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Abstract

Background: Salmonella Typhi is a human pathogen that causes typhoid fever. It is a major cause of morbidity and
mortality in developing countries and is responsible for several outbreaks in developed countries. Studying certain
parameters of the pathogen, such as the incubation period, provides a better understanding of its pathophysiology
and its characteristics within a population. Outbreak investigations and human experimental studies provide an
avenue to study these relevant parameters.

Methods: In this study, the authors have undertaken a systematic review of outbreak investigation reports and
experimental studies, extracted reported data, tested for heterogeneity, identified subgroups of studies with limited
evidence of heterogeneity between them and identified factors that may contribute to the distribution of
incubation period.
Following identification of relevant studies, we extracted both raw and summary incubation data. We tested for
heterogeneity by deriving the value of I2 and conducting a KS-test to compare the distribution between studies.
We performed a linear regression analysis to identify the factors associated with incubation period and using the
resulting p-values from the KS-test, we conducted a hierarchical cluster analysis to classify studies with limited
evidence of heterogeneity into subgroups.

Results: We identified thirteen studies to be included in the review and extracted raw incubation period data from
eleven. The value of I2 was 84% and the proportion of KS test p-values that were less than 0.05 was 63.6%
indicating high heterogeneity not due to chance. We identified vaccine history and attack rates as factors that may
be associated with incubation period, although these were not significant in the multivariable analysis (p-value: 0.1).
From the hierarchical clustering analysis, we classified the studies into five subgroups. The mean incubation period
of the subgroups ranged from 9.7 days to 21.2 days. Outbreaks reporting cases with previous vaccination history
were clustered in a single subgroup and reported the longest incubation period.

Conclusions: We identified attack rate and previous vaccination as possible associating factors, however further
work involving analyses of individual patient data and developing mathematical models is needed to confirm these
as well as examine additional factors that have not been included in our study.
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Background
Typhoid fever is a systemic infection caused by the bac-
terium Salmonella enterica subsp. enterica serotype
Typhi (S. Typhi). It has been a major human pathogen
for thousands of years, and while incidence has greatly
reduced in developed countries, it remains a major cause
of morbidity and mortality in developing countries [1].
Laboratory diagnosis of typhoid fever involves culture
and identification through biochemical and serological
means. Widal agglutination test was a common method
until its diagnostic capabilities were questioned [2].
The mode of transmission is faecal-oral via ingestion of

contaminated food and water or contact with an infected
carrier [3]. Although it is a gastrointestinal infection, diar-
rhoea and vomiting are atypical symptoms of typhoid
fever. People suffering from typhoid fever typically com-
plain of systemic symptoms including gradual onset of
fever, general malaise, headaches and abdominal pain [4].
Prevention of typhoid fever, like most other gastro-

intestinal infections, includes good hand hygiene [5] and
exclusion of infected food handlers. In addition, typhoid
vaccine has been known to offer some protection [6].
Although typhoid fever in developed countries is

mostly a sporadic disease associated with travel to en-
demic countries, outbreaks are still commonly reported
[7, 8]. Factors such as improper cooling, inadequate
heating of food, contact with contaminated raw products
and infected food handlers have been implicated as con-
tributory factors of outbreaks [9].
Investigation of outbreaks contributes to the control

and reduction of the burden of disease by identifying and
eliminating the source of infection. Information obtained
from observational studies of outbreak investigations, par-
ticularly outbreaks with well-defined point of exposures,
as well as experimental studies provide a means of study-
ing and understanding the disease by studying certain pa-
rameters in real-life and under laboratory conditions.
Incubation period of typhoid fever, which is the time

between exposure and onset of clinical symptoms, is one
of the essential parameters to be studied. It is expected
to be a distribution rather than a single estimate as a re-
sult of individual variation based on factors such as dose
response, food matrix and host characteristics. An accur-
ate knowledge of the incubation period distribution of
typhoid fever is relevant for surveillance and implemen-
tation of public health interventions. It also contributes
towards effective outbreak investigation as incorrect esti-
mations can be misleading if they were used to deter-
mine the time of exposure [10]. Accurate knowledge of
the incubation period helps in correctly classifying pri-
mary and secondary cases and exclusion of travel related
cases. The incubation period also offers insights into the
pathophysiology of typhoid fever and is important in
conducting epidemiological and ecological studies [11].

Despite the importance of knowing the accurate incu-
bation period distribution of typhoid fever, large organi-
sations give a wide range with no clear indication of
which durations are common and which are rare. Ac-
cording to the World Health Organisation (WHO), incu-
bation periods ranging from three to sixty days have
been reported [3]. The Centres for Disease Control and
Prevention (CDC) reported the incubation period as
three to thirty days [12].
In this study, we have systematically reviewed the lit-

erature for outbreaks of well-defined point source expo-
sures and human experimental studies of typhoid fever
with the aim of estimating the distribution of the incu-
bation period and identify factors that may explain any
variation observed. We extracted summary estimates
and individual incubation period data reported, tested
for the presence of heterogeneity, identified factors that
may contribute to heterogeneity and defined subgroups
of studies than can be combined for analysis.

Methods
Research questions
The questions we aimed to answer in this review were:

1. What is the distribution of incubation period of
Salmonella Typhi in humans?

2. What factors influence the incubation period?

Modified PICO elements
Population studies /Participants - Laboratory confirmed
cases of Salmonella Typhi in a point source exposure
outbreak or continuous source outbreaks where date of
exposure and onset is known for each case or experi-
mental study.
Probable cases of typhoidal salmonellosis based on

clinical presentation and case definitions in the context
of a point source exposure outbreak.
Infectious agent - Salmonella enterica subsp. enterica

serotype Typhi.
Comparator - Host factors and any other factors such

as vaccine history, ingested dose, food vehicle, case
definitions.
Outcome - Time from exposure to onset of clinical ill-

ness as described or defined by the authors including
fever, abdominal pain, vomiting etc.

Literature search
The authors carried out a systematic literature search of
peer reviewed publications on PubMed to identify obser-
vational studies and experimental studies reporting incu-
bation period. Combining all the terms of interest, we
formed the compound search string: Salmonella Typhi
AND Humans AND (Outbreak* OR Experiment*). The
reference list of review papers was also screened to
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identify other relevant studies that may have been
missed in the original search. The search was carried out
between 29 May to 24 June 2017.

Selection process
Each article went through a rigorous selection process,
and relevant articles were assessed for the quality of re-
ported data. The selection and assessment process were
done in the following phases:

1) Screening of titles and abstracts for articles
reporting typhoidal salmonellosis

2) Screening of full texts for reporting of incubation
period

3) Review of full texts to assess exposure times and
quality of reported data according to defined quality
assessment criteria.

The quality assessment criteria used in this review has
previously been explained in Awofisayo-Okuyelu et al.
[13]. The process involved two reviewers independently
assessing each study and comparing results. Where there
was a difference in opinions, discussions were held until
a consensus was reached.

Data extraction process
Relevant data was extracted using a pre-developed pro
forma (Table 1). The type of data extracted from all studies
included general information on the article, characteristics

of the observational study or experimental study, details of
the organism, attack rate, setting of exposure, details of
case definition and summary measures of the incubation
period such as mean, median, mode and range where
available.
Some studies further reported individual incubation

data either as an epidemic curve or descriptive table.
Where an epidemic curve was provided, we used a free
online data extraction tool called WebPlotDigitizer ver-
sion 3.10 [14] to extract the individual incubation data.
If data was provided as a descriptive summary table, in-
dividual incubation data was equally extracted.
The unit of measurement reported and extracted was

in days.

Descriptive analyses
We calculated frequencies and percentages, summarising
the characteristics of all studies. Characteristics summarised
included: study design (observational or experimental),
study type for observational studies (case-control, cohort or
descriptive), year of study, country of study, age distribution
of cases, mode of transmission and setting of exposure.
Using the extracted individual incubation data, we

re-created the epidemic curves of the studies plotting each
graph on a standard x-axis indicating incubation period
ranging from zero to forty-five days and individual y-axis
indicating number of cases in the outbreak or experimen-
tal study.

Table 1 Details of data extracted

Section Information to be collected

General information - Year of publication
- Title of article
- Authors
- Type of publication (journals, conference abstract, grey literature, etc.)
- PubMed ID (where applicable)

Study characteristics - Year of study
- Study design (cohort, case-control, experimental, case series)
- Country of study
- Age distribution
- Comments on method or quality of study

Pathogen characteristics - Infectious agent
- Species
- Subtype

Outcome data/ results - Case definition
- Reported incubation period (individual data, mean, median mode and range)
- Derived or calculated summary estimates incubation period (raw data extracted)
- Source of calculated data (epidemic curve or author description)

Other outcome data - Incubation period to particular symptoms

Factors that could affect incubation period - No of exposed cases
- No of people affected
- Setting
- Mode of transmission
- Food vehicle (for foodborne infections only)
- Patient characteristics (e.g. age, previous infection or treatment, underlying illness)

Any other relevant information - Any other relevant information
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Statistical analyses
Using the individual incubation data, we tested for the
presence of heterogeneity and defined the pattern of het-
erogeneity. Using both the individual and summary in-
cubation data, we identified factors that may explain
heterogeneity. Analyses were carried out using the statis-
tical software R version 3.2.3 (2015-12-10) – “Wooden
Christmas Tree” [15]. Further details on the statistical
analyses is described in Awofisayo-Okuyelu et al. [13].

Testing for heterogeneity
We tested for heterogeneity across the studies in two
ways. First, we calculated the value of I2 by deriving the
Q statistic and inputting it into the formula: I2 = 100 %
X (Q − df )/Q; where Q is the Cochran’s heterogeneity
statistic and df is the corresponding degree of freedom.
A p-value of less than 0.05 from the Q statistic test pro-
vided evidence of heterogeneity between the studies.
Furthermore, the value of I2 was interpreted according
to the Cochran suggested threshold [16] to determine
the magnitude of heterogeneity.
The second way we tested for heterogeneity was by per-

forming a two-sample Kolmogorov-Smirnov test (KS test)
which compares the cumulative distributions between the
studies. We applied a bootstrapped version of the function,
repeating the sampling 100,000 times in order to derive
p-values that will provide improved coverage due to poten-
tial ties in the data comparisons.
The output of the KS test was the D-statistic and the

corresponding p-value. A high d-statistic value and a
low p-value indicated the presence of heterogeneity. We

further compared the p-values to confirm if any ob-
served heterogeneity was due to chance. We calculated
the proportion of p-values below 0.05 and the probabil-
ity of obtaining the observed proportion. Statistical evi-
dence of heterogeneity in the reported incubation period
was available if the probability was less than 0.01.

Identifying factors that explain heterogeneity
We performed a linear regression analysis using the sum-
mary incubation data available from all studies. We fitted a
generalised linear model with gamma as the family function
to account for skewness of the data and the link function
used was ‘identity’. The effect of the explanatory variables
on the mean incubation period was examined using a uni-
variate model, and where there was a significant association
(p-value 0.05), the associated variables were included in a
multivariable model to test for confounding.

Identifying subgroups of studies/describing pattern of
heterogeneity
Once heterogeneity was confirmed, the next step was to
identify subgroups of studies with limited evidence of
heterogeneity. We used hierarchical clustering analysis
to statistically identify subgroups of studies. Studies that
reported only summary data (studies 7 and 11) or aggre-
gated raw data (studies 1 and 3) were excluded from the
cluster analysis.
The p-value of the KS test was converted to a dissimilar-

ity matrix and used to create a hierarchical cluster to show
a graphical representation of the dissimilarities between
the studies. The cluster analysis algorithm used was the

Fig. 1 Flowchart of study selection process
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complete linkage method. The output was a dendrogram
showing a compact visualisation of the dissimilarity matrix.
In order to identify clusters within the dendrogram,

we had to determine a cut-off point at which the studies
were significantly allocated to subgroups. Considering
that the KS test was a pairwise test, thereby increasing
the likelihood of a type 1 error (observing one significant
result due to chance), we applied a pragmatic adjust-
ment to the significance level (0.05) by dividing it by the
number of studies included in the KS test. We then sub-
tracted the corrected p-value from one to derive a
cut-off point from which studies with limited evidence
of heterogeneity can be defined within subgroups.

Subgroup analysis
Individual incubation period data was pooled to generate
a dataset for each subgroup. Summary statistics and out-
come measures were derived including:

– Number of studies included in a subgroup
– Total number of cases (sum of cases in all studies

included in a subgroup)
– Mean and median incubation period of cases within

a subgroup
– Variance, skew and kurtosis of incubation period of

cases within a subgroup
– Mean attack rate of studies within a subgroup
– Reported vaccination history of studies within a

subgroup

A forest plot showing the distribution of the mean in-
cubation period and the corresponding 95% confidence
interval was created. The reported mean incubation
period was used to allocate studies without individual
patient data to appropriate subgroups for illustration.

Risk of bias
We analysed our data for the presence of small-study ef-
fect using a funnel plot to visualise the relationship be-
tween sample size and incubation period.

Results
Literature search and selection process
A total of 510 articles were retrieved following the
search in PubMed. Titles and abstracts were screened
to identify relevant articles. Articles were excluded if
there were non-human related studies, or non-typhi
studies. Studies that were not reported in English were
also excluded. This resulted in 180 articles available for
full text screening of incubation period data after ex-
cluding 330 irrelevant articles. Searching through the
reference list of other review papers, we identified thir-
teen articles that were not included in the original
search, bringing the number of articles available for full

text screening to 193. Excluding articles that did not re-
port incubation period resulted in 86 articles that went
through the quality assessment process. Seventy-three
articles did not meet the quality assessment criteria
(Additional file 1) and were further excluded (Fig. 1).
The resulting number of articles available for inclusion
in the study was thirteen (Additional file 2), all of which
reported individual incubation data with the exception
of studies 7 and 11.

Descriptive analysis of studies
All studies included in our review reported incubation
period of cases associated with S. Typhi, however, very
few studies reported the microbiological characteristics
(phage types) of the infecting organism.

Table 2 Characteristics of included studies

N %

Total number of studies 13

Year of study

Before year 2000 8 61.5

2000 and later 4 30.8

unknown 1 7.7

Region of study

Europe 3 23.1

North America 5 38.5

Africa 2 15.4

Asia 2 15.4

Unknown 1 7.7

Study design

Descriptive 4 30.8

Case control 4 30.8

Retrospective cohort 3 23.1

Experimental study 2 15.4

Setting of exposure

Catered meal 5 38.5

Outdoor activity 2 15.4

Picnic 2 15.4

Experimental study 2 15.4

Community 1 7.7

Restaurants 1 7.7

Food vehicle category

Red meat 2 15.4

Dairy and dairy products 2 15.4

Salad 3 23.1

Non-foodborne 1 7.7

Other 3 23.1

Unknown 2 15.4
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Studies included in our review were published between
1914 and 2016. Sixty one percent (8/13) of the outbreaks
or experiments took place before year 2000 with the ma-
jority (5/13; 38.5%) occurring the North America (Table 2).
Two studies were experimental and the remainder were
epidemiological studies including descriptive studies (4/
13; 30.8%), case control studies (4/13; 30.8%) and retro-
spective cohort studies (3/13; 23.1%). The eleven out-
breaks included resulted in a total of 635 cases.
The settings of exposure varied and the most common

reported setting was events with catered meals (5/13;
38.5%). Outdoor activities and picnic events were reported
in two outbreaks each (2/13; 15.4%). With the exception
of one outbreak that was caused by exposure to surface
water at a recreational park, all infections were foodborne
and the most frequently reported food vehicles were salad
and vegetables (3/13; 23.1%), red meat and dairy both ac-
counting for two outbreaks each (2/13; 15.4%). The food
vehicle for two outbreaks was unknown. (Table 2).
The funnel plot did not indicate any effect of study size

on the reported incubation period as it was symmetric
and the data points were evenly distributed around the
x-axis (Additional file 3).

Reviewing the re-created epidemic curves from the
eleven studies that provided individual incubation data,
we observed a range of distributions in the plots (Fig. 2).
The mean incubation period ranged from 7 days to
21.4 days. The minimum incubation period reported
was 2 days and the maximum was 41 days (Table 3).
Identification of cases was dependent on the case def-

inition given by the authors of each study. In eight stud-
ies, microbiological confirmation was used to define
cases, in two studies (studies 6 and 13), a very specific
case definition including epidemiological link was used
and in three studies, the case definition was less specific
but also including epidemiological link (Table 3).
Of the twelve studies where the attack rates could

be calculated, five had an attack rate higher than 50%
and the highest attack rate was 79.31% in an outbreak
involving ingestion of contaminated ice cream [17].
This outbreak also recorded the second highest case
fatality rate.
Five studies reported vaccination history of cases, and of

these, two reported previous vaccination of some or all of
their cases. These two studies reported the longest mean
incubation period of 21.4 and 20.9 days. The attack rates

Fig. 2 Collated epidemic curves of eleven studies re-created from raw data and arranged according to subgroup
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in these populations were below 50%, however, these were
not the lowest attack rates reported.

Test for heterogeneity
The p-value of the derived Q statistic was < 0.0001 and the
calculated value of I2 was 84% indicating high heterogeneity
in the reported incubation period across the studies. The
proportion of KS test p-values that were less than 0.05 was
63.6% (42/66) and the probability of obtaining the observed
proportion was < 0.0001 further confirming the high het-
erogeneity across the studies which is not due to chance.

Factors that may explain heterogeneity
Results of the univariate analysis showed that previous
vaccination history, attack rate and year of study had a
significant association with the mean incubation period.
The mean incubation period reduced by 1.4 days with
every 10% increase in attack rate (p-value 0.05), and

outbreaks containing cases that had been vaccinated re-
ported a longer incubation period of 9.8 days compared
to outbreaks without vaccinated cases (Table 4). Out-
breaks that occurred after 1950 reported a longer incuba-
tion period of 6.8 days compared to outbreaks that
occurred before 1950. When these variables were included
in the multivariable analysis, there was no significant asso-
ciation between vaccination, year of study and mean incu-
bation. The effect observed for year of study was reversed
such that outbreaks that occurred after 1950 now reported
a shorter incubation period of 3.9 days.

Identifying subgroups of studies
Based on the clustering analysis, studies were paired ac-
cording to the evidence of dissimilarities between them.
Studies found to have the least evidence of dissimilarities
were paired and then connected by branches to another
pair of studies or a single study with minimal dissimilarity

Table 4 Linear regression analysis to identify factors associated with the distribution of incubation period

Variables Univariate analysis Multivariable analysis

Difference in mean p-value Difference in mean p-value

Age distribution

Adult Reference

Children 2.7 0.6

Mixed ages 1.5 0.6

Year of study

Pre 1950 Reference

Post 1950 6.8 0.01 −3.9 0.1

Attack rate −0.14 0.05 −0.26 0.07

Setting

Restaurant Reference

Catered meal −0.5 0.9

Community −8.3 0.1

Experimental −7.4 0.2

Outdoor activity 1.5 0.8

Picnic −6.9 0.2

Food category

Other Reference

Dairy −4.3 0.3

Non-food 3.1 0.6

Red meat 0.1 0.9

Salad & vegetable 3.3 0.5

Vaccine history

None Reference

Yes 10.3 0.03 4.2 0.1

Specific case definition

No Reference

Yes −2.2 0.4
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to them. These pairing and connections of studies create a
dendrogram of the dissimilarity matrix (Fig. 3).
The pragmatic adjustments made to the significance

level resulted in a corrected p-value of 0.004 and a corre-
sponding cut-off point of 0.994. At this cut-off point, after
taking into account multiple testing, four subgroups were
identified. These included: one subgroup of three studies
and three subgroups of two studies each (Fig. 3).

Summary of subgroup analysis
The mean incubation period was different between
the subgroups (Fig. 4) and significantly decreased
from subgroup 1 to subgroup 3. Subgroup 4 had the
shortest mean incubation period of 9.7 days (95% CI
8.6–10.7) and subgroup 1 had the longest mean of
21.2 days (95% CI 19.5–22.9) (Table 5). We also ob-
served some differences in the variance, skew and
kurtosis between subgroups. Subgroups 3 and 4 had
the highest mean attack rate and also had the short-
est incubation periods. Cases in subgroup 1 reported
previous vaccination and also reported the longest
incubation period.

Discussion
We have undertaken a systematic review to describe the
distribution of incubation period of Salmonella Typhi. We

tested for the presence of heterogeneity, attempted to
identify factors that could influence the incubation period
and classified the studies into subgroups with limited evi-
dence of heterogeneity. Due to the high heterogeneity
amongst the studies, estimating a single distribution of in-
cubation period was impossible. However, we defined sub-
groups of similar studies and found their mean incubation
period to range from 9.7 days to 21.2 days. These values
are within the range quoted by international organisa-
tions reporting 3 to 60 days [3], 3 to 30 days [12] and
also scientific literatures reporting 10 to 20 days [18].
Some literature report shorter incubation periods than
we observed, like Raffatellu et al. reporting a median of
5 to 9 days [19] or 8 to 14 days [18]. We also identified
attack rate and vaccination as possible factors that
could affect the incubation period distribution.
The relationship between attack rate and incubation

period is inversely proportional, such that higher attack
rates result in shorter incubation periods [20, 21]. This
has been reported in numerous outbreaks [22–24] and
also observed in our review. Attack rates are associated
with factors such as virulence of the organism, host
characteristics and infecting dose [22]. When either of
these factors are present in a way that increases the at-
tack rate: high virulence, susceptible host and large in-
fecting dose, the incubation period is shortened as the
onset of illness is quicker.

Fig. 3 Dendrogram showing compact visualization of dissimilarity matrix indicating pattern of heterogeneity and highlighting subgroups of the
studies that can be combined for further analysis
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Vaccination is one of the preventive measures advised by
public health professionals [25, 26] to control or mitigate
the burden of disease brought on by S. Typhi [27]. It is rec-
ommended to people living in or visiting endemic areas
and to control outbreaks [3]. Our study did not aim to re-
view the efficacy of typhoid vaccine in preventing out-
breaks, however we identified a couple of studies with
outbreaks reported in vaccinated population [28, 29] and
similar studies have also been reported [30]. As observed
from our review, we may say that in populations where vac-
cination does not prevent illness, it may delay the onset of
symptoms thereby prolonging the incubation period.
This could have an adverse effect in outbreaks with
continuous source as more people will be exposed and
possibly infected before the outbreak is discovered.

The subgroup analysis indicated that outbreaks and
experimental studies that took place before the year
1950 belonged to subgroups reporting shorter incuba-
tion period (subgroups 3 and 4). In the univariate ana-
lysis, post-1950 studies had a significantly longer
incubation period, however, in the multivariate analysis,
this effect on the incubation period was reversed as we
observed a shorter incubation period in post-1950 stud-
ies. The change in the direction of effect is indicative of
the presence of a confounding factor in the univariate
analysis.
A lot of reported outbreaks caused by S. Typhi either

had a continuous source of exposure such as municipal
water supply [31–34], or were caused by widely distrib-
uted food produce [35, 36]. This means that point

Fig. 4 Forest plot showing mean incubation period of included studies and subgroup summary mean and 95% confidence intervals

Table 5 Summary statistics of outbreaks and incubation period within subgroups

Count Sum of cases Median Mean (95% CI) Variance Skew Kurtosis Attack rate Vaccine

Subgroup 1 2 55 20 21.2 (19.5–22.9) 42.2 −0.002 −0.6 28.7 All or most cases

Subgroup 2 3 68 16 16.2 (14.6–17.8) 42.7 0.9 2.3 NR Unknown

Subgroup 3 2 276 9 10.8 (9.7–11.8) 39.7 2.1 4.4 54.1 None

Subgroup 4 2 107 8 9.7 (8.6–10.7) 29.3 1.8 2.9 67.6 Unknown

NR Not reported
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source outbreaks, where the time of exposure is definite
and incubation period could be accurately calculated,
were few. This was a similar finding in the review con-
ducted by Naylor [24]. The author stated the criteria of
an outbreak suitable for incubation period analysis and
reported that very few reports fulfilled these criteria.
However, in their review, studies where the date of ex-
posure was not confirmed were included and date of in-
fection was inferred from date of purchase, date of sale
for a batch of food item, date of water contamination
and so on. Continuous source outbreaks can be useful if
the investigators identify and report the exact dates of ex-
posure and onset but this was not the case in the outbreaks
reviewed by Naylor. Hence, some studies identified in Nay-
lor’s review were not included in our study. In our study,
we identified only 13 studies with point source exposures
or where the time of exposure was known. Some studies
however reported point source exposures, although the ex-
posures could have occurred over a few days [37, 38].
Dose response is known to be associated with incuba-

tion period [20, 39], and although this was not particularly
studied in our review, there were studies were this rela-
tionship was observed. In an outbreak associated with ice
cream [17], a dose response relationship was observed as
those who had a mixture of ice creams had longer incuba-
tion periods while those who had only the contaminated
ice cream had comparatively shorter incubation periods.
Another dose response relationship was observed in the
experimental study conducted by Waddington et al. [21].
Two cohorts of volunteers were infected with different
doses of inoculum, 103 and 104. The cohort receiving the
lower dose had a longer incubation period compared to
those receiving the higher dose.
The case definition used in identifying cases or in in-

cluding cases as part of an outbreak is very subjective
and based on what the authors identify as a case. This is
quite essential because it can either prolong or shorten
the incubation period of a case based on what is consid-
ered as the onset of symptoms. Although there are
guidelines on what to consider when defining a case
[40], case definitions depend on the authors’ perception.
The complex syndrome of typhoid fever [7] makes the
process of defining cases arbitrary. In our review, some
of the case definitions were broad and syndromic, such
as ‘clinical illness’, while others are very specific in terms
of fever at a particular temperature [21, 29, 41] or dis-
missing symptoms such as diarrhoea and vomiting [17].
Neither the broad nor specific definitions are incorrect,
however, the varied case definitions may have contrib-
uted to the observed heterogeneity.
A limitation we encountered in this review was the

difference in the reported incubation period data ex-
tracted from the included studies. Although the raw in-
cubation times were reported in days, some studies

reported an aggregated date of symptom onset in three
or seven-day intervals [42, 43]. Onset times were either
rounded up or rounded down to fall into the reported
interval. Rounding down the onset time from three days
to one will spuriously shorten the incubation period just
as rounding up the onset time from one day to seven
will spuriously prolong the incubation period. We there-
fore excluded these studies from the hierarchical cluster
analysis and their reported mean incubation periods
should be interpreted with caution.

Conclusions
Our study showed that the reported incubation period
varied more than could be explained by chance and iden-
tified attack rate and previous vaccination as associated
factors, although not significantly. This may be due to the
limited information available from the small number of
studies we reviewed. Analysing individual patient data will
provide an opportunity to assess additional patient charac-
teristics such as underlying medical conditions, drug inter-
actions and full vaccination history. In addition, using
mathematical models to describe the process of infection
will help identify parameters intrinsic to the infection
pathway that could influence the distribution of incuba-
tion period such as gastric transit times, phagocyte char-
acteristics and cellular bacteria growth.
In order to maximise the use of outbreak reports in

studying parameters such as incubation period, authors
should endeavour to precisely report exposure times and
onset times. Where the outbreak is non-point source,
identifying and reporting the exposure time of each case
where possible will be useful. Case definitions should be
developed in such a way as to ensure that cases are in-
cluded based on similar thresholds which can also be
comparable with other outbreak reports.
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