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Abstract

Background: Several Zika virus (ZIKV) outbreaks have occurred since October 2015. Because there is no effective
treatment for ZIKV infection, developing an effective surveillance and warning system is currently a high priority to
prevent ZIKV infection. Despite Aedes mosquitos having been known to spread ZIKV, the calculation approach is
diverse, and only applied to local areas. This study used meteorological measurements to monitor ZIKV infection
due to the high correlation between climate change and Aedes mosquitos and the convenience to obtain
meteorological data from weather monitoring stations.

Methods: This study applied the Bayesian structured additive regression modeling approach to include spatial
interactive terms with meteorological factors and a geospatial function in a zero-inflated Poisson model. The study
area contained 32 administrative departments in Colombia from October 2015 to December 2017. Weekly ZIKV
infection cases and daily meteorological measurements were collected. Mapping techniques were adopted to
visualize spatial findings. A series of model selections determined the best combinations of meteorological factors
in the same model.

Results: When multiple meteorological factors are considered in the same model, both total rainfall and average
temperature can best assess the geographic disparities of ZIKV infection. Meanwhile, a 1-in. increase in rainfall is associated
with an increase in the logarithm of relative risk (logRR) of ZIKV infection of at most 1.66 (95% credible interval [CI] = 1.09,
2.15) as well as a 1 °F increase in average temperature is significantly associated with at most 0.79 (95% CI = 0.12, 1.22)
increase in the logRR of ZIKV. Moreover, after controlling rainfall and average temperature, an independent geospatial
function in the model results in two departments with an excessive ZIKV risk which may be explained by unobserved
factors other than total rainfall and average temperature.

Conclusion: Our study found that meteorological factors are significantly associated with ZIKV infection across
departments. The study determined both total rainfall and average temperature as the best meteorological factors to
identify high risk departments of ZIKV infection. These findings can help governmental agencies monitor at risk areas
according to meteorological measurements, and develop preventions in those at risk areas in priority.

Keywords: Zika virus infection, Meteorological factors, Geographic disparities, Colombia

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: lung-chang.chien@unlv.edu
1Department of Environmental and Occupational Health, University of
Nevada, Las Vegas, School of Public Health, 4505 S. Maryland Parkway, Las
Vegas, NV 89154, USA
Full list of author information is available at the end of the article

Chien et al. BMC Infectious Diseases          (2019) 19:888 
https://doi.org/10.1186/s12879-019-4499-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-019-4499-9&domain=pdf
http://orcid.org/0000-0003-4515-0080
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lung-chang.chien@unlv.edu


Background
Since October 2015, several outbreaks of Zika virus
(ZIKV) have occurred in Central and South America, the
Caribbean, Central Africa, and Southeast Asia [1, 2]. The
infection of ZIKV may not be lethal, and most infected
people may not feel very sick, with only mild symptoms
[3]. Compared to the other vector-borne diseases trans-
mitted by Aedes mosquitoes, such as dengue fever, yellow
fever, or chikungunya, ZIKV infection may not be fatal.
The predominant adverse impact of ZIKV infection affects
infected pregnant women, who may give birth to infants
with microcephaly [4]. Besides mosquitoes, ZIKV can also
be transmitted through sexual contact, blood transfusion,
and prenatally from mother-to-fetus transmission via
pregnancy [5]. Because there is no effective treatment for
ZIKV infection, developing an effective surveillance and
warning system is currently a high priority to prevent
ZIKV infection [6–8].
As a vector-borne disease, ZIKV is strongly associ-

ated with increases in the mosquito population. To
prevent ZIKV infection, it is essential to break the
transmission of the virus from mosquitoes to humans
[9]. However, controlling the increase and distribution
of vector population is difficult. Aedes mosquitoes
grow in large numbers when the diurnal temperature
is between 30 and 35 °C (i.e., 86-95 °F) [10] and with
an optimal temperature to produce the most amount
of offspring at 29.2 °C (i.e., 84.56 °F) [11]. Similarly,
rainfall may provide a favorable environment to in-
crease the population of Aedes mosquitoes [12–14].
Climate change and the increased distribution of Ae-
des mosquitoes are positively correlated [15–17]. With
the influence of climate change on diverse areas, the
occurrence and distribution of vector-borne diseases,
like ZIKV infection, may become more complicated
and difficult to monitor.
Spatial analysis and geographic information systems

have been used to investigate the distribution of ZIKV
infection with related risk factors locally and globally. A
study in Brazil, the first country in South America with
ZIKV outbreaks, applied a maximum entropy method to
analyze the location of observed cases [18]. This litera-
ture found that land use was the most important envir-
onmental factor to explain the spatial distribution of the
risk probability of ZIKV infection. Similar spatial tech-
niques were also applied to other ZIKV prevalent coun-
tries, especially in Central and South America. In Puerto
Rico, the areas with the highest Zika rates were signifi-
cantly associated with higher poverty, as identified by
the geographically weighted regression [19]. A multi-
country study identified nine main municipalities across
Colombia, Ecuador, Mexico, and Peru (out of eight
countries in Central and South America) as having an
increased likelihood of ZIKV transmission by using

multiple modeling approaches in ranking the median
projected ZIKV infection rate [20]. Some studies applied
spatial simulation methods to model potential transmis-
sion risk of ZIKV globally, and estimated that tropical
and subtropical areas in four continents were experien-
cing higher risks of ZIKV infection in comparison to
non-tropical areas [21, 22].
Since meteorological measurements are known to vary

across different areas, there is a need to determine
whether climate change will have different impacts on
ZIKV infection. Our study aims are to evaluate the
spatial association of climate change on ZIKV infection
and to identify high-risk areas of ZIKV infection by spe-
cific meteorological measurements in Colombia. Our
preliminary hypothesis is that the meteorological influ-
ence on ZIKV infection significantly varies across differ-
ent areas. The models were compared to identify the
best meteorological factor associated with high-risk areas
of ZIKV infection. We also used mapping techniques to
present the diverse meteorological influence on ZIKV in-
fection, and to facilitate the inspection of hot zones
representing where people were more vulnerable to
ZIKV. These maps can clearly identify hot zones with
vulnerable populations to ZIKV infection because of the
chosen meteorological factor(s). Estimating ZIKV infec-
tions when a meteorological factor increased by a par-
ticular amount is important for both national and local
surveillance systems to assess interventions to decrease
the incidence of ZIKV cases.

Methods
Data source
We downloaded weekly reports of ZIKV infection cases
from the Epidemiological Bulletin, maintained by the
Colombian National Institute of Health with a total of 156
consecutive weeks from the 39th week of 2015 (the first
week of reporting ZIKV infection) to the 52nd week of
2017. Daily meteorological measurements were fetched
from 42 weather monitoring stations in Colombia reported
on the Weather Underground (https://www.weatherunder-
ground.com/). The study considered the following me-
teorological factors: temperature, dew point temperature,
relative humidity, sea level pressure, wind speed, and total
rainfall. Besides wind speed and total rainfall, each me-
teorological factor has three types of measurement: max-
imum, minimum, and average.

Study area
Colombia, the third-most populated country in Latin
America, was selected to be the study area because it
has very complete records of ZIKV infection cases re-
ported by week and “department” (i.e., the largest ad-
ministrative area unit and selected as the geographic
unit of analysis). Colombia is on the equator, and has a
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very classical tropical climate with warm and isothermal
weather condition. There are a total of 32 departments
in Colombia (Fig. 1). Bogotá, the capitol of Colombia, is
the most populated area and located within the Cundi-
namarca’s department with over 10 million residents in
2018 [23], and it is 60% larger than the population in the
second populated department. In particular, the archi-
pelago of San Andrés and Providencia is the only depart-
ment composed of two small islands located in the east
of the Caribbean Sea.

Meteorological measurements
A total of 42 weather monitoring stations are distributed
among 32 departments, with 19 departments having
multiple stations and 10 departments having only a sin-
gle station. Only three departments did not have a moni-
toring station. The locations of all monitoring stations
are presented in Fig. 1. In order to unify the time scale
between ZIKV infection and meteorological factors as
well as dealing with missing data in some of the me-
teorological factors, a series of data management and
imputations were conducted. First, we integrated daily
meteorological measurements in the 19 departments
with multiple monitoring stations. For instance, daily
maximum temperature in a department was determined
by the largest value of daily maximum temperatures
among all monitoring stations in the same department.
Similarly, we adopted the same criterion to determine
the daily minimum or average measurement of a me-
teorological factor by department. For rainfall, we used
the maximum value of multiple daily rainfall records
from all monitoring stations in a department. Second,
we applied a local space-time kriging method to impute
missing daily meteorological measurements among 29

departments with at least one monitoring station [24].
Third, we calculated weekly meteorological measure-
ments in each of those 29 departments. Finally, we ap-
plied the local space-time kriging method again on the
weekly meteorological measurements to impute missing
data in the three departments without a monitoring sta-
tion. The last step made a sample size of 156 weeks× 32
department = 4992 data points for each meteorological
factor, which was merged with ZIKV infection data.

Spatial modeling approach
By defining Ydt as the number of ZIKV infection cases at
time t in department d, we assumed the distribution of
Ydt as a Poisson distribution with a mean parameter μdt.
Initially, the mean parameter was analyzed using a Pois-
son model, but because of excessive zero counts in the
data of ZIKV infection cases, the zero-inflated Poisson
model was chosen. In particular, in order to evaluate the
spatial association of meteorological factors on ZIKV
infection, we applied a Bayesian structured additive re-
gression modelling approach to incorporate both the
zero-inflated Poisson model and the spatial components
into account [25]. The mean parameter μdt is estimated
by the following equation:

log μdtð Þ ¼ αþ f tð Þ þ β Yearð Þ þ Meteoð Þ � f mrf dð Þ
þ f gsp lond; latdð Þ þ offset; t

¼ 1…; 156; d ¼ 1;…; 32

where α is the fixed intercept, and the offset is the
logarithm of the population of each department. In
order to control for temporal autocorrelations, the
model contained a time smoother f(t) by using a B-
spline with the second order random walk prior, and

Fig. 1 The boundaries of 32 departments and the locations of 42 weather monitoring stations in Colombia
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Year as a confounding variable with two levels in year
2016 and 2017 (i.e., year 2015 was the reference level).
The term Meteo was a meteorological random effect
interacting with a spatial function fmrf(d), which is the
Markov random fields (MRF) to conduct a geographic
weight in each department. Finally, the model included a
geospline function fgsp(lond, latd) to evaluate the exces-
sive risk of ZIKV infection which cannot be explained by
meteorological factors, where (lond, latd) is the centroid
coordinate (longitude and latitude) of department d.
All unknown parameters in the model were estimated

via Markov chain Monte Carlo simulations with 70,000
iterations based on a fully Bayesian inference. The first
20,000 iterations were burned, and we drew estimates
from every 50 iterations out of the remaining 50,000 it-
erations [26]. Therefore, each parameter had 1000 esti-
mates of the posterior distribution, where the posterior
mean, the 2.5th and 97.5th percentiles are reported as
the estimated parameter and 95% credible interval (CI),
respectively. The posterior mean can be explained as the
logarithm of relative risk (logRR) for ZIKV infection,
and the statistical significance of logRR was determined
by whether the 95% CI is strictly different from 0.
The univariate analysis consisted of fitting a model with

each meteorological factor to evaluate geographic dispar-
ities of ZIKV infection affected by each factor individually.
Then, a multivariable model was built to consider at most
three meteorological factors simultaneously. The best
model was determined by the smallest deviance informa-
tion criterion (DIC). We did not include highly correlated
meteorological factors in the same model to prevent pos-
sible multicollinearity within each department. The spatial
estimate in fmrf(d) represents the expected increase in the
logRR of ZIKV infection for a one-unit increase in a me-
teorological factor in department d. The spatial estimate
in fgsp(lond, latd) can be also regarded as a logRR to quan-
tify the excessive risk of ZIKV infection of a department
compare to the average of the whole Colombia after con-
trolling for meteorological factors. The exponentiation of
the standard deviation of the spatial estimated conducted

by fmrf(d) (i.e., expð ffiffiffiffiffiffiffiffiffiffi

σ2MRF

p Þ) can be explained as the average
variation of relative risk due to the meteorological factor
among 32 departments. Thus, a geographic disparity per-
centage (GD%) can be calculated to explain the departmental

ZIKV risk on average ð expð ffiffiffiffiffiffiffiffiffiffi

σ2MRF

p Þ−1Þ � 100% higher or
lower than the overall ZIKV risk. The same way to quantify
the level of geographic disparities was also applied in the
geospatial function fgsp(lond, latd). A larger GD% represents
greater geographic disparities among 32 departments.
Data management and summary statistics were imple-

mented in SAS V9.3 (SAS Institute Inc., Cary). Data im-
putation, model fitting, and mapping were implemented
in the R software, version 3.5.0 [27] and BayesX version
2.0 [28].

Results
The summary statistics in Table 1 shows that the weekly
average of ZIKV infection cases in Colombia was 21.33
cases (standard deviation = 101.28), and can reach as
high as 1750.00 cases, which occurred in Valle del
Cauca. Extreme heat and rainfall, and high humidity
were also observed from 2015 to 2017. Figure 2a shows
that Valle del Cauca, Norte de Santander, and Santander
reported over 10,000 cases of ZIKV infection from 2015
to 2017. Figure 2b shows that a high crude incidence of
ZIKV infection over 100 cases per 10,000 population ap-
peared in the Islands of San Andrés and Providencia and
the departments of Casanare and Arauca. The detailed
values of each department in Fig. 2 can be referred to
Additional file 1: Table S1. The weekly average of each
meteorological measurement by the department is pre-
sented in Additional file 1: Fig. S1. The absolute Pearson
correlation coefficients of the meteorological factors are
greater or equal to 0.7 among all kinds of temperature,
dew point temperature, and sea level pressure (see Add-
itional file 1: Table S2).
We first evaluated the need of the independent geospa-

tial function in our models, which results in, whichever
meteorological factor in the model, having the geospatial
function produced a lower DIC from 82,564.40 to 82,
787.98, while the models with the geospatial function had
a higher DIC from 85,539.96 to 85,708.96. This result pro-
vides the support of appending the geospatial function to
consider additional geographic disparities of ZIKV infec-
tion, which cannot be fully explained by the meteoro-
logical factors.
Table 2 shows the proportion of departments in

terms of positive, negative and non-significant associ-
ations of the MRF univariately for each meteoro-
logical factor. A larger proportion of departments had
a significant positive association between ZIKV infec-
tions and each one of the meteorological factors. For
example, the average sea level pressure and the total
rainfall were associated with increasing ZIKV infec-
tions on 17 departments (53.13%). The largest me-
teorological impact on ZIKV infection was observed
in Amazonas, where the expected increase in logRR
for 1-mph increase in the maximum wind speed was
2.28 (95% CI = 0.24, 2.98). From the perspective of
model evaluation, both the average temperature and
average dew point temperature better assessed the
geographic disparities of ZIKV infection because both
models have the lowest DIC by 82,560.97 and 82,
558.50, respectively.
In the univariate analysis, geographic disparities of

ZIKV infection due to meteorological factors measured
by GD% diversely ranged from 252.27% due to max-
imum temperature to 328.93% due to average dew point
temperature. Maps in Additional file 1: Figure S2 reveal
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that the meteorological influence on ZIKV infection had
different levels of geographic disparities across 32 de-
partments in Colombia. According to the corresponding
significance maps shown in Additional file 1: Figure S3,
most at-risk departments due to meteorological factors
were located in the northern and eastern areas of
Colombia. In addition, the southern areas of Colombia
may be also at risk because of the minimum
temperature, average relative humidity, maximum wind
speed, and total rainfall. Four departments (Norte de
Santander, Risaralda, Tolima, and Valle del Cauca) lo-
cated in western Colombia were detected as at-risk areas
by all 15 meteorological factors. On the contrary, 10 de-
partments were never detected as at-risk areas by any of
those meteorological factors, and most of them are lo-
cated along the coast line of the Pacific Ocean and along
the border of Brazil and Venezuela.
The multivariable analysis shows that both total rainfall

and average temperature in the same model had the lowest
DIC by 82,528, which is much farther below the DICs of
the two best models in the univariate analysis. Figure 3a
shows that the association of total rainfall and ZIKV infec-
tion in the northern areas of Colombia. Twenty of 32 de-
partments (62.5%) had a positive association between total
rainfall and ZIKV infection, while only 11 of them were

statistically significant. Most of these 11 departments are lo-
cated in northern Colombia, while Tolima located in cen-
tral Colombia had the largest impact (logRR = 1.66; 95%
CI = 1.09, 2.15). Figure 3b presents a positive association
between average temperature and ZIKV infection in north-
ern and northeastern Colombia, while the significance map
only reveals two departments having a significant positive
impact on ZIKV: Magdalena (logRR = 0.79; 95% CI = 0.12,
1.22) and Arauca (logRR = 0.62; 95% CI = 0.28, 1.04). After
controlling for both total rainfall and average temperature,
15 departments had a positive logRR calculated from the
geospatial function, revealing that those departments had
excessive ZIKV risks, see Fig. 4a; however, Fig. 4b shows
that only Arauca and Meta had a logRR significantly larger
than 1. Comparing the two selected meteorological factors,
the total rainfall resulted in a higher GD% than average
temperature (305.69% vs. 10.99%).

Discussion
As the alarm of ZIKV has arose since 2015, the research
on ZIKV vaccines and antiviral drugs is still being con-
ducted, despite its severity has been gradually diminish-
ing since 2017 [29]. Some preventive interventions have
been implemented in different areas using the same vec-
tor control strategies applied to dengue fever, which is

Table 1 Descriptive statistics of weekly Zika virus infection cases and meteorological factors per department

Mean SD Min Q1 Median Q3 Max

ZIKV cases 21.33 101.28 0.00 0.00 0.00 3.00 1750.00

Temperature (°F)

Maximum 89.11 7.07 66.00 86.83 90.00 93.00 137.00

Minimum 65.09 9.17 5.00 61.00 66.36 72.00 81.00

Average 77.60 7.02 53.86 74.74 79.06 82.37 91.43

Dew point temperature (°F)

Maximum 74.01 6.08 47.00 70.88 74.97 79.00 90.00

Minimum 61.40 10.91 0.00 55.53 64.00 70.00 77.00

Average 69.01 6.95 40.57 65.43 70.16 74.15 80.29

Relative humidity (%)

Maximum 96.35 5.01 61.00 94.00 100.00 100.00 100.00

Minimum 41.03 11.97 4.00 33.21 42.96 50.00 73.00

Average 73.19 8.94 31.29 68.86 74.57 79.25 93.14

Sea level pressure (Hg)

Maximum 30.08 0.17 29.79 29.96 30.04 30.15 31.32

Minimum 29.78 0.16 28.73 29.69 29.76 29.85 30.30

Average 29.95 0.14 29.65 29.84 29.92 30.01 30.40

Wind speed (mph)

Maximum 25.17 31.36 3.47 12.00 15.00 21.00 150.00

Average 4.66 2.84 0.29 2.86 4.17 5.60 20.14

Total rainfall (inches) 0.60 2.11 0.00 0.01 0.16 0.52 39.49

Abbreviation: SD Standard deviation, Q1 The first quartile, Q3 The third quartile
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also transmitted by Aedes mosquitoes [30]. Those strat-
egies may not prevent the occurrence of outbreaks and
cannot predict when an outbreak will occur. A system-
atic review in 2016 has pointed out the need to define
the range of ZIKV vectors and to identify new areas
where ZIKV transmission could take place to enable
early transmission [31]. Our study provides a statistical
approach to monitor climate change for quantifying the
impact of ZIKV infection in a large area by meteoro-
logical measurements, which are collected in multiple
weather stations routinely. Our main findings are: First,
different meteorological factors can detect different at-
risk areas, and total rainfall and average sea level pres-
sure can aggressively detect more at-risk areas; second,
when considering multiple meteorological factors in the
same model, using both total rainfall and average
temperature, can better detect at-risk areas; third, me-
teorological factors may not totally explain the variation
of ZIKV infection, and there might be some other unob-
served risk factors which may contribute to excessive
ZIKV risk infection.
Temperature and rainfall have been linked to Aedes albo-

pictus or Aedes aegypti population in literature [32, 33],
while the direct evidence is still limited to link the

association between ZIKV infection and the two meteoro-
logical factors. Our findings are consistent with the litera-
ture in vector-borne diseases and the population of Aedes
albopictus or Aedes aegypti. We did not exclude the possi-
bility that other meteorological measurements were associ-
ated with vector-borne diseases [34, 35]. This study
proposed a systematic procedure to filter the best meteoro-
logical factors; however, for a more comprehensive and ag-
gressive prevention on ZIKV, using the univariate model is
still acceptable. In confronting emerging ZIKV outbreaks
with limited time and resources available, public health offi-
cials will have to rely on the best meteorological factors as
an option to determine where to focus their preventive
interventions.
The literature has shown the geographic variations of

ZIKV infection. For instance, a study analyzed individual
ZIKV cases in Nicaragua, revealing a 10–15% difference
in the risk of ZIKV infections across neighborhoods
[36]. However, the study area in this research is rela-
tively small at around 3 km2. A global health study ap-
plied the niche modelling techniques to estimate the
potential geographic distribution area of Aedes aegypti,
resulting in a high ZIKV risk concentration in the coun-
tries surrounding the Caribbean Sea and in the Atlantic

Fig. 2 The geographic distribution of (a) the total Zika virus infection cases and (b) the crude prevalence of Zika virus infection per 10,000
population by each department in Colombia from 2015 to 2017
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coast of South America [21]. Based on their modeling
estimations, Colombia may have at least 10 million pop-
ulations potentially exposed to ZIKV. The spatial vari-
ation of ZIKV in Colombia indeed has been verified in
the literature [37–39], while no direct evidence shows
that the spatial variation of ZIKV was associated with
climate change. Our findings on the best meteorological
predictors are consistent with the results of a previous
study, which analyzed the data in the whole Latin America
[40]. In this study, the meteorological predictors can only
explain 36-39% of the spatial variation of ZIKV, revealing
that there are still additional non-meteorological factors
which can explain the spatial variation of ZIKV. This sce-
nario emphasizes the importance of having a specific func-
tion to quantify the spatial variation that is not explained
by meteorological measurements, like what the geospatial
function can contribute in our models.
The risk factors responsible for emergence and the

continued occurrence of ZIKV infection are not lim-
ited to meteorological factors. Biomedical research has
proven that ZIKV can also be transmitted sexually
[41–43]. Environmental and social changes, such as
land use and human movement like tourism and im-
migration, might also be potential risk factors for

ZIKV epidemics [43]. These potential risk factors are
difficult to obtain and aggregate by location and time
in a spatiotemporal analysis. Ignoring these unob-
served risk factors might hide their influence on ZIKV
infection in some areas. Thus, our final model in-
cluded a geospatial function to catch the proportion of
ZIKV incidence unexplained by meteorological fac-
tors, resulting in two departments (Arauca and Meta)
with excessive risk of ZIKV after controlling for the
average temperature and total rainfall. In particular,
average temperature was significantly associated with
ZIKV in Arauca in Fig. 3, but both meteorological fac-
tors were not significantly associated with ZIKV in
Meta. This finding indicates the importance of having
an additional geospatial function to detect at-risk
areas which cannot be detected by meteorological fac-
tors. In fact, previous studies have explored non-
meteorological risk factors of ZIKV. A risk assessment
study of ZIKV applied a hierarchical approach to
evaluate climate and nature factors as well as non-
meteorological risk dimensions of ZIKV, resulting in
that mosquito densities and epidemics of dengue fever
are more related to ZIKV transmission than climate
and nature factors [44]. Sexual contact has been also

Table 2 The summary of spatial estimates from the Markov random fields in terms of significant positive (the logarithm of relative
risk (logRR) is significantly greater than 0), significant negative (logRR is significantly smaller than 0) and non-significane (logRR is not
different from 0) and geographic disparity percentage in each meteorological factor based on the univariate analysis

Significant positive Significant negative Non-significance

N n (%) logRR range n (%) logRR range n (%) logRR range GD%

Temperature

Maximum 32 12 (37.50) (0.29, 2.00) 7 (21.88) (−4.00, −0.38) 13 (40.63) (−0.53, 1.01) 252.27

Minimum 32 16 (50.00) (0.51, 1.73) 9 (28.13) (− 4.61, − 0.47) 7 (21.88) (− 0.83, 0.42) 303.00

Average 32 16 (50.00) (0.42, 1.98) 9 (28.13) (−4.85, −0.44) 7 (21.88) (−0.74, 1.36) 300.33

Dew point temperature

Maximum 32 15 (46.88) (0.34, 1.84) 7 (21.88) (−4.65, −0.30) 10 (31.25) (−0.93, 0.58) 305.88

Minimum 32 15 (46.88) (0.46, 1.77) 7 (21.88) (−3.87, −0.20) 10 (31.25) (−1.14, 0.26) 276.23

Average 32 14 (43.75) (0.73, 2.11) 7 (21.88) (−4.55, −1.01) 11 (34.38) (−1.12, 0.68) 328.94

Relative humidity

Maximum 32 14 (43.75) (0.57, 1.86) 8 (25.00) (−3.94, −0.41) 10 (31.25) (−1.00, 0.87) 272.83

Minimum 32 13 (40.63) (0.72. 1.41) 6 (18.75) (−3.97, −0.60) 13 (40.63) (−1.09, 1.41) 291.87

Average 32 15 (46.88) (0.52. 1.87) 8 (25.00) (−4.48, −0.29) 9 (28.13) (−0.46, 0.43) 256.35

Sea level pressure

Maximum 32 9 (28.13) (0.44, 2.09) 7 (21.88) (−4.59, −0.69) 16 (50.00) (−0.20, 1.85) 299.55

Minimum 32 14 (43.75) (0.46, 1.85) 8 (25.00) (−4.27, −0.46) 10 (31.25) (−0.62, 1.85) 328.66

Average 32 17 (53.13) (0.46, 1.75) 8 (25.00) (−5.32, −0.24) 7 (21.88) (−0.24, 0.37) 277.08

Wind speed

Maximum 32 15 (46.88) (0.25, 2.28) 6 (18.75) (−4.88, −0.53) 11 (34.38) (−1.22, 0.73) 327.43

Average 32 14 (43.75) (0.40, 1.71) 9 (28.13) (−4.71, −0.55) 9 (28.13) (−0.34, 0.61) 296.03

Rainfall 32 17 (53.13) (0.45, 1.65) 7 (21.88) (−4.74, −0.23) 8 (25.00) (−0.87, 0.20) 282.23

Abbreviation: logRR The logarithm of relative risk, GD% Geographic disparity percentage
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Fig. 3 The spatial influence of (a) total rainfall and (b) average temperature on Zika virus infection at the department level in Colombia. The left
maps are the logarithm of relative risk (logRR) estimated by the Markov random fields in the multivariate analysis, and the right maps are the
significance of logRR
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verified to be a plausible transmission pathway by case
reports [45, 46], despite the fact that results from other la-
boratory experiments and simulation research are incon-
sistent [47–49]. To concern the difficulties of collecting
non-meteorological data as confounding factors matching
the daily ZIKV cases and meteorological measurements by
date and department, adding an independent geospatial
function in the model provides the rationale of better tak-
ing those unobserved risk factors into account.
This study has three main limitations. First, we applied

the DIC to select average temperature and total rainfall
as the best meteorological predictors to explain the geo-
graphic disparities of ZIKV infection, while no R-
squared measurement can be calculated to exactly know
the explained percentage based on the methodology of
the Bayesian model. Second, current ZIKV data were
only released based on department, which is not the
smallest administrative area in Colombia. Meanwhile,
the study is unable to evaluate further risk patterns in-
side those high risk departments identified by our
models. Third, we do not know if the excessive ZIKV
cases were imported, so further research is needed be-
cause the current database does not distinguish domestic
and imported ZIKV cases.

Conclusions
Although ZIKV infection has gradually decreased since
2017, there is a threat of the resurgence of ZIKV because
no effective vaccine or antiviral drugs have been devel-
oped yet. The best strategy to confront ZIKV is to im-
plement preventive interventions. The findings of this
study can be used by governmental agencies to devote
their prevention efforts in identified high risk areas
where meteorological factors can predict the increase of
ZIKV infections. By combining meteorological factors
with a real-time weather monitoring system, future work
is to predict possible outbreaks of ZIKV earlier, and to
provide timely surveillance and assistance in areas with
vulnerable populations.
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