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Abstract

Background: In current epidemiology of tuberculosis (TB), heterogeneity in infectiousness among TB patients is a
challenge, which is not well studied. We aimed to quantify this heterogeneity and the presence of “super-spreading”
events that can assist in designing optimal public health interventions.

Methods: TB epidemiologic investigation data notified between 1 January 2005 and 31 December 2015 from Victoria,
Australia were used to quantify TB patients’ heterogeneity in infectiousness and super-spreading events. We fitted a
negative binomial offspring distribution (NBD) for the number of secondary infections and secondary active TB disease
each TB patient produced. The dispersion parameter, k, of the NBD measures the level of heterogeneity, where low values
of k (e.g. k < 1) indicate over-dispersion. Super-spreading was defined as patients causing as many or more secondary
infections as the 99th centile of an equivalent homogeneous distribution. Contact infection was determined based on a
tuberculin skin test (TST) result of ≥10mm. A NBD model was fitted to identify index characteristics that were associated
with the number of contacts infected and risk ratios (RRs) were used to quantify the strength of this association.

Results: There were 4190 (2312 pulmonary and 1878 extrapulmonary) index TB patients and 18,030 contacts. A total of
15,522 contacts were tested with TST, of whom 3213 had a result of ≥10mm. The dispersion parameter, k for secondary
infections was estimated at 0.16 (95%CI 0.14–0.17) and there were 414 (9.9%) super-spreading events. From the 3213
secondary infections, 2415 (75.2%) were due to super-spreading events. There were 226 contacts who developed active
TB disease and a higher level of heterogeneity was found for this outcome than for secondary infection, with k estimated
at 0.036 (95%CI 0.025–0.046). In regression analyses, we found that infectiousness was greater among index patients
found by clinical presentation and those with bacteriological confirmation.

Conclusion: TB transmission is highly over dispersed and super-spreading events are responsible for a substantial
majority of secondary infections. Heterogeneity of transmission and super-spreading are critical issues to consider
in the design of interventions and models of TB transmission dynamics.
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Background
The Global Tuberculosis (TB) Strategy looks towards the
ultimate vision of elimination of the TB epidemic,
although the disease still causes more than 10 million
cases and 1.8 million deaths each year [1, 2]. The epidemic
is not homogeneously distributed, but is a collection of
heterogeneous local micro-epidemics [3]. The existence of
heterogeneity in transmission has the potential to disrupt
elimination strategies, many of which assume broadly
similar transmission potential of infectious people. Hence,
it is essential to understand and quantify the degree of
heterogeneity that exists in TB transmission.
Several studies have reported heterogeneity in the ca-

pacity of individual source patients to transmit various
pathogens to their contacts [4–7]. Variation between
infectious individuals in their capacity to transmit infec-
tious agents is well described, with some super-spreaders
infecting large number of contacts while others may only
infect very few or none [4, 5, 7–10]. The contribution of
super-spreading has previously been quantified for
directly transmitted infections such as SARS, measles,
smallpox, monkey-pox and pneumonic plague [4].
TB patients are diverse in their capacity to transmit

infection to their contacts, with a systematic review that
included several contact tracing studies showing that
clinical, demographic and behavioural characteristics of
TB patients were associated with their ability to transmit
Mycobacterium tuberculosis (M. tb) infection [11].
Quantification of heterogeneity in M. tb transmission
will help to understand better how its transmission is
sustained. A study in the Netherlands using genotypic
clustering data quantified M. tb transmission heteroge-
neity and reported signs of super-spreading [10]. How-
ever, how TB patients vary with respect to their capacity
to produce secondary infection is not well understood,
including the extent to which super-spreading events
exist and are responsible for driving transmission.
Understanding transmission heterogeneity and charac-
terising those with greater capacity to spread the infec-
tion is critical to better target interventions and predict
their likely impact. As the global TB response transitions
towards ending TB and the epidemic becomes more
localised [3], understanding heterogeneities of transmis-
sion is increasingly important. We aimed to characterise
transmission heterogeneity in a well-resourced setting
using high-quality surveillance data including detailed
information on contacts and their infection status.

Methods
Setting
Victoria is a state of Australia with approximately 5.6
million people and a single centralised tuberculosis
program (the Victorian Tuberculosis Program; VTP).
Notification of all confirmed or suspected cases of TB

disease is mandatory for both laboratories and clinicians
and culture confirmation of M. tb is routine in this setting.
While hospitalisation of cases is not mandatory, those
with pulmonary disease are typically maintained in isola-
tion until they are considered non-infectious (> 2 weeks of
effective therapy and/or smear-negativity) [12, 13]. On
receipt of a notification, a public health nurse from the
VTP is allocated to the patient to provide support, assist
with treatment compliance, and assess the extent of
contact tracing required. Household contacts and
others with greater than an estimated 8 h of contact
are considered eligible for screening, with indivi-
dualised assessment of screening recommendations
for higher-risk contacts performed (e.g. immunosup-
pressed or those with high-intensity exposure).
Contact investigation initially consists of clinical as-

sessment and serial testing for M. tb infection. Testing
of contacts is conducted by either tuberculin skin testing
(TST) using the Mantoux procedure or an interferon
gamma release assay (IGRA), although during the study
period the large majority of testing was undertaken with
TST. Those negative on initial testing are tested again
8–12 weeks following exposure. Contacts with either
symptoms suggestive of active disease or a positive test
for TB infection undergo chest x-ray (CXR) and further
clinical assessment, with isoniazid preventive treatment
offered for those where active disease is excluded [12].

Data
Data from the VTP which are stored by the Victorian
Department of Health and Human Services (DHHS)
were used for the following analysis. Index patients were
classified as confirmed cases of TB notified from 1 Janu-
ary 2005 to 31 December 2015 in residents of Victoria.
The data set includes contact tracing information and
results of testing for M. tb infection, with cases of subse-
quent active TB disease linked to these contact episodes
now extending to March 2017 (see [14] for earlier publi-
cation of linkage process). We constructed empirical off-
spring distributions from the detailed contact tracing
data set of the VTP.
Ethical approval was obtained from Monash University,

Human Research Ethics Committee (Project Number:
7776) and permission was given by the VTP and DHHS.

Definitions
A microbiologically confirmed case of TB requires
culture or polymerase chain reaction (PCR) diagnosis of
Mycobacterium tuberculosis, while clinical/radiological
diagnosis may also be made by a medical practitioner
experienced in TB management. Approximately 90%
of TB cases in Victoria are bacteriologically confirmed
[15]. All cases diagnosed with active TB in this data-
set also underwent secondary case review by a TB
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specialist to ensure that guidelines for confirming TB
disease were met.
Contacts were individuals identified as having had per-

sonal contact with index patients by the VTP, through
school, workplace, household and other settings. Contact
latent TB infection (LTBI) was defined as a TST result of
≥10mm in an identified contact. Where contacts had
had multiple TSTs, we used the value of the latest TST
result performed within three months of exposure. Any
contact developing active TB during the stated period
until 21 March 2017 was considered to have secondary
TB. We define a super-spreading event as the number of
secondary infections per index case that was greater
than the 99th centile of the equivalent Poisson distri-
bution (with distribution mean equal to the mean number
of infections per index).

Fitting distributions to data
We were primarily interested in the distribution of the
number of secondarily infected contacts from each index
patient. Although super-spreading is usually defined in
terms of the number of secondary cases of active disease
produced by each index patient, we wished to estimate
parameters in the absence of preventive therapy. As iso-
niazid prophylaxis is used widely in our setting and its
use may be clustered according to index patients (e.g.
family members electing together to undertake preven-
tive treatment), we anticipated this could artefactually
inflate our estimates of over-dispersion. Although there
are contact factors that are likely to affect progression to
active disease after infection, these factors may not be
differentially distributed by index patient and the distri-
bution of infections would be unaffected by use of pre-
ventive therapy. Therefore, the number of secondarily
infected cases is our primary analysis throughout the re-
mainder of the paper, although analogous analyses are
presented for the distribution of contacts (close contacts
and all contacts) and secondary cases of active disease to
facilitate epidemiological interpretation.
Our primary outcome can be described using a prob-

ability distribution termed an offspring distribution, de-
fined as the probability of the number of transmission
events across the range of index TB patients. This
process can be modelled by a negative binomial distri-
bution (NBD), which has the advantage of being able to
accommodate over-dispersed count data [16–18]. The
NBD permits sufficient flexibility with only two parame-
ters (the shape parameter and the mean) [4] and sub-
sumes the Poisson distribution while also allowing for
“over-dispersion”, where the variance (of the offspring
distribution) may be greater than the mean [18].
We denote the individual reproductive number by v

and, the distribution of individual reproductive numbers
(offspring distribution) by Z. To incorporate individual

infectious histories, v follows a negative binomial off-
spring distribution with dispersion parameter k and
mean m, such that Z~NegB(m, k). The dispersion para-
meter k quantifies the extent of over-dispersion in the
count data. If there is extra-heterogeneity between index
patients in the number of secondary infections pro-
duced, dispersion increases and the parameter k ap-
proaches zero (k→ 0). In the absence of over-dispersion,
k→∞ and the mean and the variance approach parity,
with the negative binomial distribution reducing to the
Poisson distribution. If k = 1, the negative binomial dis-
tribution reduces to the geometric distribution, such that
the negative binomial model can accommodate Poisson,
geometric and over-dispersed distributions [16].
The probability of observing index patients with v

number of infected contacts is given by:

PðZ ¼ vÞ ¼ ðk þ v−1Þ!
v!ðk−1Þ! :ð m

mþ k
Þvð1þm

k
Þ−k ;m

> 0; k > 0 ð1Þ

As the variance m(1 + (m/k)) approaches the mean
(m), over-dispersion decreases, i.e. k→∞.

Interpretation of transmission parameters
The parameters, k and m were estimated by maximum
likelihood estimation (MLE), which provides unbiased
estimates, especially for large sample sizes [16]. The
MLE of the mean of the offspring distribution, m is the
sample mean of Z or the mean number of secondary
infections. The dispersion parameter, k, was estimated
after fitting the data to the negative binomial distribu-
tion using the MASS package [19] of the R environment
for statistical computing [20], with a value of k less than
one interpreted as evidence of super-spreading [10].

Super-spreading events
We used the protocol proposed by Lloyd-Smith et al [4]
in which: first, we calculated the mean number of sec-
ondary infections per index or effective reproductive
number, Rn; second, we constructed a Poisson distri-
bution with mean Rn, representing the range of Z
(offspring distribution) due to stochasticity without indi-
vidual variation; third, we define a super-spreading event
as any patient who infected more than Z(i) contacts,
where Z(i) is ith centile of the offspring Poisson distribu-
tion. Arbitrarily but as in this previous study for SARS,
we considered the 99th percentile of this distribution as
the cut-point to determine super-spreading events. For
prediction of the expected proportion of super-spreading
event, we produce a negative binomial distribution with
dispersion parameter, k, and the mean number of
secondary infections per index, Rn [4, 21].
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Identifying associations with index characteristics
The outcome variable was the number of secondary
infections per index patient, which was found to be
over-dispersed as described below. Therefore, we fit-
ted a negative binomial regression model with both
bivariate and multivariate regression with the MASS
package [19] of the R environment for statistical com-
puting [20]. The logarithmic scale coefficients were
exponentiated to give ratios and are presented with
their 95% confidence intervals (CI).
We evaluated the need for a negative binomial regres-

sion model (because of inequality of the conditional
mean and conditional variance) with the likelihood ratio
test. We also evaluated the predictive accuracy of the
model with rootograms [22].

Results
The Victorian TB program data had a total of 4190 con-
firmed TB index patients and 18,030 contacts within the
period from 1 January 2005 to 31 December 2015. The
mean age of index patients was 33.0 years and 54.9% were
male. Among index patients, 1878 (44.8%) were extrapul-
monary, while 1757 (42.0%) were pulmonary and 555
(13.2%) had both pulmonary plus other site involvement.
The average age of contacts was 28.4 years, 9276

(51.4%) were female and 8510 (47.2%) were male (with
244 (1.4%) contacts sex not stated). The majority of con-
tacts (15,031; 83.4%) were contacts of pulmonary only
TB patients, while (2988; 16.6%) were contacts of
patients of TB at pulmonary plus other sites and only 11
contacts were identified from EPTB patients (although
all EPTB were considered to have produced zero sec-
ondary infections and secondary cases). Henceforward
we use the term “pulmonary” to refer to any patient with
pulmonary involvement, i.e. both the “pulmonary only”
and the “pulmonary plus other sites” categories. There
were five categories for the types of contacts, 8059 close
contacts, 5484 school contacts, 2366 work contacts,
1286 casual contacts and 824 contacts from other con-
gregate setting such as hospitals, nursing homes, airlines
and childcare facilities.

Secondary infection distribution
A total of 15,522 of 18,019 contacts of PTB index
patients were tested with TST. Based on our cut-off for
diagnosing infection as those with a TST result of ≥10mm
as positive, 3213 of contacts were infected and 12,309
were not. Of 3213 infected contacts 2050 (63.8%) were
close contacts. Of the 4190 index patients (1878 extrapul-
monary and 2312 pulmonary) 3166 (75.6%) did not pro-
duce any secondary infection, with all extrapulmonary
patients assumed not to have produced any secondary
infections (Additional file 1). There were 26 cluster
sizes of secondary infection, ranging from zero infections

to 41 infections per index. The mean and variance of the
number of secondary infections was 0.77 and 5.06 infec-
tions per index respectively. The median number of sec-
ondary infections per index patient was zero, the 95th
centile was two and the 99th centile was 10 infections per
index. By fitting the NBD to the observed distribution of
secondary infection, we found evidence of over-dispersion
(k = 0.16, 95%CI 0.14–0.17) for all types of contacts.
Restricting our analysis to index patients with pulmo-

nary involvement only, the mean and variance of the
number of infections per index was 1.4 and 8.3 infec-
tions per index, respectively with evidence of over-dis-
persion (k= 0.36, 95%CI 0.33–0.40) (Fig. 1a). In another
restricted analysis of close contacts only, there were 2042
secondary infections, of which 771 (37.8%) were super-
spreading events, with less dispersion compared to all
contact types (k= 0.98, 95%CI 0.84–1.12).

Super-spreading events
We constructed a Poisson distribution with the mean
number of infections per index (i.e. 0.77) to establish a
cut-off number of secondary infections per index for
defining super-spreading events. The 99th centile was
three infections per index. Therefore, we classified trans-
mission events where index patients produced three or
more secondary infections as super-spreading events.
Accordingly, there were 414 (9.9% index patients) associ-
ated with super-spreading events, which accounted for a
total of 2415 (75.2%) of the 3213 secondary infections.
For predicting the number of super-spreading events in
TB transmission, we estimated the expected proportion
of index patients, with confidence intervals considering
the dispersion parameter, k = 0.16 and the effective re-
productive number,Rn = 0.77. With this approach, the
expected proportion of TB super-spreading events was
9.8% (95% CI: 8.9–10.6%).

Secondary active TB disease distribution
We further analysed infectiousness heterogeneity from
the number of secondary active TB cases per index TB
patient. There were 226 secondary active TB cases iden-
tified among 18,030 contacts. Among these secondary
TB cases, approximately half (116; 51.3%) were the sole
secondary case identified among the contacts of a spe-
cific index patient. Among 4190 index patients, only 137
(3.3%) were responsible for all 226 secondary TB cases.
Two of the secondary cases were contacts of extrapul-
monary index patients (maternal to foetal transmission
in utero). The largest cluster of secondary TB disease
was 12 cases. The distribution of secondary TB cases per
index, was over dispersed with the dispersion parameter
estimated at k = 0.036 (95%CI 0.025–0.046) (Fig. 1b).
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Contact distribution
We also investigated the individual variation among
index patients with respect to the number of contacts
identified to determine how the transmission heterogen-
eity could be related to contact patterns. There was
evidence of heterogeneity (k= 0.38, 95%CI 0.36–0.41) for
the distribution all contact types (Additional file 2).
Similar but lesser heterogeneity was found (k = 0.63,
95%CI 0.59–0.68) after restricting our analysis to close
contacts only (Additional file 3).

Associations of index characteristics with number of
infections
Because of the extent of heterogeneity described above,
we fitted a negative binomial regression model for index
patients with pulmonary involvement to determine the
characteristics of index patients that were associated
with the number of secondary infections. The index
characteristics included were age, sex, site of disease,
patient detection pathway, CXR result, method of diagno-
sis, whether the patient was new or relapse and number of
contacts per index.
From this multivariate model, TB in pulmonary and

additional sites (compared to pulmonary only) was inde-
pendently associated with a 42% decrease in the number
of secondary infections. Identification through contact
tracing and the Australian post-migration follow up pro-
gram (“health undertakings” [23]) (compared to clinical
presentation) was associated with a lower number of
secondary infections (71 and 46% respectively). Diagno-
sis by PCR, histology or clinical signs (compared to

culture) was associated with a 70% decrease in second-
ary infections, while diagnosis by radiological techniques
was associated with a 55% decrease. The number of con-
tacts identified for each index patient showed a positive
association with the number of secondary infections pro-
duced, with the identification of one additional contact
associated with an increase in the number of secondary
infections by 4 % (Table 1).
The likelihood ratio test showed that assuming equal-

ity of the conditional mean and variance was not safe
(P-value < 0.001), whereas model evaluation indicated that
the negative binomial model fitted well to the observed
data. Compared to the equivalent Poisson model, the
negative binomial model was well-fitted and predicted
counts well with minimal residuals (Additional file 4).

Discussion
To our knowledge, this study is the first to use program-
matic epidemiological observations to formally quantify
M. tb transmission heterogeneity. We found evidence of
super-spreading events as constituting the large majority
of M. tb transmission events. We also demonstrated con-
siderable variability between index TB patients in three
important respects: in the number of contacts identified,
the number of contacts infected and the number of cases
of secondary active TB subsequently occurring. Therefore,
assuming a homogeneous population of infective patients
in TB transmission modelling may be highly unrealistic.
From a programmatic viewpoint, although the effective
reproduction number is less than one in our setting,

Fig. 1 a. Distribution of number of secondary infections per index TB patient with negative binomial distribution fitted to count data in Victoria,
for the period 2005–2015. The number of index patients with zero infections was 3166 (beyond limit of vertical axis). b. Distribution of secondary
TB disease by index patients in Victoria, for the period 2005–2015, with negative binomial distribution fitted to count data. The number of index
patients with zero secondary active TB was 4054 (beyond limit of vertical axis). Both panels include data for both PTB and EPTB index patients
and all types of contacts
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significant transmission may still occur due to a very small
number of super-spreading events (Fig. 2).
We found that M. tb transmission is heterogeneous,

with the distribution of secondary infections per index
varying by more than simple random variation between
individuals. The level of over-dispersion was comparable
with the estimate from a previous study that employed
genotypic data (k=0.1) [10]. Although the distribution of
secondarily infected contacts per index patient is pro-
bably a better marker for M. tb transmission than geno-
typic clusters, our approach may even underestimate
heterogeneity (overestimate k) due to dilution of diffe-
rences between patients from more homogeneously
distributed distant past infection (i.e. prior to the index
exposure identified). Our estimate of k was slightly
higher (i.e. less heterogeneous) than an estimate for
SARS transmission heterogeneity (k=0.1) [4], though our
finding may under-estimate the true level of heteroge-
neity. The distribution of secondary cases was even more
heterogeneous (k< 0.04) than secondary infections. This

Table 1 Associations between number of secondary infections and patient characteristics among pulmonary TB index patients in
Victoria, 2005–2015. Negative binomial regression model

Variable Number of index patients Crude RR (95%CI) Adjusted RR (95%CI)

Age category (years) 0–14 140 0.43 (0.30–0.62)* 0.84 (0.56–1.26)

15–24 486 1.60 (1.32–1.95)* 0.94 (0.80–1.11)

25–44 890 Referent

45–64 378 0.77 (0.61–0.96)* 1.02 (0.85–1.22)

65 and above 417 0.93 (0.75–1.15) 0.91 (0.77–1.09)

Sex Female 954 Referent

Male 1357 0.95 (0.81–1.10) 0.93 (0.82–1.05)

Site of disease Pulmonary 1757 Referent

Pulmonary plus additional sites 555 0.51 (0.43–0.62)* 0.58 (0.50–0.68)*

Patient detection pathway Clinical Presentation 1839 Referent

Contact tracing 131 0.132 (0.08–0.21)* 0.29 (0.18–0.46)*

Screening 24 0.49 (0.23–1.11) 0.64 (0.33–1.22)

Health undertaking 317 0.37 (0.29–0.46)* 0.54 (0.44–0.67)*

CXR Normal 31 Referent

Abnormal 879 1.79 (0.84–3.60) 1.18 (0.66–2.12)

Unknown 1401 1.95 (0.91–3.91) 1.27 (0.71–2.26)

Diagnosis Culture 1967 Referent

PCR/NAT/Ht/Cs 130 0.15 (0.09–0.23)* 0.30 (0.19–0.45)*

Radiological 214 0.21 (0.15–0.29)* 0.45 (0.33–0.62)*

New or relapse New case 2177 Referent

Relapse following full treatment 83 1.23 (0.84–1.86) 1.07 (0.78–1.47)

Relapse following partial treatment 30 0.53 (0.26–1.14) 0.70 (0.38–1.25)

Unknown 21 1.38(0.67–3.24) 1.02(0.56–1.91)

Number of contacts identified 18019a 1.06(1.05–1.06)* 1.04(1.04–1.05)*

RR rate ratio, CI confidence interval, CXR Chest X-Ray, PCR/NAT/Ht/Cs Polymerase chain reaction/nucleic acid test/histology/clinical signs, Health undertaking is post
migration follow-up program
a=total number of contacts, * = statistically significant at P value < 0.05

Fig. 2 Proportion of all contacts, close contacts, proportion of
secondary infections and secondary active TB disease due to a given
proportion of infectious patients in Victoria, for the
period 2005–2015
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finding was also more heterogeneous compared to the
previous TB estimate from genotypic data (k = 0.1) [10]
and other infectious diseases such as SARS [4]. However,
the effective use of preventive therapy in this setting and
long incubation period could lead to an underestimate
of the risk of active TB, as there is a risk of missing late
reactivations of TB, although late reactivation are rela-
tively rare in Victoria [24]. The effective use of preventive
therapy could also overestimate the true level of hetero-
geneity in cases of secondary active TB, by differentially
reducing the number of secondary cases produced by
some index cases. The analyses of contacts demonstrated
that these heterogeneities are not solely driven by hetero-
geneity in contact patterns. Therefore, we believe that the
true value of the M. tb transmission dispersion parameter
is likely to fall somewhere between the k estimate for sec-
ondary infections and secondary active TB distributions.
Based on our definition [4], three-quarters of all

secondary M. tb infections occurred as a result of
super-spreading events. Although the average number of
secondary infections per index (Rn) was less than one
(0.77), TB rates may not decline as expected in the popu-
lation due to this high heterogeneity. Moreover, TB trans-
mission goes well beyond the 20/80 rule-of-thumb for
infectious disease transmission which states that 80% of
transmission is due to only 20% of the population [25],
since in our results 20% of index patients produce 90% of
secondary infections (Fig. 3).
Our regression analysis identified several important

associations between index patients’ characteristics and
the number of secondary infections they produced,
rather than considering just the proportion of contacts
infected as typically done in previous studies [26, 27].

Compared to index patients with pulmonary TB only,
index patients with TB involving pulmonary and non-
pulmonary sites were less infectious. This may be
explained by those with extrapulmonary TB but minor
CXR abnormalities often being classified as “pulmonary
plus other sites”, with these patients tending to have a
low bacillary load and smear-negative pulmonary disease
(given that it is well-established that pulmonary patients
are more infectious than extrapulmonary who have
virtually zero infectiousness [28, 29]). The method of
patient identification was also an important predictor of
infectiousness, with index patients found by clinical
presentation being more infectious than those found
through contact tracing or post-migration follow-up.
This could be explained by the fact that those patients
identified through the passive process of relying upon
clinical presentation spend longer infectious, whereas
those identified through the more active approaches of
contact tracing and post-migration follow-up allows
earlier identification and treatment. This explanation is
consistent with delayed diagnosis and treatment being a
major predictor of TB patients’ infectiousness [30–33].
Similarly, index patients diagnosed by culture produced
a higher number of secondary infections, which is con-
sistent with patients with culture-positive results having
a higher bacillary load [34].
The most important limitation of our study is that some

secondary infections might be the result of distant past in-
fections, rather than relating to the contact episode. Our
definition of super-spreading events is based on contact
infection rather than active disease in contacts, since there
is no standard definition in the case of TB and the diffi-
culty in interpreting active disease in a setting of wide-
spread use of preventive therapy. However, we argue that
contact infection is the best available measure of true
M. tb transmission in our setting and this definition
could be used for future studies on the disease.

Conclusions
We conclude that M. tb transmission is a highly hetero-
geneous process in our population and super-spreading
events are a major driver of transmission. Therefore, it is
essential to consider this heterogeneity when modelling
TB transmission dynamics and considering control stra-
tegies. Future observational studies should characterise
super-spreading in different epidemiological settings to
further characterise this phenomenon.

Additional files

Additional file 1: Figure S1. Schematic presentation of number of
index TB patient and contacts in Victoria, for the period 2005–2015.
(DOCX 52 kb)

Fig. 3 Comparison of proportion of secondary TB infections and
secondary active TB disease with SARS and Measles due to a given
proportion of index cases. *estimates taken from: Lloyd-Smith JO,
Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of
individual variation on disease emergence.
Nature. 2005;438(7066):355–9
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Additional file 2: Figure S2. Distribution of number of contacts per
index TB patient in Victoria, for the period 2005–2015. A. All contacts
(with negative binomial distribution fitted to count data) strategies, the
number of index patients with zero contacts was 639 (beyond limit of vertical
axis). B. Subset of contacts (0–40 contacts per index only). (DOCX 34 kb)

Additional file 3: Figure S3. Distribution of number of Close contacts
per index TB patient in Victoria, for the period 2005–2015. A. All Close
contacts (with negative binomial distribution fitted to count data). B.
Subset of close contacts (0–40 close contacts per index), the number of
index patients with zero close contacts was 653 (beyond limit of vertical
axis). (DOCX 34 kb)

Additional file 4: Figure S4. Hanging rootograms for a Poisson model
(upper panel) and negative binomial model (lower panel) count data.
(DOCX 37 kb)
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