially diluted ZIKV RNA (ranged
from 1 to 103 RNA copies) extracted from the virus cul-
ture supernatant. The initial ZIKV RNA copy number in
the culture supernatant stock used were quantitated
using the qRT-PCR assay. The detection limit test of
RT-LAMP was repeated four times. Nuclease-free water
was used as the negative control and as the diluent for
the preparation of serially diluted viral RNA.

Evaluation of RT-LAMP assay
The feasibility of the RT-LAMP assay for detection of
ZIKV RNA in clinical setting was assessed using the
simulated clinical samples as described above. The qRT-
PCR was used as a reference assay for the detection of
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ZIKV RNA in the samples. Results from the RT-LAMP
and qRT-PCR assays were compared.

Real-time qRT-PCR assay (reference assay)
The viral RNA and samples used were quantitated using
the Genesig Real-Time qRT-PCR ZIKV Detection Kit
(PrimerDesign Ltd., UK). The Genesig qRT-PCR assay
standard plot was prepared using a 10-fold serially di-
luted synthetic ZIKV RNA template with known copy
number (ranged from 10 to 106 RNA copies). The qRT-
PCR reaction consists of the real time master mix
(10 μl), probe/primer mix (1 μl), nuclease-free water
(4 μ), and the extracted RNA (5 μl), in a 20 μl final reac-
tion volume. The qRT-PCR were performed according

Table 1 RT-LAMP primers used for the rapid detection of ZIKV

Primer
a

Sequence (5′→ 3′)

F3 GGCRGAYATWGAGATGGCTGG

B3 CACTCCAACYTGTGTTGAACC

FIP ACTT CC GC RT CYTT TT CC CATG TG AT GYTA YG TG GTCT
CRGG AAAG AGTG T

BIP GAGAGA GA TC ATAC TCAA RGTG GT CC TTCT TY AC ATAY
AC RT ACCA CG CT CC

FLP TGATRTCACCTGCTCTTTCAATGTACAT

BLP TGTGGCATGAACCCAATAGC
a F3, forward outer primer; B3, backward outer primer; FIP Forward inner
primer, BIP Backward inner primer; FLP Forward loop primer, BLP Backward
loop primer

Fig. 1 Amplification curves of the ZIKV RT-LAMP assay. A-D, four ZIKV strains; E-M, four DENV, JEV, LGTV, SINV, CHIKV and GETV, respectively; N,
negative control; O, y- and x-axis titles
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to the following conditions: 10 min at 55 °C, 8 min at
95 °C followed by 50 cycles of 10 s at 95 °C and 60 s at
60 °C using StepOnePlus real time PCR system (Applied
Biosystems, USA). The threshold cycles (Ct) obtained
were used to determine the ZIKV RNA copy number in
the samples based on standard curve from qRT-PCR
using StepOne Software v2.2.1.

Statistical analysis
A probit analysis (P ≤ 0.05) was performed to determine
the detection limit of the RT-LAMP assay. The degree
of agreement [kappa value (κ), P < 0.001] between RT-
LAMP and qRT-PCR test results was measured. The de-
gree of agreement and probit analyses were performed
using IBM SPSS Statistics, version 21 (IBM Corporation,
New York, United States). The diagnostic performance
of RT-LAMP compared to qRT-PCR was determined
using web-based EBM Diagnostic Test Calculator
(http://ebm-tools.knowledgetranslation.net/calculator/
diagnostic/).

Results
Design of ZIKV-specific RT-LAMP assay primers
A set of six RT-LAMP primers comprising two outer,
two inner, and two loop primers was designed
(Table 1 and Additional file 2: Fig. S1) to target both
Asian and African ZIKV strains. This was accom-
plished using the alignment of the conserved NS2A-
NS3 junction of the ZIKV genome; each lineage-
specific consensus was derived from at least five

ZIKV strains (Additional file 3: Table S2). The se-
quences of the RT-LAMP primers were further com-
pared with an alignment of 463 ZIKV genomes
retrieved from GenBank (Additional file 4: Figure S2).
In this comparison, BIP and FLP primers showed no
critical nucleotide mismatch with all ZIKV genomes.
Whereas the F3, B3, FIP and BLP primers respectively
showed 0.22% (1/463), 1.94% (9/463), 1.30% (6/463)
and 1.30% (6/463) of critical nucleotide mismatches
with the ZIKV genomes. Figure 1 showed that the
RT-LAMP primers detected the four reference ZIKV
strains.

Cross-reactivity of RT-LAMP assay
No cross-reactivity of the RT-LAMP assay was observed
with all other arthropod-borne viruses including all four
DENV serotypes, JEV, LGTV, SINV, CHIKV and GETV
(Fig. 1).

Detection limit of RT-LAMP assay
The detection limit of the RT-LAMP assay was assessed
by repeatedly testing on the serially diluted ZIKV RNA
with known copy number (Fig. 2 and Additional file 5:
Table S3). The positive detection by RT-LAMP assays
(n = 4) for 1000, 100, 10, and 1 ZIKV RNA copy were
100% (4 of 4), 100% (4 of 4), 100% (4 of 4), and 25% (1
of 4), respectively, with the mean time threshold (Tt) of
26.95 ± 1.25 min, 29.70 ± 16.14 min, 44.18 ± 12.37 min,
39.10 min, respectively. The detection limit of the RT-

Fig. 2 Time threshold of positivity for RT-LAMP assays of serially diluted ZIKV RNA. The mean of Tt-values was calculated with available positive
results out of four replicates. Error bars indicate the standard deviations of Tt-values from the mean
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LAMP assay was 3.73 ZIKV RNA copies (probit analysis,
P ≤ 0.05) (Fig. 3).

Evaluation of RT-LAMP assay
The RT-LAMP assay for detection of ZIKV RNA was
assessed by testing on a total of 24 simulated clinical
samples. No evaluation was performed on actual clinical
samples as none are currently available at the center. To
date no Zika patient has been seen in our hospital. The
diagnostic performance of the RT-LAMP in comparison
with qRT-PCR assay was summarized in Table 2. The
sensitivity and specificity of the RT-LAMP assay were
90% (95% CI = 59.6–98.2) and 100% (95% CI = 78.5–
100.0), respectively. The RT-LAMP assay detected ZIKV
genome in 9 of 24 (37.5%) of the samples compared to
10 of 24 (41.7%) by qRT-PCR assay, with a high con-
cordance of κ = 0.913 (P < 0.001) between these two
methods. ZIKV RNA was tested negative in one urine
sample by RT-LAMP but positive by qRT-PCR; this
sample contained 3.02 log10 copies of RNA/ml or 1
PFU/ml (Fig. 4). Samples containing 10–103 PFU/ml

(n = 9) were tested positive by both RT-LAMP and qRT-
PCR, whereas samples containing 10− 1–10− 3 PFU/ml
(n = 9) and the negative samples without spiked ZIKV
(n = 3) were tested negative by both RT-LAMP and
qRT-PCR.

Discussion
In the present study, a RT-LAMP assay was developed
for isothermal detection of ZIKV RNA in simulated clin-
ical specimens. The RT-LAMP assay could detect all the
ZIKV strains used in this study without cross-reacting
with a number of other common arthropod-borne vi-
ruses including all four DENV serotypes, JEV, LGTV,
SINV, CHIKV and GETV. The RT-LAMP assay was
sensitive, specific and useful for broad coverage detec-
tion of both the Asian and African ZIKV lineages.
Recently, several research groups have developed RT-

LAMP assays for the detection of ZIKV by targeting the
different regions of the ZIKV genome with excellent sensi-
tivity and specificity [31–43]. They however, designed the
primers for the RT-LAMP assays based only on a single

Fig. 3 Detection limit of the ZIKV RT-LAMP assay. The probit regression curve was obtained from four replicates of ZIKV RNA in four dilutions
(1000, 100, 10, and 1 copy numbers)

Table 2 Diagnostic performance of the RT-LAMP assay against that of the qRT-PCR assay in the simulated clinical human saliva,
urine and serum samples (n = 24)

qRT-PCR Sensitivity [% (95% CIc)] Specificity [% (95% CI)] PPVd [% (95% CI)] NPV e [% (95% CI)]

Resultsa, b Pos [n (%)] Neg [n (%)]

RT-LAMP Pos 9 (37.5) 0 (0.0) 90.0 (59.6–98.2) 100.0 (78.5–100.0) 100.0 (70.1–100.0) 93.3 (70.2–98.8)

Neg 1 (4.2) 14 (58.3)
a Agreement of results between RT-LAMP and qRT-PCR, κ = 0.913
b Pos, positive; Neg, negative
c CI, confidence interval
d PPV, positive predictive value
e NPV, negative predictive value
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lineage of ZIKV, which is either Asian [33–37, 39, 40] or
African [32] lineage. Many studies designed the RT-
LAMP primers based primarily on the sequences of the
Asian ZIKV since the recent epidemics in the Pacific
islands and Americas [5–7, 11] were caused by ZIKV from
the Asian lineage [53]. Nonetheless, the possibility of re-
emergence of the African lineage should not be excluded.
Chotiwan et al. (2017) suggested using two sets of RT-
LAMP primers, one for Asian ZIKV and another one for
the African ZIKV [31]. The two-tube RT-LAMP assay,
however, would definitely increase the cost of diagnosis.
On the other hand, Kurosaki et al. (2017) combined two
sets of RT-LAMP primers (total 11 primers) in single tube
for simultaneous detection of Asian and African ZIKV
[41]. Nonetheless, the use of more than six primers is
often not preferable in RT-LAMP assay to avoid false
positive due to a primer self-amplification [54]. Recently,
Escalante-Maldonado et al. (2019) and Bui et al. (2020) de-
veloped RT-LAMP assay using a set of six primers based
on the 64 and 130 ZIKV sequences retrieved from Gen-
Bank, respectively [42, 43]. Here, we designed a set of six
RT-LAMP primers without critical mismatches with at
least 95% of the 463 ZIKV genome sequences for broad
coverage detection of both the Asian and African ZIKV
lineages in a single-tube assay.
The detection limit of the RT-LAMP assay (~ 4

copies of ZIKV RNA) was comparable to that of
ZIKV RT-LAMP assays previously reported; the de-
tection limits ranged from 1 to 111 copies of ZIKV
RNA [31, 32, 35]. In this study, the ZIKV RNA copy/
infectious particle ratio in the simulated clinical speci-
mens ranged from 102 to 103. Similar ZIKV RNA

copy/infectious particle ratios have also been previ-
ously reported [55, 56]. Thus, the RT-LAMP assay is
a potentially useful diagnostic tool for detecting
viremic patients who are potentially contagious. Early
detection of the viremic patients would permit imme-
diate execution of proper disease control measures
such as deploying insecticidal spraying and activating
community-based mosquito control activities. Early
diagnosis would also help clinicians in providing
proper supportive treatment and counselling of Zika
patients without needing to prescribe unnecessary
medications.
Zika virus has been detected in human blood, saliva [57,

58], urine [59–61], semen [62, 63] and breastmilk [64].
Among all types of specimens, blood, saliva and urine are the
common specimens used for Zika diagnosis. It has been re-
ported that the viral titers in the patient’s blood, during the
acute infection, ranged from 103 to 106 RNA copies/ml [65].
The viremic phase of ZIKV infection, however, is short with
less than 2 to 5 days after fever onset [57, 59, 60]. The use of
saliva has been shown to improve the detection of ZIKV
RNA but did not enlarge the window of detection [57]. In
contrast, shedding of ZIKV in urine persists for ~ 2weeks
[60] and sometimes it can be up to > 20 days after fever onset
[59]. The use of urine specimen, therefore, is a practical way
to enlarge the window of ZIKV detection. Here, we demon-
strated that the RT-LAMP assay detected the simulated clin-
ical specimens (serum, saliva, and urine) with viral load of as
low as 10 PFU/ml, which is equivalent to approximately 103

to 104 RNA copies/ml. This detection sensitivity would be
sufficient to diagnose viruric patients if their urine samples
are collected within 10 days after fever onset considering

Fig. 4 ZIKV RNA copy numbers of the simulated clinical human saliva, urine and serum specimens that tested positive by qRT-PCR according to
the infectious virus titer (n = 10). The dashed line indicates the detection limit of qRT-PCR. The error bars indicate the standard deviation of the
viral RNA copy numbers from the mean. Open circle, positive by qRT-PCR only; filled circle, positive by both qRT-PCR and RT-LAMP
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viruric patients usually has viral load of > 103 RNA copies/ml
during the first 10 days of ZIKV infection [59].
There are, however, several limitations to our study.

The performance of the RT-LAMP assay has not been
validated on any real clinical samples. The evaluation
was done in a very small cohort of simulated clinical
samples (n = 24), in which the virus titers could be con-
trolled. Therefore, there is no assurance of similar per-
formance in field diagnostic settings.

Conclusions
The RT-LAMP assay developed in this study was spe-
cific and sensitive for broad coverage detection of both
the Asian and African ZIKV strains. The RT-LAMP
assay can greatly enhance diagnosis of Zika in situation
where resources are deficient.
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